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Abstract

In this paper, we study analytically the flow in a rotating container subjected to an azimuthal
forcing. We show that this mechanical forcing generates a correction to the solid body rotation called
mean zonal flow, similar to the time oscillation of the rotation rate of an axisymmetric container.
This axisymmetric correction induced by nonlinear effects in the Ekman layers modifies the solid body
rotation of the fluid in the container. At the leading order, the contribution in the bulk is shown to
be an azimuthal flow which scales as the square of the amplitude of the multipolar deformation and is
independent of the Ekman number. We also show that the mean zonal flow depends on the symmetry
of the angular forcing n and the ratio of the angular rate of the deformation to the angular rate of
the cylinder ΩR = Ωorb/Ωspin. We found that for an elliptical forcing, n = 2, the rotation rate of
the zonal flow does not depend on the radial position. In addition, the angular rate is found to be
asymmetric with respect to ΩR. These scalings are similar to the time harmonic forcing in a cylinder.
The particular case of a tidal forcing is also considered.

Keywords: Rotating flow, Ekman layers, mechanical forcing, mean zonal flow.

1 Introduction

Recent progress in astrophysical measurements have led to a renewed interest in the effects of a harmonic
forcing on a rotating fluid. Indeed, harmonic forcings are ubiquitous in planetary bodies which are subject
to various type of mechanical forcings due to the presence of other gravitational partners [1, 2]. These
harmonic forcings can be time dependent. For instance, a longitudinal libration forcing, corresponds to
a time-harmonic oscillation of the rotation rate of a planet [3, 4]. For such a forcing, it has been shown
that nonlinear effects in the Ekman layers generate a steady and axisymmetric flow, referred to as the
zonal flow. In a cylinder, an analytical description of this steady flow has been obtained by Wang [5]
and successfully compared with experimental investigation. It has been shown that the deviation from a
solid body rotation scales as the square of the amplitude of libration and is independent of the Ekman
number. More recently, the limit of small libration frequency was considered [6] and the zonal flow in
presence of inertial waves was studied numerically and experimentally [7, 8, 9]. However, this nonlinear
correction is not limited to the cylindrical geometry and is also present in a sphere or spherical shell
[10, 11, 12]. This geometry is particularly is relevant for geophysical and astrophysical applications [13].
Many recent studies have focused on this particular forcing as it is simple to implement in numerical
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simulations [14, 9, ?, 15, 16] and model with an experimental setup [13, 15]. In both the cylindrical
and spherical geometries, it has been show that a centrifugal instability induced by the oscillation of the
outer container could occur near the outer boundary [14, 9, 17]. However, we do not expect this kind of
instability to occur in the system presented in this article.

Other forcings are also present in astrophysical bodies, such as the precession [18, 19] or tidal forcings
[20, 21, 1]. A planet or satellite is deformed into an elliptical shape by the presence of a gravitational
partner. The gravitational field leads to an azimuthal forcing of azimuthal wavenumber n = 2. Recent
experiments [22] and numerical simulation [23, 24] have considered a tidal forcing on a rotating sphere and
showed that the resonance of inertial waves could lead to a strong zonal flow . In addition, this zonal flow
can lead to a shear instability and turbulence [25]. An analytical study devoted to the mean zonal flow in
a container elliptically deformed [20, 26] provided an analytical description of the nonlinear correction in
a tidally deformed sphere that was compared with some experimental results. The study demonstrated
that at first order, the base flow has elliptical streamlines [27]. However, the simple model of a sphere
subject to a modulation of the tangential velocity with the azimuthal angle has several limitation. For
instance, in this case, the fluid does not satisfy the continuity equation on the outer boundary. Finally, in
a sphere, the forcing leads to a divergence of the zonal flow near the axis of rotation due to the presence
of a critical latitude where the scalings of the Ekman layer no longer holds [28]. It remains unknown
whether a multipolar deformation with an arbitrary azimuthal wavenumber leads to the same structure
of the nonlinear correction. Moreover, the boundary conditions to apply on a deformed sphere are poorly
defined as the deformed shape can lead to a variation in the thickness of the Ekman layer.

