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INTEGRABILITY CONDITIONS ON COBOUNDARY AND TRANSFER

FUNCTION FOR LIMIT THEOREMS

DAVIDE GIRAUDO

Abstract. For a measure preserving automorphism T of a probability space, we pro-
vide conditions on the tail function of g : Ω → R and g − g ◦ T which guarantee limit
theorems among the weak invariance principle, Marcinkievicz-Zygmund strong law of
large numbers and the law of iterated logarithm to hold for f := m+ g − g ◦ T , where
(m ◦ T i)i>0 is a martingale difference sequence.

1. Introduction and notations

Let (Ω,F , µ) be a probability space and T : Ω → Ω be a bijective bi-measurable and
measure preserving map. We assume that the dynamical system is ergodic (that is, if
T−1A = A for some A ∈ F , then µ(A) ∈ {0, 1}). If n > 1 is an integer and f : Ω → R, we

denote Sn(f) :=
∑n−1

j=0 f ◦ T j and for a fixed t, define

(1.1) Spl
n (f, t) := S[nt](f) + (nt− [nt])f ◦ T [nt], t ∈ [0, 1],

where [x] denote the integer part of the real number x. Then for each ω ∈ Ω and each
integer n > 1, the map t 7→ Spl

n (f, t) is an element of the space of continuous functions in
[0, 1], denoted by C[0, 1].

Let us state the limit theorems we are interested in.

Definition 1.1. Let f : Ω → R be a measurable function.

• We say that the function f satisfies the invariance principle if the sequence (n−1/2Spl
n (f, ·))n>1

weakly converges in C[0, 1] to a scalar multiple of a standard Brownian motion.
• We say that the function f satisfies the law of iterated logarithm if for almost every
ω ∈ Ω,

(1.2) lim sup
n→+∞

Sn(f)(ω)√
n log logn

= 1 and lim inf
n→+∞

Sn(f)(ω)√
n log logn

= −1.

• We say that the function f satisfies the functional law of iterated logarithm if the
sequence

(

(
√
n log logn)−1Spl

n (f, ·)
)

n>1
is relatively compact and the set of its limit

points coincides with the set of all absolutely continuous functions x ∈ C[0, 1] such

that x(0) = 0 and
∫ 1

0 (x
′(t))2dt 6 1, where x′ denotes the derivative with respect to

the Lebesgue measure.
• Let 1 < p < 2. We say that the function f satisfies the p-strong law of large

numbers if for any α ∈ [1/p, 1] if

(1.3) ∀ε > 0,

+∞
∑

n=1

nαp−2µ

{

max
16k6n

|Sk(f)| > εnα

}

< +∞.

If it is possible to find a decomposition of the function f

(1.4) f = m+ g − g ◦ T,
where g : Ω → R is a measurable function and m satisfies one of the previous limit theorems,
then one can wonder if we can deduce the result for f .
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A known situation is when the sequence (m ◦ T i)i>0 is a square-integrable martingale
difference sequence. A necessary and sufficient condition to have (1.4) with such an m
and a square integrable g is known (see Theorem 2 in [6]). If (m ◦ T i)i>0 is a square-
integrable martingale difference sequence, then the functional law of iterated logarithm
and the invariance principle take place.

If 1 < p < 2 and m ∈ L
p, then Theorem 5 by Dedecker and Merlevède [3] implies that m

satisfies the p-strong law of large numbers. Actually, their results holds in a more general
setting than strictly stationary sequences, as they only require a stochastic domination on
the martingale difference sequence (Xj)j>0. A similar result as (1.3) takes place for α = 1
if we require a conditional stochastic domination (see [2], Theorem 2.2). A necessary and
sufficient condition for (1.4) to hold with m, g ∈ L

p, 1 < p < 2, is given by Volný in
Theorem 1 of [7], and in this case, (1.3) is satisfied (see Theorem 6 of [3]).

We call a coboundary a function of the form g − g ◦ T , where g : Ω → R is a measurable
function. The function g is called a transfer function. The following result is Theorem 1
of [8]. It gives a necessary and sufficient condition on the transfer function to preserve the
limit theorems mentioned in the previous definition. Sufficiency for the invariance principle
and the law of iterated logarithm was established in [5], pages 140-142).

