
HAL Id: hal-01147821
https://hal.science/hal-01147821v4

Submitted on 29 Sep 2015 (v4), last revised 1 Jan 2017 (v6)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Copyright

ActorScript™ extension of C#®, Java®, Objective C®,
JavaScript®, and SystemVerilog using iAdaptive™
concurrency for antiCloud™ privacy and security

Carl Hewitt

To cite this version:
Carl Hewitt. ActorScript™ extension of C#®, Java®, Objective C®, JavaScript®, and SystemVerilog
using iAdaptive™ concurrency for antiCloud™ privacy and security. Inconsistency Robustness, 2015,
978-1-84890-159-9. �hal-01147821v4�

https://hal.science/hal-01147821v4
https://hal.archives-ouvertes.fr

1

ActorScript™ extension of C#®, Java®, Objective C®,

C++, JavaScript®, and SystemVerilog using iAdaptiveTM

concurrency for antiCloudTM privacy and security:i
One computer is no computer in IoT

Carl Hewitt

This article is dedicated to Alonzo Church, John McCarthy,

Ole-Johan Dahl and Kristen Nygaard.

ActorScript™ is a general purpose programming language for efficiently

implementing robust applicationsii using iAdaptiveTM concurrency that

manages resources and demand. It is differentiated from previous languages

by the following:

 Universality

o Ability to directly specify exactly what Actors can and cannot do

o Everything is accomplished with message passing using types

including the very definition of ActorScript itself.

o Messages can be directly communicated without requiring

indirection through brokers, channels, class hierarchies,

mailboxes, pipes, ports, queues etc. Programs do not expose low-

level implementation mechanisms such as threads, tasks, locks,

cores, etc. Application binary interfaces are afforded so that no

program symbol need be looked up at runtime. Functional,

Imperative, Logic, and Concurrent programs are integrated.

o A type in ActorScript is an interface that does not name its

implementations (contra to object-oriented programming

languages beginning with Simula that name implementations

called “classes” that are types). ActorScript can send a message to

any Actor for which it has an (imported) type.

o Concurrency can be dynamically adapted to resources available

and current load.

i C# is a registered trademark of Microsoft, Inc.

Java and JavaScript are registered trademarks of Oracle, Inc.

Objective C is a registered trademark of Apple, Inc.
ii with no single point of failure

2

 Safety, security and readability

o Programs are extension invariant, i.e., extending a program does

not change the meaning of the program that is extended.

o Applications cannot directly harm each other.

o Variable races are eliminated while allowing flexible

concurrency.

o Lexical singleness of purpose. Each syntactic token is used for

exactly one purpose.

 Performancei

o Imposes no overhead on implementation of Actor systems in the

sense that ActorScript programs are as efficient as the same

implementation in machine code. For example, message passing

has essentially same overhead as procedure calls and looping.

o Execution dynamically adjusted for system load and capacity

(e.g. cores)

o Locality because execution is not bound by a sequential global

memory model

o Inherent concurrency because execution is not limited by being

restricted to communicating sequential processes

o Minimize latency along critical paths

ActorScript attempts to achieve the highest level of performance, scalability,

and expressibility with a minimum of primitives.

Message passing using types is the foundation of system communication:

 Messages are the unit of communication

 Typesii enable secure communication with Actors

Computer software should not only work; it should also appear to work.1

i Performance can be tricky as illustrated by the following:

 “Those who would forever give up correctness for a little temporary

performance deserve neither correctness nor performance.” [Philips 2013]

 “The key to performance is elegance, not battalions of special cases” [Jon

Bentley and Doug McIlroy]

 “If you want to achieve performance, start with comprehensible.” [Philips

2013]

 Those who would forever give up performance for a feature that slows

everything down deserve neither the feature nor performance.
ii Each type is an Actor. However, it may be the case that a type will work some

places and not others. For example, to be used in message passing, the type of an

address may require access to particular hardware.

3

Introduction

ActorScript is based on the Actor mathematical model of computation that

treats “Actors” as the universal conceptual primitive of digital computation

[Hewitt, Bishop, and Steiger 1973; Hewitt 1977; Hewitt 2010a]. Actors have

been used as a framework for a theoretical understanding of concurrency, and

as the theoretical basis for several practical implementations of concurrent

systems.