In this paper, we aim to show that an azimuthal forcing exhibits the same key features as a temporal
forcing. To accommodate a full analytical description without simplification of the shape of the outer
boundary, we consider the simpler model composed of two cylindrical plates rotating in a multipolar flow
where n is the symmetry of the angular forcing. The particular case n = 2 corresponds to an elliptical
deformation. A schematic of the model geometry is presented in figure 1. Our analytical modeling
demonstrates that the azimuthal forcing generates a steady axisymmetric differential rotation in the
interior. This nonlinear effect scales as the mean zonal flow driven in a longitudinally librating cylinder.
We also characterize the influences of the rotation of the deformation and the influence of the symmetry
of the angular forcing, n, on the mean zonal flow generated.

2 Mathematical formulation

2.1 Multipolar deformation and generated flow

We consider the flow in an external cylindrical container of radius filled with an incompressible newtonian
fluid of kinematic viscosity . The external container is deformable and rotates around its axis at a
constant angular velocity . In addition a multipolar forcing rotating at the angular velocity is applied on
the cylinder. The radius of the deformable boundary is given by

We consider the flow in an external cylindrical container of radius Rext filled with an incompressible
Newtonian fluid of kinematic viscosity ν. The external container is deformable and rotates around its
axis at a constant angular velocity Ωspin. In addition a multipolar forcing rotating at the angular velocity
Ωorb is applied on the cylinder. The radius of the deformable boundary is given by

Rdefext (θ) = Rext

[
1 +

β

n
cos(n θ)

]
+ O(β2), (1)

where β and n are the amplitude and the symmetry of the angular forcing, respectively. To model
an interaction between a satellite and its planet we generally consider only an elliptical deformation.
However, the presence of other satellites can generate deformation with a larger azimuthal wavenumber,
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Figure 1: Experimental setup corresponding to the situation described in this paper for n = 2. A flexible
outer cylinder rotating at an angular velocity Ωspin is deformed by two rolls rotating at a constant angular
velocity Ωorb. It generates elliptical streamlines in the bulk. Two cylindrical plates rotate at the velocity
of the outer cylinder, Ωspin. We are interested by the zonal flow generated in region I.

leading to a multipolar deformation. The resulting streamfunction can be written

Ψ = −r
2

2
+ β

rn

n
cos(nθ) + O(β2), (2)

with n ≥ 1. The flow is the superposition of a solid-body rotation and a multipolar strain field [29]. The
shape of the streamlines is defined by Ψ(r, θ;β) = −k where k is a positive constant which is related to the
mean radius by rmoy =

√
2 k. The shape of a streamline is further characterized by a local deformation

βn = β

(
2nk

n− 2

)(n−2)/2
(3)

that measures its asymmetry. The streamlines for β = 0.1 and varying the symmetry of the angular forcing
n are represented in figure 2. Note that the case βn = β corresponds to a simple elliptical deformation,
n = 2. In this case, the eccentricity of the streamlines is constant and equal to β2 = β. However, for
n ≥ 3, the deformation of the streamlines is no longer homogeneous when the constant k is modified.
We notice that for a small value of k, i.e. near the center of the flow, the streamlines are quasi-circular.
In contrast, for larger k values, further away from the center, the streamlines become more and more
deformed and their local eccentricity is defined by equation (3). Note also that for βn > 1 the streamlines
become open; thus the analysis will be restricted to the range 0 ≤ βn < 1.

