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ON GLOBAL EXISTENCE AND TREND TO THE EQUILIBRIUM

FOR THE VLASOV-POISSON-FOKKER-PLANCK SYSTEM WITH

EXTERIOR CONFINING POTENTIAL

by

Frédéric Hérau & Laurent Thomann

Abstract. — We prove a global existence result with initial data of low regularity, and prove the
trend to the equilibrium for the Vlasov-Poisson-Fokker-Planck system with small non linear term
but with a possibly large exterior confining potential in dimension d = 2 and d = 3. The proof relies
on a fixed point argument using sharp estimates (at short and long time scales) of the semi-group
associated to the Fokker-Planck operator, which were obtained by the first author.

1. Introduction and results

1.1. Presentation of the equation. — Let d = 2 or d = 3. We consider the Vlasov-Poisson-

Fokker-Planck system (VPFP for short) with external potential, which reads, for (t, x, v) ∈

[0,+∞)× R
d × R

d

(1.1)





∂tf + v.∂xf − (ε0E + ∂xVe).∂vf − γ∂v. (∂v + v) f = 0,

E(t, x) = −
1

|Sd−1|

x

|x|d
⋆x ρ(t, x), where ρ(t, x) =

∫
f(t, x, v)dv,

f(0, x, v) = f0(x, v),

where x 7→ Ve(x) is a given smooth confining potential (see Assumption 1 below). The constant

ε0 ∈ R is the total charge of the system and in the sequel we assume that either ε0 > 0 (repulsive

case) or ε0 < 0 (attractive case) in the case d = 3. The constant γ > 0 is the friction-diffusion

coefficient, and for simplicity we will take γ = 1.

The unknown f is the distribution function of the particles. We assume that f0 ≥ 0 and that∫
f0(x, v)dxdv = 1, it is then easy to check that once a good existence theory is given, these

properties are preserved, namely that for all t ≥ 0

f ≥ 0 and

∫
f(t, x, v)dxdv = 1,

and we refer to Section 3.1 for more details and other basic results.
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This equation is a model for a plasma submitted to an external confining electric field (in the

repulsive case) and also a model for gravitational systems (in the attractive case). When there

is no external potential (Ve = 0), the equation has been exhaustively studied. First existence

results were obtained by Victory and O’Dwyer in 2d [23] and by Rein and Weckler [26] in 3d for

small data. Bouchut [2] showed that the equation is globally well-posed in 3 dimensions using

the explicit kernel. The long time behavior (without any rate) has been studied with or without

external potential by Bouchut and Dolbeault in [3], Carillo, Soler and Vazquez [4], and also by

Dolbeault in [10].

When there is a confining potential, arbitrary polynomial trend to the equilibrium was es-

tablished in [7] where a first notion of hypocoercivity [29] was developed and used later to

the full model [8]. The exponential trend to the equilibrium was shown in the linear case (the

Fokker-Planck equation) for a general external confining potential in [18] (see also [16]). So

far, in the non-linear case, there is no general result about exponential trend to the equilibrium.

In the case of the torus (and V = 0), the strategy of Guo can be applied to many models (see

e.g. [12, 13, 14]). In the case when the potential is explicitly given by Ve(x) = C|x|2, a recent

result with small data is given in [20], following the micro-macro strategy of Guo.

In all previous cases (torus, Ve = 0 or polynomial of order 2), mention that one can compute

explicitly the Green function of the Fokker-Planck operator and also that exact computations

can be done thanks to vanishing commutators. Here instead we will rely on estimates (in short

and long time) of the linear solution of the Fokker-Planck operator obtained by the first author

in [17], and our approach allows us to deal with a large class of confining potentials Ve. Indeed,

in [17, Theorem 1.3 ] a first exponential trend to the equilibrium result for a VPFP type model

was given, but only for a mollified non-linearity. We will prove here a global existence result in

the full VPFP case, with trend to equilibrium assuming that the initial condition f0 is localised

and has some Sobolev regularity and under the assumption that the electric field is perturbative

in the sense that |ε0| ≪ 1.

Let us now precise our notations and hypotheses. We do not try to optimise the assumptions

on the confining potential Ve and first assume the following

Assumption 1. — The potential x 7→ Ve(x) satisfies

e−Ve ∈ S(Rd), with Ve ≥ 0 and V ′′
e ∈ W∞,∞(Rd).

Observe that the assumption Ve ≥ 0 can be relaxed by assuming that Ve is bounded from

below and adding to it a sufficiently large constant.

We now introduce the Maxwellian of the equation (1.1)

(1.2) M∞(x, v) =
e−(v2/2+Ve(x)+ε0U∞(x))

∫
e−(v2/2+Ve(x)+ε0U∞(x))dxdv

,

where U∞ is a solution of the following Poisson-Emden type equation

(1.3) −∆U∞ =
e−(Ve+ε0U∞)

∫
e−(Ve(x)+ε0U∞(x))dx

.

Actually, one gets that under Assumption 1 and |ε0| small enough (assuming additionally that

ε0 > 0 in the case d = 2), the equation (1.3) has a unique (Green) solution U∞ which belongs

to W∞,∞(Rd) uniformly w.r.t |ε0| (see Propositions 3.5 and 3.6 following results from [9]). The

Maxwellian M∞ is then in S(Rd
x × R

d
v) and is the unique L1-normalised steady solution of

equation (1.1).
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In the case d = 2 and ε0 < 0, existence and uniqueness of solutions to (1.3) are unclear, that’s

why we do not consider this case.

For convenience, we now introduce the effective potential at infinity

(1.4) V∞
def
= Ve + ε0U∞ so that M∞(x, v) =

e−(v2/2+V∞(x))

∫
e−(v2/2+V∞(x))dxdv

.

The second assumption on Ve is the following

Assumption 2. — The so-called Witten operator W = −∆x+|∂xVe|
2/4−∆xVe/2 has a spectral

gap in L2(Rd). We denote by κ0 > 0 the minimum of this spectral gap and d/2.

Example 1.1. — As an example, we can check that if Ve satisfies Assumption 1 and is such

that

|∂xVe(x)| −→
|x|−→∞

+∞

then it satisfies also Assumption 2 since it has a compact resolvent.

We introduce now the functional framework on which our analysis is done. We consider the

weighted space B built from the standard L2 space after conjugation with a half power of the

Maxwellian

(1.5) B
def
= M1/2

∞ L2 =
{
f ∈ S ′(R2d) s.t. f/M∞ ∈ L2(M∞dxdv)

}
.

We define the natural scalar product

〈f, g〉 =

∫
fgM−1

∞ dxdv,

and the corresponding norm

‖f‖2B = 〈f, f〉 =

∫
f2M−1

∞ dxdv.

Next, consider the Fokker-Planck operator associated to the potential V∞ defined by

(1.6) K∞ = v.∂x − ∂xV∞(x).∂v − γ∂v. (∂v + v) .

The last object we need before writing our equation in a suitable way is the limit electric field

E∞(x) = ∂xU∞(x) = −
1

|Sd−1|

x

|x|d
⋆x

∫
M∞(x, v)dv.

With all the previous notations, the VPFP equation (1.1) can be rewritten

(1.7)





∂tf +K∞f = ε0(E − E∞)∂vf,

E(t, x) = −
1

|Sd−1|

x

|x|d
⋆x ρ(t, x), where ρ(t, x) =

∫
f(t, x, v)dv,

f(0, x, v) = f0(x, v).

We define the operator

Λ2
x = −∂x.

(
∂x + ∂xV∞

)
+ 1

which is up to a conjugation with M
1/2
∞ the Witten operator introduced in Assumption 2 but

defined on B, and

Λ2
v = −∂v.(∂v + v) + 1,

which is again up to a conjugation the harmonic oscillator in velocity. They both are non-

negative selfadjoint unbounded operators in B. We also introduce

Λ2 = −∂x.
(
∂x + ∂xV∞

)
− ∂v.(∂v + v) + 1 = Λ2

x +Λ2
v − 1.
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It is clear that

1 ≤ Λ2
x, Λ

2
v ≤ Λ2.

As we mentioned previously, if Ve satisfies Assumptions 1 and 2, then V∞ = Ve + ε0U∞ also

does, and we check in Subsection 3.3 that the operator

−∂x.
(
∂x + ∂xV∞

)
− ∂v.(∂v + v) = Λ2 − 1

has 0 as single eigenvalue and a spectral gap bounded in B which is, uniformly w.r.t |ε0| small,

bounded from below by κ0/2.

In the sequel, we will need the anisotropic chain of Sobolev spaces: for α, β ≥ 0

(1.8) Bα,β = Bα,β
x,v (R

2d) =
{
f ∈ B : Λα

xf ∈ B and Λβ
vf ∈ B

}
,

and we endow this space by the norm

‖f‖Bα,β = ‖Λα
xf‖B + ‖Λβ

v f‖B .

In the case α = β we simply define

Bα = Bα,α
x,v (R

2d) =
{
f ∈ B : Λαf ∈ B

}
,

with the norm

‖f‖Bα = ‖Λαf‖B ∼ ‖f‖Bα,α .

We observe that M∞ ∈ Bα,β for all α, β ≥ 0, since we have M∞ ∈ S(R2d).

1.2. Main results. — We are now able to state our global well-posedness results.

Theorem 1.2. — Let d = 2 and let f0 ∈ B(R4). Assume moreover that Assumptions 1 and 2

are satisfied. Then if ε0 > 0 is small enough, there exists a unique global mild solution f to (1.1)

in the class

f ∈ C
(
[0,+∞[ ; B(R4)

)
.

Moreover, the following convergence to equilibrium holds true

‖f(t)−M∞‖B ≤ C0e
−κ0t/c, ∀t ≥ 1,

and

‖E(t)− E∞‖L∞(R2) ≤ C1e
−κ0t/c, ∀t ≥ 1.

By mild, we mean f and E which satisfy the integral formulation of (1.7), namely

(1.9)





f(t) = e−K∞f0 + ε0

∫ t

0
e−(t−s)K∞(E(s) − E∞)∂vf(s)ds,

E(t) = −
1

|Sd−1|

x

|x|d
⋆x

∫
f(t)dv.

In the case d = 3, we need to assume more regularity on the initial condition, but the

known results about the uniqueness of the Poisson-Emden equation (see Subsection 3.2) allow

to consider also the case ε0 < 0.

Denote by

(1.10) U0 =
1

4π|x|
⋆x

∫
f0dv,

which is such that ∆U0 =

∫
f0dv. Then
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Theorem 1.3. — Let d = 3 and 1/2 < a < 2/3. Assume that f0 ∈ Ba,a(R6) ∩ L∞(R6) is such

that U0 ∈ W 2,∞(R3). Assume moreover that Assumptions 1 and 2 are satisfied. Then if |ε0| is

small enough, there exists a unique global mild solution f to (1.1) in the class

f ∈ C
(
[0,+∞[ ; Ba,a(R6)

)
∩ L∞

loc

(
[0,+∞[ ; L∞(R6)

)
.