ActorScript

ActorScript is a general purpose programming language for implementing

massive local and nonlocal concurrency.

This paper makes use of the following typographical conventions that arise

from underlying namespaces for types, messages, language constructs, syntax

categories, etc.i
 type identifiers

o blue for types in general (e.g., Account)
o green for the special case of implementation types (e.g.,

SimpleAccount)
 program variables (e.g., aBalance)
 message names (e.g., withdraw)
 reserved words2 for language constructs (e.g., Actor)
 logical variables (e.g., x)
 comments in programs (e.g. /* this is a comment */)

There is a diagram of the syntax categories of ActorScript in an appendix of

this paper in addition to an appendix with an index of symbols and names

along with an explanation of the notation used to express the syntax of

ActorScript.3

Actors

ActorScript is based on the Actor Model of Computation [Hewitt, Bishop, and

Steiger 1973; Hewitt 2010a] in which all computational entities are Actors and

all interaction is accomplished using message passing.

The Actor model is a mathematical theory that treats “Actors” as the universal

conceptual primitive of digital computation. The model has been used both as

a framework for a theoretical understanding of concurrency, and as the

theoretical basis for several practical implementations of concurrent systems.

Unlike previous models of computation, the Actor model was inspired by

i The choice of typography in terms of font and color has no semantic significance.

The typography in this paper was chosen for pedagogical motivations and is in no

way fundamental. Also, only the abstract syntax of ActorScript is fundamental as

opposed to the surface syntax with its many symbols, e.g., ↦, etc.

4

physical laws. The advent of massive concurrency through client-cloud

computing and many-core computer architectures has galvanized interest in

the Actor model.

An Actor is a computational entity that, in response to a message it receives,

can concurrently:
 send messages to addresses of Actors that it has
 create new Actors
 designate how to handle the next message it receives.

There is no assumed order to the above actions and they could be carried out

concurrently. In addition two messages sent concurrently can be received in

either order. Decoupling the sender from communication it sends was a

fundamental advance of the Actor model enabling asynchronous

communication and control structures as patterns of passing messages.

The Actor model can be used as a framework for modeling, understanding,

and reasoning about, a wide range of concurrent systems. For example:
 Electronic mail (e-mail) can be modeled as an Actor system. Mail

accounts are modeled as Actors and email addresses as Actor addresses.
 Web Services can be modeled with endpoints modeled as Actor

addresses.
 Object-oriented programing objects with locks (e.g. as in Java and C#)

can be modeled as Actors.

Actor technology will see significant application for coordinating all kinds of

digital information for individuals, groups, and organizations so their

information usefully links together. Information coordination needs to make

use of the following information system principles:
 Persistence. Information is collected and indexed.
 Concurrency: Work proceeds interactively and concurrently,

overlapping in time.
 Quasi-commutativity: Information can be used regardless of whether it

initiates new work or becomes relevant to ongoing work.
 Sponsorship: Sponsors provide resources for computation, i.e.,

processing, storage, and communications.
 Pluralism: Information is heterogeneous, overlapping and often

inconsistent. There is no central arbiter of truth.
 Provenance: The provenance of information is carefully tracked and

recorded.

The Actor Model is designed to provide a foundation for inconsistency robust

information coordination.

5

Notation

To ease interoperability, ActorScript uses an intersection of the orthographic

conventions of Java, JavaScript, and C++ for wordsi and numbers.

Expressions

ActorScript makes use of a great many symbols to improve readability and

remove ambiguity. For example the symbol “▮” is used as the top level

terminator to designate the end of input in a read-

eval-print loop. An Integrated Development

Environment (IDE) can provide a table of these

symbols for ease of input as explained below:ii

Expressions evaluate to Actors. For example, 1+3▮iii is equivalentiv to 4▮.

Parentheses “(” and “)” can be used for precedence. For example using the

usual precedence for operators, 3*(4+2)▮ is equivalent to 18▮, while 3*4+2▮

is equivalent to 14▮,

Identifiers, e.g., x, are expressions that can be used in other expressions. For

example if x is 1 then x+3▮ is equivalent to 4▮. The formal syntax of identifiers

is in the following end note: 4.