We define ΩR = Ωorb/Ωspin as the ratio of the angular rate of the deformation and the angular rate
of the cylinder. To simplify the situation, we consider two disks, separated by an axial distance H, and
corotating with the cylinder around the (Oz)-axis at an angular rate equal to the angular rate of the
external cylinder. A schematic of the situation is represented in figure 1. A similar system, without the
inner disks, has been used in [30] to study the elliptical instability. Experimental measurements have
shown that the generated elliptical streamlines are in good agreement with equation (2). Following the
analytical study of the flow generated in an oscillating cylinder, we neglect the flow close to the corner.
In the two regions indicated in figure 1, I and II, the flow has elliptical streamlines. We are interested in
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Figure 2: Streamlines induced by multipolar deformation with β = 0.1 and rmoy ranging between 0.45
and 1 for (a) n = 2, (b) n = 3 and (c) n = 5.

region I, where no- slip boundary conditions must be satisfied for the top and bottom cylinders, which
leads to the presence of viscous boundary layers, similar to the situation of a libration-driven flow in a
cylinder [5]. The nonlinear flow is different in regions I and II, leading to the presence of Stewartson
layers between these two regions, as observed previously in a spherical shell [12, 31]. However, for the
sake of simplicity, we consider only the flow in region I and do not consider the Stewartson layers that
remain localized near the tangent cylinder between the two regions in the asymptotic analysis, provided
the forcing is small enough. Indeed, we should emphasize that nonlinearities in the Stewartson layers
could lead to instabilities that would broaden the Stewartson layers separating regions I and II and would
modify the solution provided in this paper [32, 33, 34, 35]. In addition, for instance for n = 2, an elliptical
instability could develop at a sufficiently large deformation [30, 27, 36, 1]. Therefore, our analysis applies
fto a sufficiently small forcing amplitude β for a given Ekman number E.

2.2 Dimensionless equations

We define the length scale and time scale of the problem as Rext, the radius of the cylinder and Ωspin
−1,

respectively. In the following, we work in the rotating frame of angular velocity Ωorb. In this frame
of reference the flow is stationary and the non-dimensional Navier-Stokes and continuity equations in
cylindrical coordinates are given by

ur
∂ur
∂r

+
uθ
r

∂ur
∂θ
− uθ

2

r
+ uz

∂ur
∂z
− 2 ΩR uθ = −∂p

∂r
+ E∇2 ur (4a)

ur
∂uθ
∂r

+
uθ
r

∂uθ
∂θ

+
uθ ur
r

+ uz
∂uθ
∂z

+ 2 ΩR ur = −1

r

∂p

∂θ
+ E∇2 uθ (4b)

ur
∂uz
∂r

+
uθ
r

∂uz
∂θ

+ uz
∂uz
∂z

= −∂p
∂z

+ E∇2 uz (4c)

1

r

∂

∂r
(r ur) +

1

r

∂uθ
∂θ

+
∂uz
∂z

= 0 (4d)

where E = ν/(ΩspinH
2) is the Ekman number based on the height of the cylinder H. Considering a

multipolar deformation [30, 37], the base flow in the bulk is given by

Ur = −β rn−1 (1− ΩR) sin(n θ), (5a)

Uθ = r (1− ΩR)− β rn−1 (1− ΩR) cos(n θ), (5b)

Uz = 0, (5c)

P =
r2

2
(1− ΩR

2) + β
rn

n
[n (1− ΩR)− 2] (1− ΩR) cos(n θ). (5d)
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For a fixed deformation ΩR = 0 and an elliptical forcing n = 2, we recover the base flow of a tidal
deformation [27]. Note that in the following we will use the notation (Ur, Uθ, Uz, P ) for the velocity and
pressure fields in the bulk and (ur, uθ, uz, p) for the velocity and pressure fields in the Ekman layers.