Moreover, for all a ≤ α < 2/3 and a ≤ β < 1 such that 3α− 1 < β < 1

(1.11) f ∈ C
(
]0,+∞[ ; Bα,β(R6)

)
,

and the following convergence to equilibrium holds true

‖f(t)−M∞‖Bα,β ≤ C0e
−κ0t/c, ∀t ≥ 1,

and

‖E(t)− E∞‖L∞(R3) ≤ C1e
−κ0t/c, ∀t ≥ 1.

In the previous lines, the constants c, C1, C2 > 0 only depend on ‖V∞‖W 2,∞ where V∞ was

defined in (1.4), on ‖U0‖W 2,∞ and on f0.

Notice that in Theorem 1.3, the parameters (α, β) can be chosen independently from a. It

is likely that the assumption a < 2/3 is technical, but our proof needs that β < 1 (see e.g.

Corollary 2.6). Since in this work we focus on low regularity issues, we did not try to relax this

hypothesis.

It is likely that the assumption made on U0 is technical. It is needed here in order to guarantee

that the linearised equation near t = 0 enjoys reasonable spectral estimates. Observe (see

Remark 3.17 for more details), that the assumption f0 ∈ Ba,a(R6)∩L∞(R6) alone ensures that

U0 ∈ W 2,p(R3) for any 2 ≤ p < +∞.

An analogue of the regularizing estimate (1.11) can also be obtained in Theorem 1.2. This

can be proven by getting estimates in some spaces Bα,β
x,v as in the proof of Theorem 1.3 (see

Section 5). We did not include it here in order to simplify the argument.

The proof uses estimates of e−tK∞ in the space B , obtained in [17] by the first author.

Theorem 1.3 extends [17, Theorem 1.3] where he considered a regularised version of the electric

field E in (1.1), which was so that E(t) ∈ L∞(R3) for any f ∈ B. Here we tackle this difficulty

by using the Sobolev regularity of f and a gain given by the integration in time. The proof

relies on a fixed point argument in a space based on Bα,β in the (x, v) variables, and allowing

an exponential decay in time.

As a consequence of Theorems 1.2 and 1.3, we directly obtain the exponential decay of the

relative entropy. Let us define

H(f(t),M∞) =

∫∫
f(t) ln

( f(t)

M∞

)
dxdv,

then

Corollary 1.4. — Let d = 2 or d = 3. Then under the assumptions of Theorem 1.2 or Theo-

rem 1.3, the corresponding solution f of (1.1) satisfies

0 ≤ H(f(t),M∞) ≤ Ce−κt/c,

where C, c > 0 only depend on second order derivatives of Ve + ε0U∞ and on f0.

We refer to [17, Corollary 1.4] for the proof of this result.
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1.3. Notations and plan of the paper. —

Notations. — In this paper c, C > 0 denote constants the value of which may change from line

to line. These constants will always be universal, or uniformly bounded with respect to the other

parameters.

The rest of the paper is organised as follows. In Section 2 we prove some linear estimates on

e−tK (whereK is a generic linear Fokker-Planck operator). In Section 3 we gather some estimates

on solutions of (1.1). Finally, Sections 4 and 5 are devoted to the proofs of Theorems 1.2 and 1.3

with fixed points arguments.

2. Semi-group estimates

In this section, we denote by V a generic potential satisfying Assumptions 1 and 2. We also

denote by K the associated generic linear Fokker-Planck operator

K = v.∂xf − ∂xV.∂v − ∂v. (∂v + v) .

Similarly, the operators Λ2
x = −∂x(∂x+ ∂xV )+ 1, Λ2 = Λ2

x+Λ2
v − 1, the normalized Maxwellian

M(x, v) = e−(V (x)+v2/2) and spaces of type Bα,β are built with respect to this generic poten-

tial V . For convenience, we also denote by X0 = v.∂xf − ∂xV.∂v .

The aim of this section is to state some estimates of e−tK in B−type norms. These are

consequences of [17]. In all the following we pose

κ = κ0/C0,

where κ0 is the spectral gap of the operator W defined in Assumption 2 (with V as a poten-

tial), and C0 is a large constant depending only on derivatives of V ′′ explicitly given in [18,

Theorem 0.1].

The operator K is maximal accretive in B (see e.g. [16, Theorem 5.5]). This enables us to

define e−tK and to prove that

(2.1)
∥∥e−tK

∥∥
B→B

≤ 1.

Following [18, Theorem 3.1], operator e−tK −→ Id when t −→ 0, strongly in Ba,a for any

a ≥ 0. Observe that all the estimates in this section are independent of the dimension d. For

a complete analysis of the linear Fokker-Planck operator we refer to [18] or [16]. We now give

some regularizing estimates for the semi-group associated to K, in the spirit of [17, Section 3].

Proposition 2.1. — There exists C > 0 so that for all α, β ∈ [0, 1] and all t > 0

(2.2) ‖Λα
xe

−tK‖B→B ≤ C(1 + t−3α/2), ‖e−tKΛα
x‖B→B ≤ C(1 + t−3α/2)

and

(2.3) ‖Λβ
v e

−tK‖B→B ≤ C(1 + t−β/2), ‖e−tKΛβ
v ‖B→B ≤ C(1 + t−β/2).

In the previous bounds, the constant C only depends on a finite number of derivatives of V .

Remark 2.2. — Note that the exponents 1/2 in (2.3) and 3/2 in (2.2) when α = 1 are optimal

at least in the case V = 0 and in the case when V is a definite quadratic form in x. This can

be checked since in these both cases, the Green kernel of e−tK is explicit. In the case V = 0

we refer to [2], and when V is quadratic, we refer to the general Mehler formula given in [19,

Section 4 ].
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Proof of Proposition 2.1. — We first prove the estimate (2.3). In [17, Proposition 3.1], reinter-

preted in our framework, reads

(2.4)
∥∥(∂v + v)e−tK

∥∥
B→B

≤ C(1 + t−1/2).

For f a solution of the equation

∂tf +Kf = 0, f(t = 0) = f0,

with normalized initial condition f0 ∈ C∞
0 , and using the regularization property of e−tK , we

have for t > 0

‖Λvf(t)‖
2
B→B = 〈Λ2

vf(t), f(t)〉

= ‖(∂v + v)f(t)‖2B→B + ‖f(t)‖2B→B

≤ C(1 + t−1/2)2 + 1

≤ C ′(1 + t−1/2)2.

Using that B0,0
x,v = B and (2.1), we therefore have that

∥∥e−tK
∥∥2
B→B0,1

x,v
≤ C ′(1 + t−1/2),

∥∥e−tK
∥∥2
B→B0,0

x,v
≤ C ′′

and by interpolation we get that for all 0 ≤ β ≤ 1
∥∥e−tK

∥∥2
B→B0,β

x,v
≤ C(1 + t−1/2)β ≤ Cb(1 + t−β/2)

which reads

‖Λβ
v e

−tK‖B→B ≤ Cβ(1 + t−β/2)

which is the first result. For the converse estimate, we use that K∗, the adjoint of K in B given

by K∗ = −X0 − ∂v.(∂v + v), has the same properties as K so that for all t > 0,

‖Λβ
v e

−tK∗

‖B→B ≤ C ′
β(1 + t−β/2).

Taking the adjoints of this yields

‖e−tKΛβ
v‖B→B ≤ C ′

β(1 + t−β/2).

Concerning the estimates involving Λx, the proof is exactly the same as the preceding one

with Λv replaced by Λx, β replaced by 3α, −∂v.(∂v + v) replaced by −∂x.(∂x + ∂xV (x)) and

using the result from [17, Proposition 3.1]
∥∥(∂x + ∂xV (x))e−tK

∥∥
B→B

≤ C(1 + t−3/2),

instead of (2.4). This concludes the proof.

From Proposition 2.1, it is easy to deduce the following

Corollary 2.3. — Let α, β ∈ [0, 1]. Then

‖Λα
xe

−(t−s)KΛ1−β
v ‖B→B ≤ C

(
(t− s)−1/2+β/2−3α/2 + 1

)
,

and

‖Λβ
v e

−(t−s)KΛ1−β
v ‖B→B ≤ C

(
(t− s)−1/2 + 1

)
.

Proof. — We only prove the first statement, the second is similar. By (2.7), (2.8) and also using

Remark 2.5 we have

‖Λα
xe

−(t−s)KΛ1−β
v ‖B→B ≤ ‖Λαe−(t−s)KΛ1−β

v ‖B→B

≤ ‖Λαe−(t−s)K/2‖B‖e
−(t−s)K/2Λ1−β

v ‖B

≤ C
(
(t− s)−1/2+β/2−3α/2 + 1

)
,

which was the claim.
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We define

B⊥ =
{
f ∈ B s.t. 〈f,M∞〉 =

∫
fdxdv = 0

}

the orthogonal of M∞ in B. At this stage we observe that for f ∈ Bα ∩B⊥

(2.5) Λα
xf ∈ B⊥, Λα

v f ∈ B⊥

and that for all f ∈ B1

(2.6) ∂vf ∈ B⊥.

For (2.5) we use that the operator Λx is self-adjoint: 〈Λ
α
xf,M〉 = 〈f,Λα

xM〉 = 0 since ΛxM = M.

The same proof holds for Λv. The justification of (2.6) is similar using that ∂∗
v = −(v + ∂v)

and (v + ∂v)M = 0.

A careful analysis shows that we have in fact the following better results when we restrict

to B⊥.

Proposition 2.4. — For all α, β ∈ [0, 1] there exist Cα, Cβ > 0 so that for all t > 0

(2.7) ‖Λα
xe

−tK‖B⊥→B⊥ ≤ Cα(1 + t−3α/2)e−κt, ‖e−tKΛα
x‖B⊥→B⊥ ≤ Cα(1 + t−3α/2)e−κt

and

(2.8) ‖Λβ
v e

−tK‖B⊥→B⊥ ≤ Cβ(1 + t−β/2)e−κt, ‖e−tKΛβ
v‖B⊥→B⊥ ≤ Cβ(1 + t−β/2)e−κt.

In the previous bounds, the constants Cα and Cβ only depend on a finite number of derivatives

of V .

Proof. — For 0 ≤ t ≤ 1, this is a direct consequence of the preceding proof and the fact that B⊥

is stable by X0, Λ
2
x and Λ2

v and therefore Λ2, K and K∗ by direct computations. For t ≥ 1, the

proposition is a consequence of the regularizing properties of e−tK stated in [18, Theorem 0.1]

and the spectral gap for K: it is proven there that for all s ∈ R, there exist Ns > 0 and Cs > 0

such that

∀t > 0,
∥∥Λse−tKΛs

∥∥
B⊥→B⊥ ≤ Cs(t

s + t−s)e−κt.

Using this and possibly replacing κ by κ/2 gives the result for t ≥ 1. This completes the

proof.