Types

Types are Actors. Type names are shown as follows:
o blue for types in general (e.g., Account)
o green for the special case of implementation types (e.g., SimpleAccount)

The formal syntax for types is in the following end note: 5.

i sometimes called “names”
ii Furthermore, all special symbols have ASCII equivalents for input with a keyboard.

An IDE can convert ASCII for a symbol equivalent into the symbol. See table in an

appendix to this article.
iii An IDE can provide a box with symbols for easy input in program development.

The grey callout bubble is a hover tip that appears when the cursor hovers above a

symbol to explain its use.
iv in the sense of having the same value and the same effects

Symbols
▮

end

6

Identifier Definitions, i.e., ←

An identifier definition has an identifier to be defined

followed by “←” followed by the definition. For

example, x←3▮ defines the identifier x to be the

Actor 3.

The formal syntax of an identifier definition is in the end note: 6.

Procedure Definitions, i.e., →

A procedure is an Actor that can receive a list of Actors in a message and

return an Actor as its value, which can be defined using “Actor”, followed

by a procedure name, a list of formal arguments, return type, “→” and body

of the procedure. For example,

Actor Double [v:Integer]:Integer → v+v▮

The formal syntax of a procedure definition is in the end note: 7.

Sending messages to procedures, i.e., ∎[]

Sending a message to a procedure (i.e. “calling” a procedure with arguments)

is expressed by an expression that evaluates to a procedure followed by “∎”8

followed by a message with arguments delimited by “[” and “]”. For example,

Double∎[2+1]▮ means send Double the message [3]. Thus Double∎[2+1]▮ is

equivalent to 6▮.

The formal syntactic definition of procedural message sending is in the end

note: 9.

Symbols

 ▮ ←

defined

7

Patterns

Patterns are fundamental to ActorScript. For example,

 3 is a pattern that matches 3

 “abc” is a pattern that matches “abc”.

 _ is a pattern that matches anythingi
 ⌕x is a pattern that matches the value of x.
 ⌕(x+2) is a pattern that matches the value of the expression x+2.

Identifiersii can be bound using patterns as in the following examples:
 x is a pattern that matches “abc” and binds x to “abc”

i e.g., _ matches 7
ii An identifier is a name that is used in a program to designate an Actor

8

Cases, i.e., � ⦂ , ⦂ ⍰

Cases are used to perform conditional testing. In a Cases Expression, an

expression for the value on which to perform case analysis is specified first

followed by “�”i and then followed by a number of cases separated by “⍌”

terminated by “⍰”.10 A case consists of
 a pattern followed by “⦂” and an expression to compute the value for

the case. All of the patterns before an else case must be disjoint; i.e.,

it must not be possible for more than one to match.

 optionally (at the end of the cases) one or more of the following

cases: “else” followed by an optional pattern, “⦂”, and an expression

to compute the value for the case. An else case applies only if none

of the patterns in the preceding casesii match the value on which to

perform case analysis.

As an arbitrary example purely to illustrate the above, suppose that the

procedure Random, which has no argument and returns Integer, in the

following example:

Random∎[] �
 0 ⦂ // Random∎[] returned 0iii

 Throwiv RandomNumberException[] ⍌
 // throw an exception

 // because Fibonacci∎[0] is undefined

 1 ⦂ // Random∎[] returned 1

 6⍌ // the value of the cases expression is 6

 else y thatIs < 5 ⦂
 // Random∎[] returned y that is not 0 or 1 and is less than 5

 Fibonacci∎[y] ⍌

 // return Fibonacci of the value returned by Random∎[]

 else z ⦂

 // Random∎[] returned z that is not 0 or 1 and is not less than 5

 Factorial∎[z] ⍰▮

 // return Factorial of the value returned by Random∎[]

The formal syntax of cases is in the following end note: 11.

i “�” is fancy typography for “?”
ii including patterns in previous else cases
iii As is standard, ActorScript uses the token “//” to begin a one-line comment.
iv Reserved words are shown in bold black.