3 Linear solution in the top and bottom boundary layers

The velocity and pressure fields (5a)-(5d) are solutions to the Navier?Stokes and continuity equations.
However, the velocity is not constant along a streamline; it is lower in the region of large curvature. In
addition, at the bottom and top boundaries (z = [0;H]), the flow must satisfy no-slip boundary conditions.
In a rotating frame with the deformation, the no-slip boundary conditions leads to a solid-body rotation
at an angular velocity Ωspin−Ωorb. To satisfy these boundary conditions, we need to introduce a viscous
layer to match the flow in the bulk to the condition at the solid boundary. For instance, we consider the
viscous layer near the bottom boundary, at z = 0. Because the system is symmetric, we expect the same
flow to happen at the top boundary. Let us introduce the boundary layer coordinate:

ζ =
z

E1/2
(6)

To perform the asymptotic analysis, we assume that the velocity field and the pressure can be expanded
in a power series of β and E1/2:

u = u0 +
∑

i=1,j=0

Ej/2 βi uji , (7)

p = p0 +
∑

i=1,j=0

Ej/2 βi pji . (8)

In the following, to simplify the notation, we indicate only the order in β. Assuming that the radial
and orthoradial components of the velocity fields, ur and uθ, are of order E0 in the boundary layer,
equation (4.d) indicates that the axial velocity is of order E1/2 smaller in the boundary layer. Thus, in
the boundary layers equations (4a)-(4c) can be reduced to the leading order in E and at the order β:

u0,θ
r

∂u1,r
∂θ
−

2u0,θ u1,θ
r

− 2 ΩR u1,θ = −∂p1
∂r

+
∂2u1,r
∂ζ2

(9a)

u1,r
∂u0,θ
∂r

+
u0,θ
r

∂u1,θ
∂θ

+
u0,θ u1,r

r
+ 2 ΩR u1,r = −1

r

∂p1
∂θ

+
∂2u1,θ
∂ζ2

(9b)

∂p1
∂ζ

= 0 (9c)

where u0,θ is the solution of order 0 in β. Equation (9c) leads to a constant pressure field in the boundary
layer. Its expression is therefore directly given by equation (5d). The symmetry of the multipolar forcing
associated with a symmetry of the angular forcing n sets the symmetry of the velocity field

u1,r = β ũ1,r ei n θ + c.c and u1,θ = β ũ1,θ ei n θ + c.c.

where c.c. denotes the complex conjugate. From equations (9a)-(9b) and with the leading-order solution,
we obtain the following equations:

i n (1− ΩR) ũ1,r − 2 ũ1,θ = −∂p̃1
∂r

+
∂2ũ1,r
∂ζ2

(10a)

2 ũ1,r + i n (1− ΩR) ũ1,θ = − i n p̃1

r
+
∂2ũ1,θ
∂ζ2

(10b)
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For ζ = 0, i.e., at the boundary of the cylinder, the velocity field vanishes at the first order in β. Therefore,
we impose the following boundary conditions:

ũ1,r(ζ = 0) = 0, ũ1,θ(ζ = 0) = 0, ũ1,ζ(ζ = 0) = 0. (11)

We note that the velocity field at order 0, ũ0, needs to fulfill the no-slip boundary conditions at the upper
and lower boundaries. Then the matching condition between the flow in the boundary layer and the flow
in the bulk leads to

lim
ζ→+∞

ũ1,r = −r
n−1 (1− ΩR)

2 i
, lim

ζ→+∞
ũ1,θ = −r

n−1 (1− ΩR)

2
, and lim

ζ→+∞
ũ1,ζ = 0. (12)

Finally, the solution to this set of equations is given by:

ũ1,r = i
rn−1 (1− ΩR)

2
(1− e−λ ζ) (13a)

ũ1,θ = −r
n−1 (1− ΩR)

2
(1− e−λ ζ) (13b)

ũ1,z = 0 (13c)

p̃1 = =
rn

2n
[n (1− ΩR)− 2] (1− ΩR) (13d)

where δ is the boundary layer thickness,

λ = (1 + s± i)
∣∣∣n
2

(1− ΩR)− 1
∣∣∣1/2 (14)

with

s± = 1 if
n

2
(1− ΩR)− 1 > 0,

s± = −1 if
n

2
(1− ΩR)− 1 < 0.