Remark 2.5. — In fact possibly replacing once more κ by κ/2, we also get directly that Propo-

sition 2.4 is also true with K replaced by K/2. We shall use this just below.

Similarly to Corollary 2.3 we have the following

Corollary 2.6. — Let α, β ∈ [0, 1]. Then

(2.9) ‖Λα
xe

−(t−s)KΛ1−β
v ‖B⊥→B⊥ ≤ C

(
(t− s)−1/2+β/2−3α/2 + 1

)
e−κ(t−s),

and

(2.10) ‖Λβ
v e

−(t−s)KΛ1−β
v ‖B⊥→B⊥ ≤ C

(
(t− s)−1/2 + 1

)
e−κ(t−s).

Proposition 2.7. — There exists C > 0 so that for all γ ∈ [0, 2] and all t ≥ 0

(2.11) ‖Λγe−tKΛ−γ‖B→B ≤ C,

and

(2.12) ‖Λγe−tKΛ−γ‖B⊥→B⊥ ≤ Ce−κt.

In the previous bounds, the constant only depends on a finite number of derivatives of V .
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Proof. — We only give the proof of (2.11), since (2.12) can be obtained with the same argument.

Recall the definition (1.8) of the space Bα,β
x,v . We first note that it is equivalent to show that e−tK

is bounded from Bγ,γ
x,v into itself. We first begin with the case γ = 2. We therefore look, for an

initial data f0 ∈ B2,2
x,v at the equation satisfied by g = Λ2f in B. Let us define the operator

X0 = v.∂x − ∂xV.∂v .

Since

∂tf +X0f − ∂v.(∂v + v)f = 0, ft=0 = f0

and from the regularising properties of e−tK , we get

∂tg +X0g − ∂v .(∂v + v)g = [X0,Λ
2]Λ−2g, gt=0 = g0

where we also used that −∂v.(∂v + v) and Λ2 commute. Integrating against g in B gives

∂t ‖g‖
2 ≤

(
[X0,Λ

2]Λ−2g, g
)
,

since X0 is skew adjoint and −∂v.(∂v + v) is non-negative. Let us study the right-hand side

commutator. We have

[X0,Λ
2
v]Λ

−2 = [v.∂x − ∂xV (x).∂v ,Λ
2
v]Λ

−2

=
(
[v,Λ2

v ]∂x − [∂v ,Λ
2
v]∂xV (x)

)
Λ−2.

This gives with a direct computation
∥∥[X0,Λ

2
v]Λ

−2g
∥∥
B
≤ C ‖g‖B .

We can do exactly the same with Λ2
x (using that V (3) is bounded) and we get on the whole that

∥∥[X0,Λ
2]Λ−2g

∥∥
B
≤ 2C ‖g‖B

so that with a new constant C > 0

∂t ‖g‖
2
B ≤ 2C ‖g‖2B .

We therefore get

‖g(t)‖B ≤ eCt ‖g0‖B

which we will use for t ∈ [0, 1]. Using the regularising property of e−tK ([18, Theorem 0.1]), we

also know that for all t ≥ 1,

‖g(t)‖B ≤ ‖f(t)‖B2 ≤ C ′ ‖f0‖B2 ≤ C ′ ‖g0‖B .

Putting these results together give for all t ≥ 0,

‖g(t)‖B ≤ C ‖g0‖B

and therefore e−tK is (uniformly in t > 0) bounded from B2 to B2. Now the result is also clear

for γ = 0 by the semi-group property, and by interpolation we get that e−tK is (uniformly in

t > 0) bounded from Bγ to Bγ . As a conclusion we get

‖Λγe−tKΛ−γ‖B→B ≤ Cγ ,

which was the claim.

We are now able to state the following interpolation results

Lemma 2.8. — Let β ∈ [0, 1]. Then there exists C > 0 so that for all a ∈ [0, β]

‖Λβ
v e

−tK‖Ba→B ≤ C(1 + t−(β−a)/2).
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Proof. — For a = 0, this follows from Proposition 2.1. Next, set a = β, then for f ∈ Bβ

‖Λβ
v e

−tKf‖B ≤ ‖Λβe−tKf‖B ≤ ‖Λβe−tKΛ−β‖B→B‖Λ
βf‖B ≤ C‖f‖Bβ ,

by (2.11). The general case a ∈ [0, β] is obtained by interpolation.

Lemma 2.9. — Let 0 ≤ a0 ≤ 2. Then for all a0 ≤ a ≤ a0 +2 there exists C > 0 so that for all

0 ≤ t ≤ 1

‖Λa0
(
e−tK − 1)‖Ba→B ≤ Ct(a−a0)/2.

Proof. — For a = a0, the result follows from (2.11). Now we prove the bound for a = a0 + 2,

and the general result will follow by interpolation. We write

(
1− e−tK

)
f =

∫ t

0
e−sKKfds.

Then we use that K : B2 −→ B is bounded, and by (2.11) we get for all f ∈ Ba0+2

‖Λa0
(
e−tK − 1)‖Ba→B ≤

∫ t

0
‖Λa0e−sKΛ−a0‖‖Λa0Kf‖ds

≤ Ct‖f‖Ba0+2 ,

hence the result.

We conclude this section with a technical result.

Lemma 2.10. — For all δ ∈ R there exists Cδ > 0 so that

(2.13) ‖Λ−δ
v Λ−1

v ∂vΛ
δ
v‖B→B⊥ ≤ Cδ.

In the previous bound, the constant only depends on a finite number of derivatives of V .

Proof. — From to [18, Proposition A.7] we directly get that operator Λ−δ
v Λ−1

v ∂vΛ
δ
v is bounded

from B to B. Indeed in the symbolic estimates and pseudo-differential scales introduced there,

the operator ∂v is of order 1 with respect to the velocity variable. Now using the stability of B⊥

by Λv and (2.6) yield the result.

Remark 2.11. — We shall see in the next section (Section 3.6) that most of the results of this

section remain true when V is perturbed by a less regular term Ṽ ∈ W 2,∞. We will need this

for the small time analysis of the equation (1.1).

3. Intermediate results

In this section, we gather some intermediate results about the Vlasov-(Poisson)-Fokker-Planck

equation. In the first subsection we state some a priori basic properties satisfied by solutions of

the Fokker-Planck equation and then equation (1.1). In the second one we study more carefully

the Poisson term, and in the last one we recall some facts about the equilibrium state.
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3.1. The linear Fokker-Planck equation. — In this section, we just recall from [6, Ap-

pendix A] some standard and basic results about the behaviour of the solutions of the following

linear Krammers-Fokker-Planck equation

(3.1)

{
∂tf + v.∂xf − (∂xV − v).∂vf − f − ε0E(t, x)∂vf −∆vf = F,

f(0, x, v) = f0(x, v).

Note that equation (1.1) with given field E and V = Ve enters in this setting and that the linear

Fokker-Planck equation corresponds to E = 0. In both cases we take F = 0 and point out that

we used the commutation estimate −∂v(∂v + v)f = (∂v + v)(−∂v)f − f .

For the following, we take T > 0 arbitrary and denote by X = L2([0, T ] × R
d
x,H

1
v (R

d)) and

consider the space Y =
{
f ∈ X, (∂t + v.∂x − (∂xV − v).∂v)f ∈ X ′

}
. The following result is

classical and we refer to [6, Appendix A] for the proof.

Proposition 3.1. — Suppose E ∈ L∞([0, T ]×R
d), f0 ∈ L2(R2d) and F ∈ L2([0, T ]×R

d
x,H

−1
v ).

Then there exists a unique weak solution f of the equation (3.1) in the class Y . Moreover

(i) If f0 ≥ 0 then f ≥ 0.

(ii) If f0 ∈ L∞(R2d), then for all 0 ≤ t ≤ T ,

‖f(t)‖L∞(R2d) ≤ edt‖f0‖L∞(R2d).

This immediately implies the following a priori estimate on the full problem (1.1).

Corollary 3.2. — Let f0 ∈ L∞(R2d) ∩ L2(R2d) be such that f0 ≥ 0 and consider a solution

of (1.1) such that the field E ∈ L∞([0, T ] ×R
d). Then, for all 0 ≤ t ≤ T , f(t, .) ≥ 0 and

‖f(t)‖L∞(R2d) ≤ edt‖f0‖L∞(R2d).

3.2. Poisson-Emden equation and equilibrium state. — The aim of this subsection is to

prove that the potential U∞ associated to the stationary solutions of the Vlasov-Poisson-Fokker-

Planck equation is in W∞,∞(Rd). Recall that the equation satisfied by U∞ is

(3.2) −∆U∞ =
e−(Ve+ε0U∞)

∫
e−(Ve+ε0U∞)dx

where we recall that ε0 is varying in a small fixed neighbourhood of 0, and that ε0 > 0 in the

case of dimension d = 2.

3.2.1. Case d = 3. — When we are in the repulsive interaction case (ε0 > 0), the existence

and uniqueness of a (Green) solution of this equation is given by a result of Dolbeault [9]

(see also [10]) under a light hypothesis on the external potential. We first quote his result in

dimension d = 3 and in the Coulombian case

Proposition 3.3 ([9], Section 2). — Let Ue ∈ L∞
loc
(R3) and M > 0. Assume that e−Ue ∈ L1(R3),

then there exists a unique solution U ∈ L3,∞(R3) of the Poisson-Emden equation

(3.3) −∆U = M
e−(Ue+U)

∫
e−(Ue+U)dx

.

Moreover U ≥ 0.

The main property of U which will be needed in the following is U ≥ 0, that’s why we do not

even define precisely the space L3,∞(R3). For more details, we address to [9].

We then state another result of Bouchut and Dolbeault in the Newtonian case (ε0 < 0). This

result happens to hold only for small M .
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Proposition 3.4 ([3, Theorem 3.2 and Proposition 3.4]). — Assume that e−Ue ∈ L1(R3)∩L∞(R3)

and is not identically equal to 0. Then there exists M0 < 0 such that for all M0 < M ≤ 0 there

exists a bounded continuous function of equation (3.3) such that limx→∞U(x) = 0.

Now Assumption 1 on the exterior potential Ve implies that e−Ve ∈ L1(R3) ∩ L∞(R3). As a

consequence we can apply Proposition 3.3 at least in the case when ε0 is small to U = ε0U∞,

Ue = Ve, M = ε0 and d = 3 to (3.2) and we get a unique solution U∞ in L3,∞ when ε0 > 0.

Similarly we can apply Proposition 3.4 when ε0 < 0 and we get U∞ ∈ L∞. Notice that in our

context, |ε0| is small and hence both Propositions 3.3 and 3.4 apply here.

Actually, the regularity of U∞ is improved under the assumption e−Ve ∈ S(R3), and we can

also get some uniformity with respect to the parameter ε0.