Symbols

� ⍌ ⦂
⍰ ▮

case

9

Binding locals, i.e., Let ← ｡

Local identifiers can be bound using “Let” followed by a list of bindings

separated by commas and terminated with “｡” Each binding consists of a

pattern, “←”, and an expression for the Actor to be matched. For example,

aProcedure∎[“G”, “F”, “F”]▮ is equivalent to the following:

Let x ← “F”｡ // x is “F”

 aProcedure∎[“G”, x, x]▮

Dependent bindings (in which each can depend on previous ones) can be

accomplished by nesting Let. For example:

Let x ←“F”｡ // x is “F”

 Let y ← aProcedure∎[“G”, x, x]]｡

 // y is aProcedure∎[“G”, “F”, “F”]

 anotherProcedure∎[x, y]▮

The above is equivalent to

anotherProcedure∎[“F”, aProcedure∎[“G”, “F”, “F”]]▮

The formal syntax of bindings is in the following end note: 12.

The formal syntactic definition of named-message sending is in the following

end note: 13

General Message-passing interfaces

An interface can be defined using “Interface” followed by an interface name,

“with”, and a list of message handler signatures, where message handler

signature consists of a message name followed by argument types delimited

by “[” and “]”, “↦”, and a return type. For example, the interface type can be

defined as follows:

Interface Account with availableBalance[]↦Euro,
 deposit[Euro]↦Void,
 withdraw[Euro]↦Void▮

Symbols

 ←
▮

bind

10

Actors that change, i.e., Actor using ≔

Using the expressions introduced so far, actors do not change. However, some

Actors change behaviors over time.

Message handlers in an Actor execute mutually exclusively while in a region

of mutual exclusion which is called “cheese.” In this paper assignable

variables are colored orange, which by itself has no semantic significance, i.e.,

printing this article in black and white does not change any meaning. The use

of assignments is strictly controlled in order to achieve better structured

programs.14

Below is a diagram for the implementation SimpleAccount of Account:

availableBalance[]

deposit[anAmount]
myBalance := myBalance + anAmount

myBalance

initially: myBalance=startingBalance

withdraw[anAmount] amount > myBalance
also

myBalance := myBalance - anAmount

(amount > myBalance)

Overdrawn[]

SimpleAccount[StartingBalance]

11

Variable races are impossible in ActorScript

An Actor can be created using "Actor" optionally followed by the following:

 constructor name with formal arguments delimited using brackets

 declarations of variablesi terminated by “｡”

 implementations of interface(s).

ActorScript is referentially transparent in the sense that a variable never

changes while in a continuous part of the cheese.15 For example, in the

deposit message handler change is accomplished using the following:

 Void afterward myBalance ≔ myBalance+anAmount
which returns Void and updates myBalance for the next message received.

An implementation that of the Account interface can be expressed as follows:

Actor SimpleAccount[startingBalance:Euro]
 myBalance ≔ startingBalance｡
 // myBalance is an assignable variable initialized with startingBalance

 implements Account using

 availableBalance[]:Euro → myBalance¶
 deposit[anAmount:Euro]:Void →
 Void // return Void
 afterward myBalance ≔ myBalance+anAmount¶
 // the next message is processed with

 // myBalance reflecting the deposit

 withdraw[anAmount:Euro]:Void →
 (amount > myBalance) �
 True ⦂ Throw Overdrawn[] ⍌
 False ⦂ Void // return Void
 afterward myBalance ≔ myBalance–anAmount ⍰§▮
 // the next message is processed with updated myBalance

As a result of the above definition,

 Implementation SimpleAccount extends Account▮

The formal syntax of Actor expressions is in the following end note: 16.

i variable declarations separated by commas

Symbols

 → � ⦂ ≔
⍰ ¶ § ▮

assignment

12

Antecedents, Preparations, and Necessary Concurrency, i.e., □

Concurrency can be controlled using preparation that is expressed in a

continuation using preparatory expressions, “” and an expression that

proceeds only after the preparations have been completed.