From expressions (13a)-(13d), we obtain the velocity field and the pressure in the boundary layer:

u1,r = −rn−1 (1− ΩR)
[
sin(n θ)− exp (−δ ζ) sin(n θ + s± δ ζ)

]
(15a)

u1,θ = −rn−1 (1− ΩR)
[
cos(n θ)− exp (−δ ζ) cos(n θ + s± δ ζ)

]
(15b)

u1,z = 0 (15c)

p1 = =
rn

n
[n (1− ΩR)− 2] (1− ΩR) cos(n θ) (15d)

where we have defined

δ =
∣∣∣n
2

(1− ΩR)− 1
∣∣∣1/2 (16)

4 Non-linear correction

In the previous section, we showed that the linear response of the flow to a multipolar deformation is a
correction at order β with harmonics ei n θ and e−i n θ. The nonlinear contribution, i.e., β2 terms, comes
from the nonlinear interactions of the linear flow with itself in the top and bottom Ekman layers and
generates harmonics e2 i n θ, e−2 i n θ and ei 0 = 1. This last term referred to as the zonal flow represents a
drift of the fluid during the rotation and contributes to the flow after one rotation.
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4.1 Non linear flow in the bulk

Contrary to the longitudinal libration forcing where the linear correction is of order ε
√
E in the bulk

[5, 6, 12], here we need to consider the linear correction of order β E0 in the bulk and study whether its
nonlinear interaction leads to a mean zonal flow, i.e. to a contribution of harmonics ei 0. In the bulk at
order β2, the Navier-Stokes equation leads to

r2n−3 (n− 1) (1− ΩR
2)− 2U2,θ = −∂P2

∂r
, (17a)

U2,r = 0 (17b)

U2,z = 0 (17c)

Indeed, the nonlinear contribution through the term U · ∇U vanishes and does not generate a nonlinear
axisymmetric flow in the absence of top and bottom viscous layers. The physical effects that generate a
mean zonal flow in the bulk are thus the same as for a temporal forcing. Actually, (17a)-(17c) indicate
that the nonlinear and axisymmetric components of the velocity field only depends on the cylindrical
radial coordinate r and can be written:

U2,θ = rΩ2(r) (18)

where Ω2 is a function of r that is obtained in the next section.

4.2 Non linear axisymmetric solution in the boundary layers

At the order β2, equations (4a)-(4c) in the boundary layer simplify to

u1,r
∂u1,r
∂r

+
u1,θ
r

∂u1,r
∂θ
−
u1,θ

2

r
− 2 u2,θ = −∂p2

∂r
+
∂2u2,r
∂ζ2

(19a)

u1,r
∂u1,θ
∂r

+
u1,θ
r

∂u1,θ
∂θ

+
u1,θ u1,r

r
+ 2u2,r =

∂2u2,θ
∂ζ2

(19b)

∂p

∂ζ
= 0 (19c)

Substituting expressions (10a)?(10b) into equation (19a)?(19c), we obtain

∂2u2,r
∂ζ2

+ 2 u2,θ =
∂p2
∂r

+ r2n−3 (n− 1) (1− ΩR)2 (1− e−λ ζ) (1− e−λ
∗ ζ)

(20a)

∂2u2,θ
∂ζ2

− 2u2,r = 0 (20b)

This leads to a differential equation in ζ for (u2,r + i u2,θ):(
∂3

∂ζ3
− 2 i

∂

∂ζ

)
(u2,r + i u2,θ) = r2n−3 (n− 1) (1− ΩR)2

(
λ e−λ ζ

+λ∗ e−λ
∗ ζ − (λ+ λ∗)e−(λ+λ

∗) ζ
)

(21)

We write the no-slip conditions on the bottom boundary, i.e., for ζ = 0,

u2,r(ζ = 0) = 0 and u2,θ(ζ = 0) = 0 (22)