Proposition 3.5. — Let d = 3. Suppose that Ve satisfies Assumption 1. Then the unique

solution U∞ of the Poisson-Emden equation (3.2) is in W∞,∞(R3), with semi-norms uniformly

bounded w.r.t. ε0 varying in a small fixed neighbourhood of 0.

Proof of Proposition 3.5. — In order to prove that U∞ ∈ W∞,∞, it is sufficient to prove that

the (Green) solution U∞ of the following Poisson-Emden-type equation

(3.4) −∆U∞ = C−1
0 e−(Ve+ε0U∞)

is in W∞,∞, where

C0 =

∫
e−(Ve(x)+ε0U∞(x))dx

is the normalization constant. We first work on ε0U∞ and note that it is given by

ε0U∞ =
ε0C

−1
0

4π

1

|x|
⋆ e−(Ve+ε0U∞).

We then consider the Green solution Ue of −∆Ue = e−Ve given by

Ue =
1

4π|x|
⋆ e−Ve .

From Propositions 3.3 and 3.4 we get directly that ε0U∞ exists, at least for ε0 varying in a small

neighbourhood of 0, and that it is either non-negative or uniformly bounded. It implies that

there exists a constant C > 0 uniform in ε0 such that 0 ≤ U∞ ≤ CUe since we also have

U∞ =
C−1
0

4π|x|
⋆ e−(Ve+ε0U∞).

From the Hardy-Littlewood Sobolev inequalities or by a direct computation, we have Ue ∈ Lp

for 3 < p ≤ ∞. Therefore this is also the case for U∞. Since we directly have that −∆U∞ ∈ Lp

for all p ∈ [1,∞] from (3.4), we get that

−∆U∞ + U∞ ∈ Lp, 3 < p < ∞

and this gives U∞ ∈ W 2,p by elliptic regularity in R
d (see for example [28], [30]).

Now we shall use a bootstrap argument to prove that U∞ ∈ W∞,∞. Let 3 < p < ∞ be fixed

in the following. We note that

(3.5) (−∆+ 1)2U∞ = −∆
(
C−1
0 e−(Ve+ε0U∞)

)
+ 2C−1

0 e−(Ve+ε0U∞) + U∞

and we study each term in order to prove that this expression is uniformly in Lp. Since U∞ ∈ L∞,

we have e−ε0U∞ ∈ L∞ and we get for all 1 ≤ i, j ≤ 3

∂ij(e
−ε0U∞) =

(
−ε0∂ijU∞ + ε20(∂iU∞)(∂jU∞)

)
e−ε0U∞ ∈ Lp
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uniformly, since on the one hand U∞ ∈ W 2,p uniformly and on the other hand

(3.6) ∀k, ∂kU∞ ∈ L2p =⇒ (∂iU∞)(∂jU∞) ∈ Lp.

In a direct way we also get ∂ke
−ε0U∞ ∈ Lp. Since e−Ve ∈ W 2,p and using the same trick as

in (3.6), this gives from (3.5) that U∞ ∈ W 4,p for the arbitrary fixed 3 < p < ∞. By a bootstrap

argument using the same method we get that

U∞ ∈ W 2k,p,

for all k ∈ N and therefore

U∞ ∈
⋂

k∈N

W 2k,p ⊂ W∞,∞.

The uniformity w.r.t. ε0 is also clear and the proof of Proposition 3.5 is complete.

3.2.2. Case d = 2. — We consider here only the Coulombian case (ε0 > 0).

In this context, we are able to prove the following result

Proposition 3.6. — Let d = 2. Suppose that Ve satisfies Assumption 1. Then the unique

solution U∞ of the Poisson-Emden equation (3.2) is in W∞,∞(R2), with semi-norms uniformly

bounded w.r.t. ε0 > 0 varying in a small fixed neighbourhood of 0.

Proof. — Notice that when d = 2, the equation (3.2) is equivalent to

U∞ = −
1

2π
ln |x| ⋆ e−(Ve+ε0U∞).

The existence and uniqueness of a solution U∞ ∈ Lp(R2) for any 1 ≤ p < ∞ with ∇U∞ ∈ L2(R2)

is proved in [9, page 199]. Moreover, the maximum principle ensures that U∞ ≥ 0. It is then

straightforward to adapt the proof of the case d = 3 to conclude.

In the Newtonian case (ε0 < 0), and for particular choices of Ve (e.g. Ve(x) = |x|2, see [1]),

there exist solutions to the equation (3.2), but uniqueness is unknown, even under additional

assumptions on the solution (radial symmetry, regularity, decay at infinity). However it would

be interesting to prove the trend to equilibrium also in this case. We refer to [1], where the

authors obtained such a result for a related problem.

Remark 3.7. — To end this section we notice that since U∞ ∈ W∞,∞(Rd), we get that the

potential at infinity Ve + ε0U∞ satisfies the same hypothesis as Ve alone. As a consequence

it will be possible to apply to K∞ all the properties obtained for any generic Fokker-Planck

operator K associated to a generic potential V satisfying Assumptions 1 and 2. This will be

crucial in the next section, in which we study the exponential convergence to the equilibrium.

A second remark is that the total potential at equilibrium is not explicit. In particular, the

Green function for the equation ∂tf +K∞f is not known. This justifies a posteriori the abstract

study (anyway with explicit constants) performed in the linear section. In the next section we

first go on with the study of a generic linear Fokker-Planck operator by studying the long time

behaviour and the exponential decay in time.

3.3. Uniformity of the spectral gap and heat-operator estimates. — The aim of this

short subsection is to prove that we have indeed a uniform estimate on the spectral gap for K∞

with respect to ε0. Let d = 2 or d = 3. We work with the operator

Ke = v.∂x − ∂xVe(x).∂v − ∂v. (∂v + v)
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and consider a bound from below κ0 of the spectral gap of W coming from Assumption 2.

From [18, Theorem 0.1] we know that there exist constants C0, C > 0 such that for all t ≥ 0,

(3.7)
∥∥e−tKe

∥∥
B⊥

e
≤ C0e

−tκ0/C

where

Be =
{
f ∈ S ′(R2d) s.t. fM−1/2

e ∈ L2(R2d)
}
,

and Me is the Maxwellian associated to Ve and B⊥
e is the orthogonal of Me. We then add to

the potential a small perturbation of type εU∞ with U∞ ∈ W∞,∞. This will be applied to the

potential U∞ built in the preceding subsection. Notice that U∞ ∈ W∞,∞ with uniform bounds

with respect to 0 < ε0 ≪ 1.

The corresponding modified operator is then

(3.8) K∞ = v.∂x − ∂xV∞(x).∂v − ∂v. (∂v + v) ,

with V∞ = Ve + ε0U∞. The main result is then the following

Proposition 3.8. — There exists a small real neighbourhood V of 0 such that for all t ≥ 0
∥∥e−tK∞

∥∥
B⊥ ≤ 4C0e

−tκ0/(8C)

uniformly w.r.t. ε0 ∈ V.

Proof. — We first recall that in (3.7) the precise result of [18, Theorem 0.1] says that C0 depends

on a finite number of semi-norms of Ve and that

C =
min

{
1, κ0

}

64(8 + 3Ce)

where Ce = max
{
sup

{
Hess(Ve)

2 − (14 (∂xVe)
2 − 1

2∆Ve)Id
}
, 0
}
. Adding a small perturbation

ε0U∞ with U∞ ∈ W∞,∞ does only change the constant C into 2C and C0 into 2C0 and we only

have to check that κ0 is changed into κ0/4 uniformly in ε0 sufficiently small.

For this we look at the spectrum of

W∞ = −∆x + |∂xV∞|2/4−∆xV∞/2

and we check that as operators in L2(Rd) we have

W∞ = −∆x + |∂xV∞|2/4−∆xV∞/2

≥ −∆x + |∂xVe|
2/4−∆xVe/2 + ε20|∂xU∞|2/4− |ε0||∆U∞|/2 + ε0∂xVe∂xU∞/2

≥ W − κ0/8 + ε0∂xVe∂xU∞/2

if we take ε0 sufficiently small so that ε20|∂xU∞|2/4 + |ε0||∆U∞|/2 ≤ κ0/8. Now there exist

constants a and b such that

|∂xVe∂xU∞| ≤ aW + b

since Ve has its second order derivatives bounded, and therefore we get for ε0 sufficiently small

W∞ ≥
1

2
W − κ0/4.

Since W ≥ κ0, the minmax principle then directly gives that

W∞ ≥ κ0/4

when restricted to the orthogonal of the 0-eigenspace. The proof is complete.
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Remark 3.9. — We can also notice that the natural norm into the weighted spaces

B =
{
f ∈ S ′ s.t. fM−1/2

∞ ∈ L2
}

and Be =
{
f ∈ S ′ s.t. fM−1/2

e ∈ L2
}

where M is the Maxwellian associated to Ve, are equivalent with an equivalence constant

bounded by 1/2 uniformly in ε0 small enough. This justifies the use of the norms associated to

the space B instead of the one associated to Be in the statement of the main theorems of this

article.

3.4. Estimates on the Poisson term. — In the following lemma we crucially use the fact

that we work in weighted Sobolev spaces instead of flat ones and that M∞ ∈ S(R2d) uniformly

in |ε0| ≪ 1, as proven in the preceding subsection. We have

Lemma 3.10. — Let α ∈ [0, 1] then there exists C > 0 such that for all h0 ∈ Bα

∥∥∥
∫

h0dv
∥∥∥
Hα

x

≤ C ‖h0‖Bα .

Proof. — We work by interpolation. Let us first consider the case α = 0. By Cauchy-Schwarz,
∥∥∥
∫

h0dv
∥∥∥
L2
x

=
∥∥∥
∫

h0M
−1/2
∞ M1/2

∞ dv
∥∥∥
L2
x

≤
∥∥∥
( ∫

h20M
−1
∞ dv

)1/2( ∫
M∞dv

)1/2∥∥∥
L2
x

≤ C0 ‖h0‖B .

Now we consider the case α = 1. We write
∥∥∥∂x

∫
h0dv

∥∥∥
L2
x

=
∥∥∥
∫

∂xh0dv
∥∥∥
L2
x

≤
∥∥∥
∫

(∂x + ∂xV )h0dv
∥∥∥
L2
x

+
∥∥∥
∫

(∂xV )h0dv
∥∥∥
L2
x

=
∥∥∥
∫ (

(∂x + ∂xV )h0
)
M−1/2

∞ M1/2
∞ dv

∥∥∥
L2
x

+
∥∥∥
∫

h0M
−1/2
∞

(
∂xVM1/2

∞

)
dv

∥∥∥
L2
x

≤
∥∥∥
(∫ (

(∂x + ∂xV )h0
)2
M−1

∞ dv
)1/2( ∫

M∞dv
)1/2∥∥∥

L2
x

+
∥∥∥
( ∫

h20M
−1
∞ dv

)1/2(∫
(∂xV )2M∞dv

)1/2∥∥∥
L2
x

≤ C
∥∥∥(∂x + ∂xV )h0

∥∥∥
B
+ C ‖h0‖B ≤ C ‖h0‖B1

where we used that (∂xV )2M∞ ∈ L∞
x L2

v, and that

‖(∂x + ∂xV )h0‖
2
B + ‖h0‖

2
B = (−∂x(∂x + ∂xV )h0, h0)B + ‖h0‖

2
B

= (Λ2
xh0, h0)B = ‖Λxh0‖

2
B ≤ ‖h0‖

2
B1 .

This gives the result for α = 1. The complete result follows by interpolation.