Theorem 1.2 (The equivalence theorem,[8]). Let us suppose that for the process (m◦T i)i∈Z

the invariance principle, the law of iterated logarithm (functional law of iterated logarithm)
respectively, holds true. Let g be a measurable function and

(1.5) f = m+ g − g ◦ T.
Then for the process (f ◦ T i)i∈Z

• the invariance principle holds if and only if

(1.6)
1√
n

max
16k6n

∣

∣g ◦ T k
∣

∣ →
n→∞

0 in probability;

• the law of iterated logarithm as well as the functional law of iterated logarithm holds
if and only if

(1.7)
1√

n log logn
g ◦ T n →

n→∞

0 a.s.

Both conditions (1.6) and (1.7) take place when the function g is square-integrable. If
1 < p < 2, Theorem 6 in [3] shows that (1.3) holds if g belongs to L

p.
However, it may happen that we obtain a decomposition (1.4) where m ∈ L

2 but the
function g is only integrable (see [8] for explicit counter-examples, and [4] for a condition
which guarantees the square integrability of m) and in this case, the weak invariance
principle does not need to hold. We investigate conditions on the functions t 7→ µ {|g| > t}
and t 7→ µ {|g − g ◦ T | > t} which guarantee (1.6) or (1.7). In order to state these conditions
in a more concise way, we introduce the so-called weak L

q-spaces.

Definition 1.3. Let q be a real number strictly greater than 1. We denote by L
q,∞ the

space of functions h : Ω → R such that

(1.8) ‖h‖qq,∞ := sup
t>0

tqµ {|h| > t} is finite.

The subspace of L
q,∞ which consists of functions h such that lim

t→+∞

tqµ {|h| > t} = 0 is

denoted by L
q,∞
0 .

2. Main results

In this section, we state the main results of this note. In the first subsection, we give a
sufficient condition on the functions t 7→ µ {|g| > t} and t 7→ µ {|g − g ◦ T | > t} in order to
preserve the weak invariance principle, the law of iterated logarithm and the p-strong law
of large numbers respectively. In the second subsection, we construct counter-examples
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which show that the found conditions are sharp when the considered dynamical system is
aperiodic.

Volný and Samek showed in [8] that the conclusion of Theorems 2.1 and 2.2 (see the next
subsections) hold when p > (r+2)/r and that of Theorem 2.6 when p < (r− 1)/(r− 3/2).
In the case r > 2, we cannot conclude if (r − 1)/(r − 3/2) 6 p < (r + 2)/r.

In this section, we assume that (m ◦ T i)i>0 is a square-integrable martingale difference
sequence.

2.1. Sufficient conditions.

Theorem 2.1. Let 1 6 p < 2 6 r be such that p > r/(r − 1) and let g : Ω → R be a
function such that g ∈ L

p,∞
0 and g − g ◦ T ∈ L

r,∞
0 . Then the function f = m+ g − g ◦ T

satisfies the weak invariance principle in C[0, 1].

A similar result has been obtained for the quenched central limit theorem (see [1],
Corollary 7).

Theorem 2.2. Let 1 6 p < 2 6 r and let g : Ω → R be a function.

(i) If p > r/(r−1), g ∈ L
p,∞ and g−g ◦T ∈ L

r,∞, then the function f = m+g−g ◦T
satisfies the law of iterated logarithm;

(ii) if p = r/(r − 1), g ∈ L
p and g − g ◦ T ∈ L

r, then the function f = m+ g − g ◦ T
satisfies the law of iterated logarithm.

Theorem 2.3. Let 1 6 q < p < r < 2 be real numbers and let g : Ω → R be a function
such that g ∈ L

q and g − g ◦ T ∈ L
r. If q > (p − 1)r/(r − 1), then the the function

f = m+ g − g ◦ T satisfies (1.3).

Remark 2.4. In [8], Lq spaces are involved. It turns out that in the setting of Theorems 2.1
and 2.2, (i), we may work with weak L

q-spaces. For the case (ii) in Theorem 2.2, it would
be a challenging problem to determine whether strong moments are actually needed.

Remark 2.5. Ergodicity of the dynamical system is required for the "only if" direction
in the equivalence involving the law of iterated logarithm of Theorem 1.2. Therefore,
Theorem 2.1 remains valid in the non-ergodic setting.

2.2. Counter-examples.

Theorem 2.6. Assume that the dynamical system (Ω,F , µ, T ) is aperiodic. Let 1 6 p <
2 6 r be real numbers such that p < r/(r − 1). Then there exists a function g ∈ L

p such
that g − g ◦ T ∈ L

r and the function f = m + g − g ◦ T satisfies neither the invariance
principle nor the law of iterated logarithm.