Morevoer, the solutions in the Ekman layer and in the bulk need to match and leads to

lim
ζ→+∞

u2,r = 0 and lim
ζ→+∞

u2,θ = i r Ω2(r) (23)
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Therefore, the solution to equations (21)-(23) is

u2,r + i u2,θ = r2n−3 (n− 1) (1− ΩR)2

[
e−κ ζ − e−(λ+λ

∗) ζ

κ2 − (λ+ λ∗)2
− e−κ ζ − e−λ ζ

κ2 − λ2

−e−κ ζ − e−λ
∗ ζ

κ2 − λ∗2

]
+ i r Ω2(r) (1− e−κ ζ) (24)

where κ = 1 + i. The continuity equation in the boundary layer for the nonlinear and axisymmetric flow,
β2 ei 0, is

∂

∂r
(r u2,r) +

1√
E

∂u2,z
∂ζ

= 0 (25)

Because U2,r = 0 and U2,θ is a function of r only, the continuity equation in the bulk implies that the
axial velocity does not depend on the axial coordinate z:

∂U2,z

∂z
= 0 (26)

Moreover, the system exhibits an equatorial symmetry. Therefore, we have for z = H/2, Uz,2 = 0. As
a consequence, in the bulk, U2,z = 0. Thus, to satisfy the matching condition in the bulk, the equation
(25) implies that u2,r satisfies the relation

lim
ζ→+∞

u2,z = −
√
E

∫ +∞

0

∂

∂r
(r u2,r) dη = 0 (27)

Let us substitute the solution (24) into the relation (27). We then obtain a differential equation for Ω2(r)
with S > 0:

r2

2

dΩ2(r)

dr
+ rΩ2(r)

+
r2n−3 (n− 1)2 (1− ΩR)2 [1− S [2 + S (10

√
S − 2S − 9)]]

2 (4S2 + 1) (S2 − 1)
= 0 (28)

where S is defined by

S =
∣∣∣n
2

(1− ΩR)− 1
∣∣∣ (29)

The constant of integration has to be taken equal to zero to avoid the divergence of Ω2(r) at r = 0.
Finally, the solution is given by

Ω2 = −r
2n−4 (n− 1)2 (1− ΩR)2 [1− S [2 + S (10

√
S − 2S − 9))]]

2 (4S2 + 1) (S2 − 1)
(30)

5 Discussion

From expression (30), we see an important difference between an elliptical forcing, n = 2, and a higher
order azimuthal forcing, n > 2. For n = 2, the structure of the rotation rate associated with the mean
zonal flow is the same as for a longitudinal libration forcing [5]: the rotation rate does not depend on the
radius. In contrast, for larger values of n, Ω2 depends on the radial position in the flow. Figure 3 shows
the radial dependence of the angular rotation rate Ω2, associated with the zonal flow for ,= 2. The mean
zonal flow vanishes for ΩR = 1, i.e., at an angular rate of the deformation equal to the angular rate of
the cylinder. Here, the flow is only a solid body rotation in the bulk and no pumping is generated in the
top and bottom Ekman layers. Note also a singular point for ΩR = 1− 2/n, for example, ΩR = 0 for an
elliptical deformation, n = 2. In this situation, S = 0 and the Ekman layer becomes singular which is
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Figure 3: Angular rate associated with the mean zonal flow generated by an elliptical forcing, n = 2 in
the cylinder (solid red line) as a function of ΩR.

beyond the calculation presented in this paper. Therefore, the present analytical solution cannot be used
anymore. However, we note that the plot shown in figure 3 can be smoothed by continuity around this
critical value, as observed in an oscillating cylinder [5]. The correction can also be cyclonic or anticyclonic
as it is positive for

n− 2

n
− 2 [1 + 21/3 + 22/3]

n
< ΩR <

n− 2

n
+

2 [1 + 21/3 + 22/3]

n
(31)

and decreases to −∞ for a large value of ΩR.
Figure 4 shows the mean rotation rate Ω2 for a given value of ΩR = 2 and various values of the

azimuthal wavenumber of the perturbation. As mentioned previously, the elliptical forcing is the only case
where the angular velocity associated to the mean zonal flow does not depend on the radius. Increasing
the azimuthal wavenumber of the forcing leads to a flattening of the angular rate near the axis of rotation
and an increase in the value at r = 1. This result is in agreement with the definition of the local curvature
(3) given in the introduction of the article.