Lemma 3.11. — Assume that d = 2 or d = 3. Let h0 ∈ B and denote by

E0(x) =
x

|x|d
⋆

∫
h0(x, v)dv.

(i) Case d = 2. For all 0 < ε ≤ 1/2 there exists C > 0 so that

(3.9) ‖E0‖L∞(R2) ≤ C‖h0‖Bε .

(ii) Case d = 3. For all 0 < ε ≤ 1/2 there exists C > 0 so that

(3.10) ‖E0‖L∞(R3) ≤ C‖h0‖B1/2+ε .
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Proof. — Let us first recall the Hardy-Littlewood-Sobolev inequality (see e.g. [22]) which will

be useful in the sequel. For all 1 < p, q < +∞ such that 1
q −

1
p + 1

d = 0

(3.11)
∥∥ x

|x|d
⋆ f

∥∥
Lq(Rd)

≤ C‖f‖Lp(Rd).

We prove (ii). We consider the Fourier multiplier Lx = (1 − ∆x)
1/2. Then, by Hardy-

Littlewood-Sobolev and the Sobolev embeddings, for any ε > 0

‖E0‖L∞(R3) ≤ C
∥∥Lε

x

∫
h0dv

∥∥
L3(R3)

≤ C
∥∥L1/2+ε

x

∫
h0dv

∥∥
L2(R3)

≤
∥∥
∫

h0dv
∥∥
H1/2+ε(R3)

.

Using Lemma 3.10 with α = 1/2 + ε we get (3.10).

The proof of (i) is analogous with Lε
x replaced with L

1/2+ε
x .

Corollary 3.12. — Assume that d = 2 or d = 3. Let f0 ∈ B⊥ and denote by

E0(t, x) =
x

|x|d
⋆

∫
e−tKf0(x, v)dv.

(i) Case d = 2. For all 0 < ε ≤ 1/2 there exists C > 0 so that for all t > 0

(3.12) ‖E0(t, .)‖L∞(R2) ≤ C(1 + t−3ε/2)e−κt‖f0‖B .

(ii) Case d = 3. For all 0 < ε ≤ 1/2 there exists C > 0 so that for all t > 0

(3.13) ‖E0(t, .)‖L∞(R3) ≤ Ce−κt‖f0‖B1/2+ε .

Proof. — (i). We apply the result of Lemma 3.11 to the case h0 = e−tKf0 for some f0 ∈ B⊥,

then

(3.14) ‖E0(t, .)‖L∞(R2) ≤ C‖Λε
xe

−tKf0‖B .

Thus estimate (2.7) together with (3.14) implies

‖E0(t, .)‖L∞(R2) ≤ C(1 + t−3ε/2)e−κt‖f0‖B ,

which was to prove.

(ii). By (3.10) and (2.11), we obtain

‖E0(t, .)‖L∞(R3) ≤ C‖Λ1/2+εe−tKΛ−1/2−ε‖B⊥→B⊥‖Λ1/2+εf0‖B ≤ Ce−κt‖f0‖B1/2+ε ,

which was the claim.

3.5. Integral estimates. — In this subsection we give a technical result.

Lemma 3.13. — Let γ1, γ2, c > 0 and assume that γ1 ≤ 1. Then there exists C > 0 so that for

all t > 0

(3.15)

∫ t

0

(
s−1+γ1 + 1

)(
(t− s)−1+γ2 + 1

)
e−c(t−s)ds ≤

{
C
(
t−1+γ1+γ2 + 1

)
for t ≤ 1,

C for t ≥ 1.

Proof. — The proof is elementary: we expand the r.h.s. of (3.15) and estimate each piece. Let

t ≤ 1, then
∫ t

0

(
s−1+γ1 + 1

)(
(t− s)−1+γ2 + 1

)
e−c(t−s)ds ≤

∫ t

0

(
s−1+γ1 + 1

)(
(t− s)−1+γ2 + 1

)
ds,

Firstly, ∫ t

0
s−1+γ1(t− s)−1+γ2ds = Cγ1,γ2t

−1+γ1+γ2 ,
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by a simple change of variables. Then for t ≤ 1
∫ t

0
s−1+γ1ds+

∫ t

0
(t− s)−1+γ2ds ≤ C,

and this yields the result. Now we assume that t ≥ 1. Then on the one hand
∫ 1

0

(
s−1+γ1 + 1

)(
(t− s)−1+γ2 + 1

)
e−c(t−s)ds ≤ Ce−ct

∫ 1

0

(
s−1+γ1 + 1

)(
(t− s)−1+γ2 + 1

)
ds

≤ C,

and on the other hand, since γ1 ≤ 1
∫ t

1

(
s−1+γ1 + 1

)(
(t− s)−1+γ2 + 1

)
e−c(t−s)ds ≤ C

∫ t

0

(
(t− s)−1+γ2 + 1

)
e−c(t−s)ds

≤ C,

which completes the proof.

3.6. Low regularity heat estimates. — In this subsection we show how some of the previous

results on the Fokker-Planck operator with potential satisfying Assumption 1 remain valid when

the potential is of type

V = Ve + ε0U0

where Ve satisfies Assumption 1, U0 ∈ W 2,∞ and |ε0| ≤ 1. This will be applied in Section 5

when the study for short time will be done.

In the following we denote by

K = v.∂x − ∂xVe(x).∂v − ∂v. (∂v + v)

and

K0 = K − ε0∂xU0(x).∂v .

Note that the Hilbert spaces of type B defined in (1.5) with either M∞ (defined in (1.2)) or

Me (when Ve + ε0U∞ is replaced there by Ve only) or even M0 (when Ve + ε0U∞ is replaced

there by Ve + ε0U0) are all equal with equivalent norms uniformly in 0 ≤ ε0 ≤ 1 and depending

only on the norm sup of U0 or U∞.

We will need the following result

Lemma 3.14. — The domains of K and K0 coincide, they are both maximal accretive with

M1/2S as a core.

Proof. — This is clear for K as already noticed and used (see [18]). The difficulty is that K0 has

only W 1,∞ coefficients. There exists C0 > 0 such that ‖∂xU0‖L∞ ≤ C0, and then for any η > 0,

there exists Cη > 0 such that

‖∂xU0.∂vf‖B ≤ C0 ‖∂vf‖B ≤ η ‖Kf‖B + Cη ‖f‖B ,

which directly implies that the domains are the same, see e.g. [11, Chapter III, Lemma 2.4].

The fact that M1/2S is a core is also a direct consequence of this inequality.

We now prove that some results from Section 2 about semigroup estimates remain true for

the new operator K0 with non-smooth coefficients.

We begin with a general Proposition

Proposition 3.15. — Let us consider the operator K0 with potential Ve + ε0U0. Then there

exists C0 > 0 such that the following is true uniformly in ε0 ∈ [0, 1] and t ∈ (0, 1]
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(i) ∀γ ∈ [0, 1],
∥∥Λγe−tK0Λ−γ

∥∥
B→B

≤ C0,

(ii) ∀β ∈ [0, 1],
∥∥∥Λβ

v e−tK0

∥∥∥
B→B

≤ C0t
−β/2,

(iii) ∀α ∈ [0, 1],
∥∥Λα

xe
−tK0

∥∥
B→B

≤ C0t
−3α/2,

(iv) ∀a ∈ [0, 2] and f ∈ Ba,
∥∥(e−tK0 − 1)f

∥∥
B
≤ C0t

a ‖f‖Ba .

Proof. — We first note that the proof of point (iv) given in Lemma 2.9 is unchanged (for a0 = 0)

under the new assumptions on the potential V , and uniformly w.r.t. ε0. For points (iii) and (ii)

this is the same w.r.t. the proof of Proposition 2.1 and we emphasise that the constants only

depend on the second derivatives of the potential, which are here uniformly bounded w.r.t. ε0.

It therefore only remains to check point (i) for which the proof of point (2.11) cannot be

directly adapted, since we have to restrict here to the case when γ ∈ [0, 1]. We have to show

that e−tK is bounded from Bγ,γ
x,v into itself. We first begin with the case γ = 1. We now use that

‖f‖B1 ∼ ‖Λf‖B ∼ ‖(∂x + ∂xV )f‖B + ‖(∂v + v)f‖B

with uniform w.r.t. ε0 equivalence constants, since U0 ∈ W 2,∞. We therefore look, for an initial

data f0 ∈ B1,1
x,v at the equation satisfied by g = (∂x+∂xV )f and h = (∂v+v)f in B. We consider

again the operator X0 = v.∂x − ∂xVe.∂v. Since

∂tf +X0f − ε0∂xU0.∂vf − ∂v.(∂v + v)f = 0, ft=0 = f0

we get the system

∂tg +X0g − ε0∂xU0∂vg − ∂v.(∂v + v)g = HessV h

∂th+X0h− ε0∂xU0∂vh− ∂v.(∂v + v)h = −h− g + ε0∂xU0f,

with gt=0 = g0 ∈ B and ht=0 = h0 ∈ B.

Integrating the three last equations against respectively f , g and h in B gives,

∂t(‖f‖
2
B + ‖g‖2B + ‖h‖2B) ≤ C(‖f‖2B + ‖g‖2B + ‖h‖2B)

since V has a Hessian uniformly bounded w.r.t. ε0. We therefore get

‖f(t)‖B + ‖g(t)‖B + ‖h(t)‖B ≤ C1e
C2t(‖f0‖B + ‖g0‖B + ‖h0‖B)

and we get that e−tK0 is (uniformly in t ∈ [0, 1] and ε0 ∈ [0, 1]) bounded from B1 to B1. Now

the result is also clear for γ = 0 by the semi group property, and by interpolation we get that

e−tK0 is (uniformly in t ∈ [0, 1] and ε0 ∈ [0, 1]) bounded from Bγ to Bγ for γ ∈ [0, 1]. As a

conclusion we get

‖Λγe−tKΛ−γ‖B→B ≤ Cγ .

This concludes the proof of point (i) and the proof of the Proposition.

As a consequence, a certain number of results of Section 2 remain true with proofs without

changes. We gather them in the following corollary.