Theorem 2.7. Assume that the dynamical system (Ω,F , µ, T ) is aperiodic. Let 1 < p < 2
and let 1 6 q < p < r be real numbers such that q < (p − 1)r/(r − 1). Then there exists
a function g ∈ L

q such that g − g ◦ T ∈ L
r but the sequence (n−1/pSn(g − g ◦ T ))n>1 does

not converge almost surely to 0.

3. Proofs

If h : Ω → R is a measurable function, we define M∗(h) := supN>1 N
−1 |SN (h)|.

The following lemma about Birkhoff averages will be used in the proof.

Lemma 3.1. Let q > 1 and let h : Ω → R be a measurable function.

(i) the inequality

(3.1) ‖M∗(h)‖q,∞ 6
q

q − 1
‖h‖q,∞ ,

takes place;
(ii) if h belongs to L

q,∞
0 then the function M∗(h) belongs to L

q,∞
0 ;

(iii) if h belongs to L
q, then so does M∗(h).

We now give the proofs of the main results, which combine Lemma 3.1 with the ideas
of [8].
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3.1. Proof of sufficient conditions.

Proof of Theorem 2.1. In view of Theorem 1.2, we have to show the convergence in (1.6).
Let ε be a positive fixed number. Let k, n be positive integers such that k < n. Denoting

pn := µ
{

max16j6n

∣

∣g ◦ T j
∣

∣ > 2εn1/2
}

, the following estimates take place:

pn 6 µ

{

max
16i6[nk ]+1

max
ik6j<(i+1)k

∣

∣g ◦ T ik
∣

∣+
∣

∣g ◦ T j − g ◦ T ik
∣

∣ > εn1/2

}

6 µ

{

max
16i6[nk ]+1

∣

∣g ◦ T ik
∣

∣ > ε
√
n

}

+

[nk ]+1
∑

i=1

µ

{

max
ik6j<(i+1)k

∣

∣g ◦ T j − g ◦ T ik
∣

∣ > εn1/2

}

6

([n

k

]

+ 1
)

µ
{

|g| > εn1/2
}

+
([n

k

]

+ 1
)

µ

{

max
06j<k

∣

∣g ◦ T j − g
∣

∣ > εn1/2

}

6

([n

k

]

+ 1
)

µ
{

|g| > εn1/2
}

+
([n

k

]

+ 1
)

µ

{

max
06j<k

1

j
|Sj(g − g ◦ T )| > ε

n1/2

k

}

.

This yields

(3.2) pn 6

([n

k

]

+ 1
)

µ
{

|g| > εn1/2
}

+
([n

k

]

+ 1
)

µ

{

M∗(g − g ◦ T ) > ε
n1/2

k

}

By the assumption on p and r, we may choose a number α such that

(3.3) 1− p

2
6 α 6

r/2− 1

r − 1
.

We now use (3.2) with k := [nα]. This yields, for some constant c depending only on p and
r:

(3.4) pn 6 c · n1−αµ
{

|g| > εn1/2
}

+ c · n1−αµ
{

M∗(g − g ◦ T ) > εn1/2−α
}

,

and, by (3.3),

pn 6 cnp/2µ
{

|g| > εn1/2
}

+(3.5)

+ cn1−α−r(1/2−α)n(1/2−α)rµ
{

M∗(g − g ◦ T ) > εn1/2−α
}

= cnp/2µ
{

|g| > εn1/2
}

+(3.6)

+ cn1−r/2+α(r−1)n(1/2−α)rµ
{

M∗(g − g ◦ T ) > εn1/2−α
}

6 cnp/2µ
{

|g| > εn1/2
}

+ cn(1/2−α)rµ
{

M∗(g − g ◦ T ) > εn1/2−α
}

.(3.7)

Since g ∈ L
p,∞
0 and g − g ◦ T ∈ L

r,∞
0 , we conclude by item (ii) of Lemma 3.1 that the

sequence (pn)n>1 converges to 0.
This concludes the proof of Theorem 2.1. �

Proof of Theorem 2.2. In view of Theorem 1.2, we have to prove that the convergence in
(1.7) takes place. Let α ∈ (0, 1) be a number which will be specified later. We define

(3.8) mj :=

j−1
∑

i=1

[iα] , j > 1.

Notice that for some constant κ depending only on α, we have

(3.9)
jα+1

κ
6 mj 6 κjα+1, j > 1.