We should also mention that owing to the deviation from the solid-body rotation between the two
cylindrical plates, the axisymmetric flow in the interior (for r < 1) does not rotate at the same velocity
as in the outer region (r > 1). Therefore, this discontinuity will be smooth in Stewartson layer exhibiting
the same structure as in two cylindrical plates rotating at different velocities [38, 31]. The presence of
such layers has already been described for a time-harmonic forcing in a rotating shell [12], where it was
in rather good agreement with numerical simulations.

We have considered the flow in the inner region I, but we should notice that in the region II (see figure
1), the elliptical streamlines also induced a correction near the external boundary at r = Rext. In the
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Figure 4: Angular rate associated with the mean zonal flow generated by various multipolar forcings in
the cylinder for ΩR = 2. The dashed black line is an elliptical forcing, n = 2; the dashed-dotted red line
is a tripolar forcing, n = 3; solid blue line corresponds to n = 5, and the solid thick green line is n = 8.

limit of the small deformations, β � 1, the correction at the first order in β is [39]:

Ur = −β rn−1 (1− ΩR) sin(n θ)− (1− ΩR)
β
√
E (1− n)√

n
ekν (r−Rext)

× sin
(
kν (r −Rext) + n θ +

π

4

)
, (32)

Uθ = r (1− ΩR)− β rn−1 (1− ΩR) cos(n θ)− (1− ΩR)
β kν
√
E (1− n)

n3/2
ekν (r−Rext)

×

[
cos
(
kν (r −Rext) + n θ +

π

4

)
− sin

(
kν (r −Rext) + n θ +

π

4

)]
, (33)

Uz = 0, (34)

where we defined

kn =

√
n

2E
. (35)

In this paper, we have demonstrated the similarity of the mean zonal flows generated by a time
harmonic and an azimuthal forcing between two cylindrical plates. However, in addition to the mean
zonal flow, inertial waves are also susceptible to appear, depending on the frequency of perturbation. In
a cylinder driven by longitudinal libration at the frequency ω of its outer boundary, the emitted inertial
waves satisfy the dispersion relation ω = 2 sin θ where θ is the angle between the direction of propagation
of the inertial waves and the axis of rotation [40, 41]. For a multipolar forcing, we expect to see the
propagation of inertial waves in the range

n− 2 < ω < n+ 2 (36)

To conclude, we have demonstrated the analogy between time and azimuthal forcings in a rotating
cylinder. We note that the same analogy is expected to be present in a rotating sphere or shell. However,
in this geometry, the boundary conditions are more complicated to apply and the presence of a critical
latitude may lead to a divergence of the flow at some particular point [11, 28]. In addition, the longitudinal
libration of an ellipsoid is of importance for geophysical and astrophysical applications and will also need
to be considered[42, 43, 44]. This paper therefore constitutes a first step toward understanding the
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effects of both time harmonic and azimuthal forcings on the mean zonal flow in ellipsoidal containers and
astrophysical bodies.

Acknowledgments: the author thanks S. Le Dizès, M. Le Bars and D. Cébron for helpful discussions.
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[16] A. Sauret, D. Cébron, and M. Le Bars, “Spontaneous generation of inertial waves from boundary
turbulence in a librating sphere,” J. Fluid Mech., vol. 728, p. R5, 2013.

[17] S. Koch, U. Harlander, C. Egbers, and R. Hollerbach, “Inertial waves in a spherical shell induced
by librations of the inner sphere: experimental and numerical results,” Fluid Dyn. Res., vol. 45,
p. 035504, 2013.