The following expression creates an account anAccount with initial balance

€6 and then concurrently withdraws €1 and €2 in preparation for reading the

balance:

Let anAccount ← SimpleAccount [€6]｡ // € is a reserved prefix operator
 Prep anAccount∎withdraw[€1],

 anAccount∎withdraw[€2]｡
 // proceed only after both of the
 // withdrawals have been acknowledged

 anAccount∎availableBalance[]▮
The above expression returns €3.

Operations are quasi-commutative to the extent that it doesn’t matter in which

order they occur.

Quasi-commutativity can be used to tame indeterminacy while at the

same time facilitating implementations that run exponentially faster than

those in the parallel lambda calculus.i

The formal syntax of compound expressions is in the following end note: 17

An expression can be annotated for concurrent execution by preceding it with

“□” indicating that the following expression must be considered for

concurrent execution if resources are available. For example

□Factorial∎[1000]+□Fibonacci∎[2000]▮ is annotated for concurrent

execution of Factorial∎[1000] and Fibonacci∎[2000] both of which must

complete execution. This does not require that the executions of

Factorial∎[1000] and Fibonacci∎[2000] actually overlap in time.18

The formal syntax of explicit concurrency is in the following end note: 19.

i For example, implementations using Actors of Direct Logic can be exponentially

faster than implementations in the parallel lambda calculus.

Symbols

 ← €
｡ ▮

Euro

13

Implementing multiple interfaces , i.e., also implements

The above implementation of Account can be extended as follows to provide

the ability to revoke20 some abilities to change an account.21 For example, the
AccountSupervisor implementation below implements both the Account
and AccountRevoker interfaces as an extension of the implementation

SimpleAccount where:

 Interface AccountRevoker with revokeDepositable[] ↦ Void,
 revokeWithdrawable[]↦ Void▮

Actor AccountSupervisor[initialBalance:Euro]

 uses SimpleAccount[initialBalance]｡

 // uses SimpleAccount implementation 22
withdrawableIsRevoked ≔ False,
depositableIsRevoked ≔ False｡
⟦revoker⟧:AccountRevoker → ⍠AccountRevoker¶

 // this Actor as AccountRevoker

⟦account⟧:Account → ⍠Account¶ // this Actor as Account

withdrawFee[anAmount:Euro]:Void →
 Void afterward myBalance ≔ myBalance–anAmount§

 // withdraw fee even if balance goes negative 23

partially reimplements Account using
 // (availableBalance[]↦Euro) from SimpleAccount
 withdraw[anAmount:Euro]:Void →

 withdrawableIsRevoked �

 True ⦂ Throw Revoked[] ⍌
 False ⦂ ⍠Account⨀SimpleAccount∎withdraw[anAmount] ⍰¶
 // use withdraw of SimpleAccount
 deposit[anAmount:Euro]:Void →
 depositableIsRevoked �

 True ⦂ Throw Revoked[] ⍌
 False ⦂ ⍠Account⨀SimpleAccount∎deposit[anAmount] ⍰§

 also implements AccountRevoker using
 revokeDepositable[]:Void →
 Void afterward depositableIsRevoked ≔ True¶
 revokeWithdrawable[]:Void →
 Void afterward withdrawableIsRevoked ≔ True§▮

14

As a result of the above definition:

 Implementation AccountSupervisor has

 ⟦revoker⟧ ↦ AccountRevoker,
 ⟦account⟧ ↦ Account,
 withdrawFee[Euro] ↦ Void▮

For example, the following expression returns negative €3:

 Let anAccountSupervisor ← AccountSupervisor[€3]｡
 Let anAccount ← anAccountSupervisor∎⟦account⟧,

 aRevoker ← anAccountSupervisor∎⟦revoker⟧｡
 Prep anAccount∎withdraw[€2] // the balance is €1

 aRevoker∎revokeWithdrawable[]
 // withdrawableIsRevoked is True
 Try anAccount∎withdraw[€5] // try another withdraw
 catch� _ ⦂ Void ⍰ // ignore the thrown exception24

 // myBalance remains €1
 anAccountSupervisor∎withdrawFee[€4]｡

 // €4 is withdrawn even though withdrawableIsRevoked
 // myBalance is negative €3
 anAccount∎availableBalance[]▮