By the Borel-Cantelli lemma, we have to prove the convergence of the series

(3.10)

+∞
∑

j=1

pj , with pj := µ

{

max
06i6[jα]

1
√

mj log logmj

∣

∣g ◦ Tmj+i
∣

∣ > ε

}

4



for each positive ε. To this aim, we start from the inequalities

pj : 6 µ

{

1
√

mj log logmj

|g ◦ Tmj | > ε/2

}

+

+ µ

{

max
06i6[jα]

1
√

mj log logmj

∣

∣g ◦ Tmj+i − Tmj
∣

∣ > ε/2

}

= µ

{

1
√

mj log logmj

|g| > ε/2

}

+

+ µ

{

max
06i6[jα]

1
√

mj log logmj

∣

∣g ◦ T i − g
∣

∣ > ε/2

}

,

from which we infer

(3.11) pj 6 µ

{

1
√

mj log logmj

|g| > ε/2

}

+

+ µ

{

1
√

mj log logmj

M∗(g − g ◦ T ) > ε

2 [jα]

}

.

(i) Assume that p > r/(r − 1). Using the definition of ‖·‖p,∞ and inequality (3.9), we
obtain

(3.12) µ

{

1
√

mj log logmj

|g| > ε/2

}

6 c(p, ε, α)κp/2 ‖g‖pp,∞
1

j(α+1)p/2
,

where c(p, ε, α) is independent of j. Using (3.9) and (3.1), we derive

(3.13) µ

{

1
√

mj log logmj

M∗(g − g ◦ T ) > ε

2 [jα]

}

6

6 c(r, ε, α)κp/2 ‖g − g ◦ T ‖rr,∞ jαr−(α+1)r/2,

where c(r, ε, α) is independent of j.
Combining (3.11), (3.12) and (3.13), we deduce the upper bound

(3.14) pj 6 c(p, r, α, ε, g)

(

1

j(α+1)p/2
+ j(1−α)r/2

)

.

By assumption, we can take α such that

(3.15) (α+ 1)p/2 > 1 and (1 − α)r/2 > 1,

hence by (3.14), the series defined by (3.10) is convergent for any positive ε. This
conclude part (i) of Theorem 2.2.

(ii) Assume that p = r/(r− 1). We pick α := 2/p− 1 = 1− 2/r. In this case, for some
constant c depending only on p and r, the inequality

pj 6 µ
{

|g| > cεj1/p
}

+ µ
{

M∗(g − g ◦ T ) > εcj−α+(α+1)/2
}

(3.16)

= µ
{

|g| > cεj1/p
}

+ µ
{

M∗(g − g ◦ T ) > εcj(1−α)/2
}

(3.17)

= µ
{

|g| > cεj1/p
}

+ µ
{

M∗(g − g ◦ T ) > εcj1/r
}

(3.18)

takes place. By item (iii) of Lemma 3.1, we conclude that the series defined by
(3.10) is convergent for any positive ε and this concludes part (ii) of Theorem 2.2,
hence the proof of Theorem 2.2.

�
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Proof of Theorem 2.3. Let us fix a positive ε and α ∈ [1/p, 1]. Let 1 6 k < n be integers.
By similar inequalities which leaded to (3.2) (we replace the exponent 1/2 by α), we derive

(3.19) µ

{

max
16j6n

∣

∣g − g ◦ T j
∣

∣ > εnα

}

6 2
([n

k

]

+ 1
)

µ {|g| > εnα/4}+

+ 2
([n

k

]

+ 1
)

µ

{

M∗(g − g ◦ T ) > εnα

2k

}

.

Let us choose k :=
[

nβ
]

, where

(3.20) (p− q)α 6 β 6 α(r − p)/(r − 1)

(the existence of such a β is guaranted by the assumptions on p, q and r). Then we have
to check that for each positive constant c, the series

(3.21) Σ1 :=

+∞
∑

n=1

npα−1−βµ {|g| > cnα} and

(3.22) Σ2 :=

+∞
∑

n=1

npα−1−βµ
{

M∗(g − g ◦ T ) > cnα−β
}

are convergent. The convergence of Σ1 is equivalent to the integrability of the function

|g|p−β/α
; this holds since (3.20) implies q > p− β/α.

Note that the second series converges if

(3.23) E

[

(M∗(g − g ◦ T ))
pα−β
α−β

]

< +∞.

Notice that inequality (3.20) implies that (pα − β)/(α − β) 6 r, hence we derive the
convergence of S2 by item (iii) of Lemma 3.1 (with the exponent (pα−β)(α−β) > 1 since
p > 1).

This concludes the proof of Theorem 2.3. �

3.2. Counter-examples.

Proof of Theorem 2.6. We recall the construction given in the proof of Theorem 3 of [8].
We choose a real number α such that

(3.24)
r − 2

2(r − 1)
< α < 1− p

2
.