[18] F. H. Busse, “Steady fluid flow in a precessing spheroidal shell,” J. Fluid Mech., vol. 33, pp. 739–751,
1968.

[19] W. V. R. Malkus, “Precession of the earth as the cause of geomagnetism,” Science, vol. 160, pp. 259–
264, 1968.

[20] S. T. Suess, “Viscous flow in a deformable rotating container,” J. Fluid Mech., vol. 45, pp. 189–201,
1971.

[21] W. V. R. Malkus, “An experimental study of global instabilities due to tidal (elliptical) distortion of
a rotating elastic cylinder,” Geophys. Astrophys. Fluid Dyn., vol. 48, p. 123, 1989.

[22] C. Morize, M. Le Bars, P. Le Gal, , and A. Tilgner, “Experimental determination of zonal winds
driven by tides,” Phys. Rev. Lett., vol. 104, p. 214501, 2010.

[23] A. Tilgner, “Zonal wind driven by inertial modes,” Phys. Rev. Lett., vol. 99, p. 194501, 2007.

[24] B. Favier, A. J. Barker, C. Baruteau, and G. I. Ogilvie, “Non-linear evolution of tidally forced inertial
waves in rotating fluid bodies,” Mon. Not. Roy. Astron. Soc., vol. 439, pp. 845–860, 2014.

[25] A. Sauret, Le Bars, M., and P. Le Gal, “Tide-driven shear instability in planetary liquid cores,”
Geophysical Research Letters, vol. 41, pp. 6078–6083, 2014.

[26] S. T. Suess, Some effects of gravitational tides on a rotating fluid. PhD thesis, University of California,
1970.

[27] R. R. Kerswell, “Elliptical instability,” Annual Review of Fluid Mechanics, vol. 34, pp. 83–113, 2002.

[28] S. Kida, “Steady flow in a rapidly rotating sphere with weak precession,” Journal of Fluid Mechanics,
vol. 680, pp. 150–193, 2011.

[29] S. Le Dizès and C. Eloy, “Short-wavelength instability of a vortex in a multipolar strain field,” Phys.
Fluids, vol. 11, pp. 500–502, 1999.

[30] C. Eloy, P. Le Gal, and S. Le Dizès, “Experimental study of the multipolar vortex instability,” Phys.
Rev. Lett., vol. 85, pp. 3400–3403, 2000.

[31] K. Stewartson, “On almost rigid rotations. part 2,” J. Fluid Mech., vol. 26, pp. 131–144, 1966.

[32] W. G. Fruh and P. L. Read, “Experiments on a barotropic rotating shear layer. part 1. instability
and steady vortices,” J. Fluid Mech., vol. 383, pp. 143–173, 1999.

[33] R. Hollerbach, “Instabilities of the stewartson layer part 1. the dependence on the sign of ro,” J.
Fluid Mech., vol. 492, pp. 289–302, 2003.

[34] R. Hollerbach, B. Futterer, T. More, and C. Egbers, “Instabilities of the stewartson layer part 2.
supercritical mode transitions,” Theor. Comp. Fluid Dyn., vol. 18, pp. 197–204, 2004.

[35] N. Schaeffer and P. Cardin, “Quasigeostrophic model of the instabilities of the stewartson layer in
flat and depth-varying containers,” Phys. Fluids, vol. 17, p. 104111, 2005.

12



[36] C. Eloy, P. Le Gal, and S. Le Dizès, “Elliptic and triangular instabilities in rotating cylinders,” J.
Fluid Mech., vol. 476, pp. 357–388, 2003.

[37] S. Le Dizès, “Three-dimensional instability of a multipolar vortex in a rotating flow,” Phys. Fluids,
vol. 12, pp. 2762–2774, 2000.

[38] K. Stewartson, “On almost rigid rotations,” J. Fluid Mech., vol. 3, pp. 17–26, 1957.
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