Corollary 3.16. — There exists C > 0 such that the following is true uniformly in ε0 ∈ [0, 1]

and t ∈ (0, 1)

(i) ∀β ∈ [0, 1], ∀a ∈ [0, β],
∥∥∥Λβ

ve−tK0

∥∥∥
Ba→B

≤ C(1 + t−(β−a)/2),

(ii) ∀β ∈ [0, 1],
∥∥∥Λβ

v e−tK0Λ1−β
v

∥∥∥
B→B

≤ C(1 + t−1/2),

(iii) ∀α, β ∈ [0, 1],
∥∥∥Λαe−tK0Λ1−β

v

∥∥∥
B→B

≤ C(1 + t−1/2+β/2−3α/2).
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Proof. — The proof of (i) follows the one of Lemma 2.8 thanks to points (i), (ii) and (iii)

in Proposition 3.15. Points (ii) and (iii) are consequences respectively of (ii) and (iii) of

Proposition 3.15 since∥∥∥Λβ
ve

−tK0Λ1−β
v

∥∥∥
B→B

≤
∥∥∥Λβ

v e
−tK0/2

∥∥∥
B→B

∥∥∥e−tK0/2Λ1−β
v

∥∥∥
B→B

and ∥∥∥Λαe−tK0Λ1−β
v

∥∥∥
B→B

≤
∥∥∥Λαe−tK0/2

∥∥∥
B→B

∥∥∥e−tK0/2Λ1−β
v

∥∥∥
B→B

.

Remark 3.17. — Let us observe that if one only has f0 ∈ B(R6) ∩ L∞(R6), one can prove

that U0 defined in (1.10) satisfies U0 ∈ W 2,p(R3) for any 2 ≤ p < ∞. In other words, the

assumption U0 ∈ W 2,∞(R3) fills in an ε−gap of regularity. More precisely, let p ≥ 2 and q ≤ 2

such that 1/p+ 1/q = 1. Then, by Hölder

|∆U0| =

∫
f0dv ≤

( ∫
fp
0M

−1dv
)1/p(

∫
Mq/pdv

)1/q
.

Thus using that

∫
Mq/pdv ∈ L∞(R3), we get

∫
|∆U0|

pdx ≤ C

∫
fp
0M

−1dvdx ≤ C‖f0‖
p−2
L∞(R6)

‖f0‖
2
B ,

which implies that U0 ∈ W 2,p(R3) by elliptic regularity.

Now we prove a result that will be useful for the short time analysis in the next section. Again

we work with the linear Fokker-Planck operator K0 with potential Ve + ε0U0.

Lemma 3.18. — Assume that d = 3 and a > 1/2. Let f0 ∈ Ba(R6) ∩ L∞(R6) and denote by

S0(t, x) =
x

|x|3
⋆

∫ (
e−tK0 − 1

)
f0(x, v)dv.

Then for all ε ≪ 1 and 0 ≤ t ≤ 1 and uniformly in ε0 ∈ [0, 1] we have

(3.16) ‖S0(t)‖L∞(R3) ≤ Cta/3−ε
(
‖f0‖L∞ + ‖f0‖Ba

)
.

Proof. — In the sequel, 0 ≤ t ≤ 1 is fixed. Let σ = a− 1/2 > 0 and let q > 3/σ be large. Then

by the Gagliardo-Nirenberg inequality

(3.17) ‖S0‖L∞
x

≤ C‖S0‖
1− 3

σq

Lq
x

‖S0‖
3

σq

Wσ,q
x

,

and we now estimate the previous terms.

By (3.11), there exists p < 3 (with p −→ 3 when q −→ +∞) such that

‖S0‖Lq
x
≤ C

∥∥
∫

h0dv
∥∥
Lp
x
,

where h0 =
(
e−tK0 − 1

)
f0. Then, by Hölder (where p′ is the conjugate of p)

∫
|h0|dv =

∫ (
|h0|M

−1/p
∞

)
M1/p

∞ dv

≤
(∫

|h0|
pM−1

∞ dv
)1/p(∫

Mp′/p
∞ dv

)1/p′

≤ C
(∫

|h0|
pM−1

∞ dv
)1/p

.

This implies that

(3.18) ‖S0‖Lq
x
≤ C

∥∥
∫

h0dv
∥∥
Lp
x
≤ C

(∫
|h0|

pM−1
∞ dvdx

)1/p
≤ C‖h0‖

1−2/p
L∞ ‖h0‖

2/p
B .
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Now, by point (iv) of Proposition 3.15 we have ‖h0‖L∞ ≤ C‖f0‖L∞ , and by Lemma 2.9,

‖h0‖B ≤ Cta/2‖f0‖Ba , hence

‖S0‖Lq
x
≤ Cta/p

(
‖f0‖L∞ + ‖f0‖Ba

)
.

Next, by (3.11) and Sobolev (recall that p ∼ 3 for q large)

‖S0‖Wσ,q
x

≤ C
∥∥(1−∆x)

σ/2

∫
h0dv

∥∥
Lp
x
≤ C

∥∥(1−∆x)
a/2

∫
h0dv

∥∥
L2
x
,

since σ + 1/2 = a. Then we proceed as in the proof of (3.10) to get

(3.19) ‖S0‖Wσ,q
x

≤ C‖h0‖Ba ≤ C‖f0‖Ba .

Fix ε ≪ 1. Then for q ≫ 1, we combine (3.17), (3.18) and (3.19) to get (3.16).

4. Proof of Theorem 1.2 (case d = 2)

4.1. Functional setting. — To begin with, we introduce the functional framework which will

be used in both cases d = 2 or d = 3.

To show the trend to equilibrium, we look for a solution of the form f = f∞ + g with

f∞ = cM∞ and g ∈ B⊥. The normalization
∫
fdxdv =

∫
M∞dxdv = 1 then implies that

f∞ = M∞. Hence we write

f = M∞ + g, E = E∞ + F,

with

∂xU∞ = E∞ = −
1

|Sd−1|

x

|x|d
⋆

∫
M∞dv, F = −

1

|Sd−1|

x

|x|d
⋆

∫
gdv.

In the sequel denote by

K = K∞.

We want to take profit of the regularization property stated in Lemma 3.11, thus we look for a

solution of the form

g = e−tKg0 + h, F = F0 +G,

with

F0 = −
1

|Sd−1|

x

|x|d
⋆

∫
e−tKg0dv, G = −

1

|Sd−1|

x

|x|d
⋆

∫
hdv,

and h(0) = G(0) = 0. At this stage we observe that f0 = M∞ + g0 and that for all t ≥ 0,

e−tKf0 = M∞ + e−tKg0.

We construct the solution with a fixed point argument on (h,G), and therefore we define the

map Φ = (Φ1,Φ2) given by

Φ1(h,G)(t) = ε0

∫ t

0
e−(t−s)K

(
F0(s) +G(s)

)
∂v
(
M∞ + e−sKg0 + h(s)

)
ds

Φ2(h,G)(t) = −
ε0

|Sd−1|

x

|x|d
⋆

∫

Rd

∫ t

0
e−(t−s)K

(
F0(s) +G(s)

)
∂v
(
M∞ + e−sKg0 + h(s)

)
dsdv,

and we observe that (f,E) solves (1.9) if and only if (h,G) = Φ(h,G). For α, β, γ, δ, σ ≥ 0 define

the norms

‖h‖
Xα,β

δ
= sup

t≥0

( tδ

1 + tδ
eσκt‖h(t, .)‖

Bα,β
x,v (R2d)

)
,

‖G‖Y = sup
t≥0

(
eσκt‖G(t, .)‖L∞(Rd)

)
,
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define the Banach space

Z := Xα,β
δ × Y, with ‖(h,G)‖Z = max

(
‖h‖

Xα,β
δ

, ‖G‖Y
)
,

and denote by Γ1 its unit ball. In each of the cases d = 2 or 3, for a given initial condition g0,

we will prove that if |ε0| < 1 is small enough, the map Φ is a contraction of the ball Γ1 ⊂ Z. To

alleviate notations, we assume in the sequel that ε0 > 0.

4.2. The fixed point argument in the case d = 2. — This case is the easiest. Let g0 ∈ B.

We can fix here α = β = δ = 0. Let ε ≪ 1 and fix σ = 1/2. For simplicity, we write X = X0,0
0 .

We proceed in two steps. Recall that Γ1 is the unit ball of Z. Then

Step1: Φ maps the ball Γ1 ⊂ Z into itself

• We estimate Φ1(h,G) in X. By (2.13) and (2.6), we have for all t ≥ 0

‖Φ1(h,G)(t)‖B ≤ ε0

∫ t

0
‖e−(t−s)K

(
F0 +G

)
∂v
(
M∞ + e−sKg0 + h(s)

)
‖Bds

≤ Cε0

∫ t

0
‖F0 +G‖L∞(R2)‖e

−(t−s)KΛv‖B⊥‖M∞ + e−sKg0 + h(s)‖Bds,(4.1)

and we estimate each factor in the previous integral.

Estimation of ‖M∞ + e−sKg0 + h(s)‖B : We use that M∞ ∈ B, and by (2.1) we obtain

‖M∞ + e−sKg0 + h(s)‖B ≤ ‖M∞‖B + ‖e−sKg0‖B + ‖h(s)‖B

≤ C(1 + ‖h‖X ).(4.2)

Estimation of ‖F0 +G‖L∞(R3): By (3.12) we get

‖F0 +G‖L∞(R2) ≤ ‖F0‖L∞(R2) + ‖G‖L∞(R2)

≤ C(1 + s−3ε/2)e−σκs‖g0‖B + Ce−σκs‖G‖Y

≤ C(1 + s−3ε/2)e−σκs(1 + ‖G‖Y ).(4.3)

Estimation of ‖e−(t−s)KΛv‖B⊥→B⊥ : This follows from (2.8)

(4.4) ‖e−(t−s)KΛv‖B⊥→B⊥ ≤ C
(
(t− s)−1/2 + 1

)
e−κ(t−s).

Therefore by (4.1), (4.2), (4.3) and (4.4) we have

‖Φ1(h,G)(t)‖B ≤ Cε0(1 + ‖h‖X)(1 + ‖G‖Y )e
−σκt

∫ t

0

(
s−3ε/2 + 1

)(
(t− s)−1/2 + 1

)
e−κ(t−s)/2ds.

Now, by (3.15) we deduce

‖Φ1(h,G)(t)‖B ≤ Cε0(1 + ‖h‖X )(1 + ‖G‖Y )e
−σκt,

which in turn yields the bound

(4.5) ‖Φ1(h,G)‖X ≤ Cε0(1 + ‖h‖X)(1 + ‖G‖Y ) ≤ Cε0
(
1 + ‖(h,G)‖Z

)2
.