For each i > 1, we define ni := 2i and ki :=
[

2iα
]

. By the Rokhlin lemma, one can find a
set Ai ∈ F such that

(3.25) sets Ai, TAi, . . . , T
ni−1Ai are pairwise disjoint and

(3.26) µ





ni−1
⋃

j=0

T jAi



 > 1/2.

In particular, the quantity µ(Ai) can be bounded as follows:

(3.27)
1

2ni
6 µ(Ai) 6

1

ni
.

We then define for i > 1,

(3.28) gi :=

√
ni log logni

ki





ki
∑

j=1

j1(T ni−jAi) +

2ki−1
∑

j=ki+1

(2ki − j)1(T ni−jAi)



 ,

and g :=
∑+∞

i=1 gi.
Since it has been shown in [8] that the function f satisfies neither the invariance principle

nor the law of iterated logarithm, it remains to prove that the constructed function g
belongs to L

p and that the coboundary g − g ◦ T belongs to L
r.

6



By (3.25) and (3.28), the equality

(3.29) |gi|p =

(√
ni log logni

ki

)p




ki
∑

j=1

jp1(T ni−jAi) +

2ki−1
∑

j=ki+1

(2ki − j)p1(T ni−jAi)





takes place, hence integrating and accounting (3.27), we derive the estimates

E |gi|p 6

(√
ni log logni

ki

)p




ki
∑

j=1

jp +

2ki−1
∑

j=ki+1

(2ki − j)p)





1

ni
(3.30)

6 2
n
p/2−1
i (log logni)

p/2

kpi
kp+1
i(3.31)

= 2n
p/2−1
i (log logni)

p/2ki,(3.32)

hence

(3.33) ‖gi‖p 6 21/pn
1/2−1/p
i (log logni)

1/2k
1/p
i .

By definition of ni and ki, one can find a constant c depending only on α (hence on p and
r) such that for i large enough,

(3.34) ‖gi‖p 6 c · 2i(1/2−1/p)(log i)1/2 · 2iα/p = c · (log i)1/2 · 2i(α−1+p/2)/p.

By (3.24), the series
∑+∞

i=1 (log i)
1/2 ·2i(α−1+p/2)/p is convergent, and we conclude by (3.34)

that g belongs to L
p.

It is proved in [8] that by construction, the equality

(3.35) |gi − gi ◦ T | =
√
ni log log ni

ki
· 1





2ki
⋃

j=1

T ni−jAi





holds. By (3.25) and (3.28), we have

(3.36) ‖gi − gi ◦ T ‖r 6
√
ni log logni

ki

(

2ki
ni

)1/r

,

hence by the definition of ni and ki, we have for i large enough and a constant c depending
only on α,

(3.37) ‖gi − gi ◦ T ‖r 6 c · 2i(1/2−1/r)2iα(1/r−1)(log i)1/2,

from which we infer (by (3.24)) the convergence of the series
∑+∞

i=1 ‖gi − gi ◦ T ‖r hence
the fact that the function g − g ◦ T belongs to L

r.
This concludes the proof of Theorem 2.6. �

Proof of Theorem 2.7. The construction is similar to that of the proof of Theorem 2.6.
For each i > 1, we define ni := 2i and ki :=

[

2iβ
]

, where β satisfies

(3.38)
r − p

p(r − 1)
< β < 1− q

p
.

We take a set Ai ∈ F such that (3.25) and (3.26) hold. We then define for i > 1,

(3.39) gi :=
n
1/p
i

ki





ki
∑

j=1

j1(T ni−jAi) +

2ki−1
∑

j=ki+1

(2ki − j)1(T ni−jAi)



 ,

and g :=
∑+∞

i=1 gi.
The proof will be complete if we show the following three assertions:

(1) the function g belongs to L
q;

(2) the function g − g ◦ T belongs to L
r;

(3) the sequence (n−1/pSn(g − g ◦ T ))n>1 does not converge almost surely to 0.
7



The first two items follow by completely similar computations as in the proof of Theo-
rem 2.6. To show the last item, we notice that the sequence (2−i/p max2i6l62i+1 gi ◦T l)i>1

does not converge to 0 in probability. To see this, one can note that

(3.40) µ

{

2−i/p max
2i6l62i+1

gi ◦ T l
> 1

}

> µ





ni−ki
⋃

j=1

T j(Ai)



 >
1

2
.

This finishes the proof of Theorem 2.7.
�
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