• We turn to the estimation of ‖Φ2(h,G)‖Y . We apply (3.9) with

h0 =

∫ t

0
e−(t−s)K

(
F0(s) +G(s)

)
∂v
(
M∞ + e−sKg0 + h(s)

)
ds,
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then for all t ≥ 0

‖Φ2(h,G)(t)‖L∞(R2) ≤ C‖Λε

∫ t

0
e−(t−s)K

(
F0(s) +G(s)

)
∂v
(
M∞ + e−sKg0 + h(s)

)
ds‖B

≤ C

∫ t

0
‖Λεe−(t−s)K

(
F0 +G

)
∂v
(
M∞ + e−sKg0 + h(s)

)
‖Bds

≤ Cε0

∫ t

0
‖F0 +G‖L∞(R3)‖Λ

εe−(t−s)KΛv‖B⊥‖M∞ + e−sKg0 + h(s)‖Bds,

where in the last line we used (2.13). Then by (4.2), (4.3) and (2.9) with α = ε and β = 0 we

get

‖Φ2(h,G)(t)‖L∞(R2) ≤

≤ Cε0(1 + ‖h‖X )(1 + ‖G‖Y )e
−σκt

∫ t

0

(
s−3ε/2 + 1

)(
(t− s)−1/2−3ε/2 + 1

)
e−κ(t−s)/2ds.

By (3.15), this in turn implies

(4.6) ‖Φ2(h,G)‖Y ≤ Cε0(1 + ‖h‖X )(1 + ‖G‖Y ) ≤ Cε0
(
1 + ‖(h,G)‖Z

)2
.

As a result, by (4.5) and (4.6) there exists C > 0 such that

‖Φ(h,G)‖Z ≤ Cε0
(
1 + ‖(h,G)‖Z

)2
.

Therefore we can choose ε0 > 0 small enough so that Φ maps the ball Γ1 ⊂ Z into itself.

Step2: Φ is a contraction of Γ1

With exactly the same arguments, we can also prove the contraction estimate

‖Φ1(h2, G2)− Φ1(h1, G2)‖Z ≤ Cε0‖(h2 − h1, G2 −G1)‖Z
(
1 + ‖(h1, G1)‖Z + ‖(h2, G2)‖Z

)
.

We do not write the details.

As a conclusion, if ε0 > 0 is small enough, Φ has a unique fixed point in Γ1 ⊂ Z. This shows

the existence of a unique h ∈ C
(
[0,+∞[ ; B(R4)

)
such that f = M∞ + e−tKg0 + h solves (1.1).

4.3. Conclusion of the proof of Theorem 1.2. — The convergence of f to equilibrium

follows from the choice of the weighted spaces. By definition

‖h(t)‖B ≤ Ce−σκt‖h‖X −→ 0, when t −→ +∞.

Similarly,

‖G(t)‖L∞ ≤ Ce−σκt‖G‖Y −→ 0, when t −→ +∞.

5. Proof of Theorem 1.3 (case d = 3)

5.1. Small time analysis: 0 ≤ t ≤ 1. — To begin with we prove a local well-posedness result

for (1.1).

Proposition 5.1. — Let d = 3 and 1/2 < a < 3/4. Assume that f0 ∈ Ba,a(R6) ∩ L∞(R6) is

such that U0 defined in (1.10) is in W 2,∞(R3). Assume moreover that Assumptions 1 and 2 are

satisfied. Then if |ε0| is small enough, there exists a unique local mild solution f to (1.1) in the

class

f ∈ C
(
[0, 1] ; Ba,a(R6)

)
∩ L∞

(
[0, 1] ; L∞(R6)

)
.
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We write

f = e−tK0f0 + g, E = E0 + F,

where U0, E0 and F are defined by

∂xU0 = E0 = −
1

|S2|

x

|x|3
⋆

∫
f0dv, F = −

1

|S2|

x

|x|3
⋆

∫
gdv.

In the regime 0 ≤ t ≤ 1, the effective Fokker-Planck operator is given by

K0 = v.∂x − ∂xV0(x).∂v − ∂v . (∂v + v) ,

where V0 = Ve + ε0U0. The mild formulation of (1.1), using K0, is therefore

(5.1)





f(t) = e−tK0f0 + ε0

∫ t

0
e−(t−s)K0(E(s) − E0)∂vf(s)ds,

E(t) = −
1

|S2|

x

|x|3
⋆x

∫
f(t)dv.

We construct the solution with a fixed point argument on (g, F ), and therefore we define the

map Φ = (Φ1,Φ2) given by

Φ1(g, F )(t) = ε0

∫ t

0
e−(t−s)K0F (s)∂v

(
e−sK0f0 + g(s)

)
ds

Φ2(g, F )(t) = −
1

|S2|

x

|x|3
⋆

∫

R3

[(
e−tK0 − 1

)
f0 + ε0

∫ t

0
e−(t−s)K0F (s)∂v

(
e−sK0f0 + g(s)

)
ds
]
,

and we observe that (f,E) solves (5.1) if and only if (g, F ) = Φ(g, F ). For α, β, γ ≥ 0 define the

norms

‖g‖Xα,β = sup
0≤t≤1

‖g(t, .)‖
Bα,β

x,v (R6)
,

‖F‖Yγ = sup
0≤t≤1

t−γ‖F (t, .)‖L∞(R3),

define the Banach space

Z := Xα,β × Yγ , with ‖(h,G)‖Z = max
(
‖h‖Xα,β , ‖G‖Yγ

)
,

and denote by ΓR the ball of radius R.

In the sequel we fix

γ = a/3− ε, α = a, β = 1,

for some ε ≪ 1.

The end of this subsection is devoted to the proof of Proposition 5.1. We assume that

g0 ∈ Ba,a, for some a > 1/2. In the sequel, we write K = K0.

Step1: Φ maps some ball ΓR ⊂ Z into itself

• Firstly, we estimate Φ1(g, F ) in X0,1. By (2.13), we have for all 0 ≤ t ≤ 1

‖ΛvΦ1(g, F )(t)‖B ≤ ε0

∫ t

0
‖Λve

−(t−s)KF (s)∂v
(
e−sKf0 + g(s)

)
‖Bds

≤ Cε0

∫ t

0
‖F‖L∞(R3)‖Λve

−(t−s)K‖B‖Λv

(
e−sKf0 + g(s)

)
‖Bds,(5.2)

and we estimate each factor in the previous integral thanks to the low regularity subsection

results.

Estimation of ‖Λv

(
e−sKf0 + g(s)

)
‖B : To begin with, we use point (i) of Corollary 3.16 to

estimate ‖Λve
−sKf0‖B . Since f0 ∈ Ba,a for some a > 1/2, then for δ = 1/2− a/2 we have

‖Λve
−sKf0‖B ≤ Cs−δ‖f0‖Ba .
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This gives for 0 ≤ s ≤ t ≤ 1

‖Λv

(
e−sKf0 + g(s)

)
‖B ≤ ‖e−sKf0‖B0,1 + ‖g(s)‖B0,1

≤ C + Cs−δ‖f0‖Ba + ‖g‖Xa,1

≤ Cs−δ(1 + ‖g‖Xa,1).(5.3)

Estimation of ‖F‖L∞(R3): By definition of the space Yγ we have

(5.4) ‖F‖L∞(R3) ≤ sγ‖F‖Yγ .

Estimation of ‖Λve
−(t−s)K‖B→B : By point (ii) in Proposition 3.15 we have

(5.5) ‖Λve
−(t−s)K‖B→B ≤ C(t− s)−1/2.

Therefore by (5.2), (5.3), (5.4) and (5.5), we have

‖ΛvΦ1(g, F )(t)‖B ≤ Cε0(1 + ‖g‖Xa,1)‖F‖Yγ

∫ t

0
sγ−δ(t− s)−1/2ds

≤ Cε0(1 + ‖g‖Xa,1)‖F‖Yγ t
γ−δ+1/2.

As a consequence (using that γ − δ + 1/2 ≥ 0) we have proved

(5.6) ‖Φ1(g, F )‖X0,1 ≤ Cε0(1 + ‖g‖Xa,1)‖F‖Yγ ≤ Cε0
(
1 + ‖(g, F )‖Z

)2
.

• We estimate Φ1(g, F ) in Xa,0. With the same arguments and the bound given in point (iii)

of Corollary 3.16, for all t ≥ 0 we obtain

‖Λa
xΦ1(g, F )(t)‖B ≤ ε0

∫ t

0
‖Λa

xe
−(t−s)KF (s)∂v

(
e−sKf0 + g(s)

)
‖Bds(5.7)

≤ Cε0

∫ t

0
‖F‖L∞(R3)‖Λ

a
xe

−(t−s)K‖B‖Λv

(
e−sKf0 + g(s)

)
‖Bds

≤ Cε0(1 + ‖g‖Xa,1)‖F‖Yγ

∫ t

0
sγ−δ

(
(t− s)−3a/2 + 1

)
ds

≤ Cε0(1 + ‖g‖Xa,1)‖F‖Yγ

(
tγ−δ+1−3a/2 + tγ−δ+1

)
.

This in turn implies (observing that γ − δ + 1− 3a/2 > 0 provided that a < 3/4)

(5.8) ‖Φ1(g, F )‖Xa,0 ≤ Cε0(1 + ‖g‖Xa,1)‖F‖Yγ ≤ Cε0
(
1 + ‖(g, F )‖Z

)2
.

• We turn to the estimation of ‖Φ2(g, F )‖Yγ . We apply (3.16) and (3.10) with

h0 =
(
e−tK − 1

)
f0 + ε0

∫ t

0
e−(t−s)KF (s)∂v

(
e−sKf0 + g(s)

)
ds,

then for all 0 ≤ t ≤ 1

‖Φ2(g, F )(t)‖L∞(R3) ≤ C0t
a/3−ε + Cε0

∫ t

0
‖Λ1/2+εe−(t−s)KF (s)∂v

(
e−sKf0 + g(s)

)
‖Bds,

where we used Lemma 3.18.

To control the second term, we can proceed as in (5.7) with a replaced by 1/2 + ε. Actually

we have

‖Φ2(g, F )(t)‖L∞(R3) ≤ C0t
a/3−ε+Cε0

∫ t

0
‖F‖L∞(R3)‖Λ

1/2+εe−(t−s)K‖B‖Λv

(
e−sKf0+g(s)

)
‖Bds,
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and we get

‖Φ2(g, F )(t)‖L∞(R3) ≤ C0t
a/3−ε + Cε0(1 + ‖g‖Xa,1)‖F‖Yγ

∫ t

0
sγ−δ

(
(t− s)−

3

2
( 1
2
+ε) + 1

)
ds

≤ C0t
a/3−ε + Cε0(1 + ‖g‖Xa,1)‖F‖Yγ

(
tγ−δ+1/4−3ε/2 + tγ−δ+1

)

≤ tγ
[
C0 + Cε0(1 + ‖g‖Xa,1)‖F‖Yγ (t

−δ+1/4−3ε/2 + t−δ+1)
]
,

since γ = a/3− ε. Therefore

(5.9) ‖Φ2(g, F )‖Yγ ≤ C0 + Cε0(1 + ‖g‖Xa,1)‖F‖Yγ ≤ Cε0
(
1 + ‖(g, F )‖Z

)2
,

provided that δ < 1 and 1/2 − a/2 = δ < 1/4 − 3ε/2. This latter condition can be satisfied for

ε > 0 small enough, since a > 1/2.

As a result, by (5.6), (5.8) and (5.9) there exists C > 0 such that

‖Φ(g, F )‖Z ≤ C0 + Cε0
(
1 + ‖(g, F )‖Z

)2
.

Therefore we can choose ε0 > 0 small enough so that Φ maps the ball Γ2C0
⊂ Z into itself.

Step2: Φ is a contraction of Γ2C0

With exactly the same arguments, we can also prove the contraction estimate

‖Φ1(g2, F2)− Φ1(g1, F1)‖Z ≤ Cε0‖(g2 − g1, F2 − F1)‖Z
(
1 + ‖(g1, F1)‖Z + ‖(g2, F2)‖Z

)
.

We do not write the details.

As a conclusion, if ε0 > 0 is small enough, Φ has a unique fixed point in Γ2C0
⊂ Z. This

shows the existence of a unique g ∈ C
(
[0, 1] ; Ba,1(R6)

)
such that f = e−tKf0 + g solves (1.1).

5.2. Long time analysis: t ∈]0,+∞[. — We now study long time existence and trend to

equilibrium. We use here the spaces defined in the Subsection 4.1. Let 1/2 < β < 1 and

0 < α < 2/3 be such that α < (1 + β)/3. Fix also

0 < δ < β/2 − 1/4, 0 < σ ≤
1

2
min

(
1− β + α, 1

)
,

which is realised for, say, σ = 1/12. From now, we assume that all these conditions are satisfied.

In this section we prove the following result

Proposition 5.2. — Let d = 3. Assume that 1/2 < a < 2/3 and that f0 ∈ Ba,a(R6). Assume

moreover that Assumptions 1 and 2 are satisfied. Then if |ε0| is small enough, there exists a

unique local mild solution f to (1.1) which reads

f(t) = M∞ + e−tK(f0 −M∞) + h(t)

where h ∈ Xα,β
δ , thus

h ∈ C
(
]0,+∞[ ; Bα,β(R6)

)
.

Since f0 −M∞ ∈ B⊥, and by definition of the space Xα,β
δ , we obtain the exponentially fast

convergence of f to M∞. Notice that in the previous result, the parameters (α, β) can be chosen

independently from a. If one chooses α = a and β close to 1, then the result of Proposition 5.2

combined with Proposition 5.1 and Corollary 3.2 implies Theorem 1.3.

We now turn to the proof of Proposition 5.2. Let g0 := f0 − M∞ ∈ Ba,a ∩ B⊥, for some

a > 1/2. We denote by Γ1 the unit ball in Z, and in the sequel, we use the same notations and

decomposition as in Section 4.1. Then
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Step1: Φ maps the ball Γ1 ⊂ Z into itself

• Firstly, we estimate Φ1(h,G) in X0,β
δ . By (2.13), we have for all t ≥ 0

(5.10) ‖Λβ
vΦ1(h,G)(t)‖B ≤ ε0

∫ t

0
‖Λβ

v e
−(t−s)K

(
F0 +G

)
∂v
(
M∞ + e−sKg0 + h(s)

)
‖Bds

≤ Cε0

∫ t

0
‖F0 +G‖L∞(R3)‖Λ

β
v e

−(t−s)KΛ1−β
v ‖B⊥‖Λβ

v

(
M∞ + e−sKg0 + h(s)

)
‖Bds,

and we estimate each factor in the previous integral.

Estimation of ‖Λβ
v

(
M∞ + e−sKg0 + h(s)

)
‖B : To begin with, we use Lemma 2.8 to estimate

the term ‖Λβ
v e−sKg0‖B . Since g0 ∈ Ba,a for some a > 1/2, there exists 0 < δ < β/2 − 1/4 such

that

‖Λβ
v e

−sKg0‖B ≤ C(1 + s−δ)‖g0‖Ba .

Then, we use that M∞ ∈ Bα,β, and by (2.8) we obtain

‖Λβ
v

(
M∞ + e−sKg0 + h(s)

)
‖B ≤ ‖M∞‖B0,β + ‖e−sKg0‖B0,β + ‖h(s)‖B0,β

≤ C + C(1 + s−δ)‖g0‖Ba + (1 + s−δ)‖h‖
Xα,β

δ

≤ C(1 + s−δ)(1 + ‖h‖
Xα,β

δ
).(5.11)

Estimation of ‖F0 +G‖L∞(R3): By (3.13) and the definition of the space Y we get for ε > 0

small enough and a > 1/2

‖F0 +G‖L∞(R3) ≤ ‖F0‖L∞(R3) + ‖G‖L∞(R3)

≤ Ce−κs/2‖g0‖Ba +Ce−σκs‖G‖Y

≤ Ce−σκs(1 + ‖G‖Y).(5.12)

Estimation of ‖Λβ
v e−(t−s)KΛ1−β

v ‖B⊥→B⊥ : This is exactly (2.10), namely

‖Λβ
v e

−(t−s)KΛ1−β
v ‖B⊥→B⊥ ≤ C

(
(t− s)−1/2 + 1

)
e−κ(t−s).

Therefore by (5.10), (5.11), (5.12), we have when δ < 1

‖Λβ
vΦ1(h,G)(t)‖B ≤

≤ Cε0(1 + ‖h‖
Xα,β

δ
)(1 + ‖G‖Y)e

−σκt

∫ t

0

(
s−δ + 1

)(
(t− s)−1/2 + 1

)
e−κ(t−s)/2ds

Now, by (3.15), if we denote by η = −min(1/2 − δ, 0), we have

‖Λβ
vΦ1(h,G)(t)‖B ≤ Cε0(1 + ‖h‖

Xα,β
δ

)(1 + ‖G‖Y)e
−σκt

(
1{0<t≤1}t

−η + 1
)

≤ Cε0(1 + ‖h‖
Xα,β

δ
)(1 + ‖G‖Y)e

−σκt
(
t−δ + 1

)
.(5.13)

As a consequence we have proved

(5.14) ‖Φ1(h,G)‖
X0,β

δ
≤ Cε0(1 + ‖h‖

Xα,β
δ

)(1 + ‖G‖Y) ≤ Cε0
(
1 + ‖(h,G)‖Z

)2
.
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• We estimate Φ1(h,G) in Xα,0
δ . With the same arguments and the bound (2.9), for all t ≥ 0

we obtain

(5.15) ‖Λα
xΦ1(h,G)(t)‖B ≤

≤ ε0

∫ t

0
‖Λα

xe
−(t−s)K

(
F0 +G

)
∂v
(
M∞ + e−sKg0 + h(s)

)
‖Bds

≤ Cε0

∫ t

0
‖F0 +G‖L∞(R3)‖Λ

α
xe

−(t−s)KΛ1−β
v ‖B⊥‖Λβ

v

(
M∞ + e−sKg0 + h(s)

)
‖Bds

≤ Cε0(1 + ‖h‖
Xα,β

δ
)(1 + ‖G‖Y)e

−σκt

∫ t

0

(
s−δ + 1

)(
(t− s)−1/2+β/2−3α/2 + 1

)
e−κ(t−s)/2ds

≤ Cε0(1 + ‖h‖
Xα,β

δ
)(1 + ‖G‖Y)e

−σκt
(
t−δ + 1

)
,

using (3.15) and the fact that 1/2 + β/2 − 3α/2 > 0.

This in turn implies

(5.16) ‖Φ1(h,G)‖
Xα,0

δ
≤ Cε0(1 + ‖h‖

Xα,β
δ

)(1 + ‖G‖Y) ≤ Cε0
(
1 + ‖(h,G)‖Z

)2
.

• We turn to the estimation of ‖Φ2(h,G)‖Y . We apply (3.10) with

h0 = ε0

∫ t

0
e−(t−s)K

(
F0(s) +G(s)

)
∂v
(
M∞ + e−sKg0 + h(s)

)
ds,

then for all t ≥ 0

‖Φ2(h,G)(t)‖L∞(R3) ≤ Cε0‖Λ
1/2+ε

∫ t

0
e−(t−s)K

(
F0(s) +G(s)

)
∂v
(
M∞ + e−sKg0 + h(s)

)
ds‖B

≤ Cε0

∫ t

0
‖Λ1/2+εe−(t−s)K

(
F0 +G

)
∂v
(
M∞ + e−sKg0 + h(s)

)
‖Bds.

Now we can proceed as in (5.15) with α replaced by 1/2 + ε. Actually we have

‖Φ2(h,G)(t)‖L∞(R3) ≤

≤ Cε0

∫ t

0
‖F0 +G‖L∞(R3)‖Λ

1/2+εe−(t−s)KΛ1−β
v ‖B⊥‖Λβ

v

(
M∞ + e−sKg0 + h(s)

)
‖Bds,

and for 1/2 < β < 1, ε ≪ 1, by (2.9) and (3.15) we get

‖Φ2(h,G)(t)‖L∞(R3) ≤

≤ Cε0(1 + ‖h‖
Xα,β

δ
)(1 + ‖G‖Y)e

−σκt

∫ t

0

(
s−δ + 1

)(
(t− s)−

1

2
+β

2
− 3

2
( 1
2
+ε) + 1

)
e−κ(t−s)/2ds

≤ Cε0(1 + ‖h‖
Xα,β

δ
)(1 + ‖G‖Y)e

−σκt
(
1{0<t≤1}t

−1/4+β/2−δ−3ε/2 + 1
)

≤ Cε0(1 + ‖h‖
Xα,β

δ
)(1 + ‖G‖Y)e

−σκt,

if ε > 0 is chosen small enough so that we have δ < β/2− 1/4− 3ε/2. This in turn implies

(5.17) ‖Φ2(h,G)‖Y ≤ Cε0(1 + ‖h‖
Xα,β

δ
)(1 + ‖G‖Y) ≤ Cε0

(
1 + ‖(h,G)‖Z

)2
.

As a result, by (5.14), (5.16) and (5.17) there exists C > 0 such that

‖Φ(h,G)‖Z ≤ Cε0
(
1 + ‖(h,G)‖Z

)2
.

Therefore we can choose ε0 > 0 small enough so that Φ maps the ball Γ1 ⊂ Z into itself.

Step2: Φ is a contraction of Γ1
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With exactly the same arguments, we can also prove the contraction estimate

‖Φ1(h2, G2)− Φ1(h1, G2)‖Z ≤ Cε0‖(h2 − h1, G2 −G1)‖Z
(
1 + ‖(h1, G1)‖Z + ‖(h2, G2)‖Z

)
.

We do not write the details.

As a conclusion, if ε0 > 0 is small enough, Φ has a unique fixed point in Γ1 ⊂ Z. This shows

the existence of a unique h ∈ C
(
]0,+∞[ ; Bα,β(R6)

)
such that f = M∞+e−tKg0+h solves (1.1).
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[17] F. Hérau. Short and long time behavior of the Fokker-Planck equation in a confining potential and
applications. J. Funct. Anal., 244, no. 1, 95–118 (2007).
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