The formal syntax of the programs below is in the following end note: 25

Type Extension

Subtyping of an implementation is not allowed so that an implementation

can be securely branded.i

The following interface expresses that each Tree has an integer identifier:

 Interface Tree with ⟦hash⟧↦Integer▮

An implementation of Leaf can be defined as an extension of Tree as follows:
Structure Leaf[aString:String]
 implements Tree using
 ⟦hash⟧:Integer → Hash∎[aString]▮

As a result of the above definition:

 Implementation structure Leaf[String] extends Tree▮

i As shown elsewhere in this article, multiple implementations can be used in

another implementation. Of course, interface types can be extended

15

For example,

 "The"▮ is equivalent to the following:

 Let Leaf [aString] ← Leaf ["The"]｡aString▮.

 Leaf ["The"]∎⟦hash⟧▮ is equivalent to Hash∎["The"]▮.

Conversion from of a type to an extension of a type is done using an expression

of the extension can followed by “:” and the type. For example,

((Leaf ["The"]):Tree) ∎⟦hash⟧▮ is equivalent to Hash∎["The"]▮.

Fork can be defined as an extension of Tree using:

Structure Fork[aLeft:Tree, aRight:Tree]
 extends Tree using
 ⟦hash⟧:Integer → Hash∎[aLeft∎⟦hash⟧, aRight∎⟦hash⟧§▮

As a result of the above definition:

 Implementation structure Fork[Tree, Tree] extends Tree▮

For example, Hash∎[Hash∎["The"], Hash∎["boy"]]▮ is equivalent to the

following:

 (Fork [Leaf ["The"], Leaf ["boy"]])∎⟦hash⟧▮

Testing for convertibility from of a type to an extension of the type is done

using an expression of the extension can followed by “↓?” and the type. For

example,

 ((Leaf ["The"]):Tree)↓?Fork▮ is equivalent to False▮.

 ((Leaf ["The"]):Tree)↓?Leaf ▮ is equivalent to True▮.

Conversion from of a type to an extension of the type is done using an

expression of the extension can followed by “↓” and the type. For example,

 ((Leaf ["The"]):Tree)↓Leaf ▮ is equivalent to Leaf ∎["The"]▮.

 ((Leaf ["The"]):Tree)↓Fork▮ throws an exception.

“↓↓” followed by a pattern can be used to match the pattern with something

which has been extended from the type of that pattern. For example,

Actor Fringe

 [aTree:Tree]:[String*] →
 aTree �
 ↓↓Leaf[aString] ⦂ [aString] ⍌
 ↓↓Fork[aLeft, aRight] ⦂
 [⩛Fringe∎[aLeft], ⩛Fringe∎[aRight]] ⍰▮26

16

For example, ["The", "boy"]:[String*]▮ is equivalent to the following:

 Fringe∎[Fork [Leaf["The"], Leaf["boy"]]]▮27

The procedure Fringe can be used to define SameFringe? that determines if

two trees have the same fringe [Hewitt 1972]:

 Actor SameFringe?
 [aTree:Tree, anotherTree:Tree]:Boolean →
 // test if two trees have the same fringe

 Fringe∎[aTree] = Fringe∎[anotherTree]▮

Casting is as allowed only as follows:

1. Casting self to an interface implemented by this Actor

2. Upcasting

a. an Actor of an implementation type to the interface type of the

implementation

b. an Actor of an interface type to the interface type that was

extended

3. Conditional downcasting of an Actor of an interface type to an

extension of the interface type.i Downcasting of an interface type I is

allowed only to an extension of I. For example, if x is of interface

type I, then either

i. E is an extension of I and there is some y of type E such that x=y:I
and therefore x↓E=y

ii. x↓E throws an exception because E is not an extension of I or

there is no y of type E such that x=y:I

Swiss cheese

Swiss cheese [Hewitt and Atkinson 1977, 1979; Atkinson 1980]28 is a

generalization of mutual exclusion with the following goals:

 Generality: Ability to conveniently program any scheduling policy

 Performance: Support maximum performance in implementation, e.g.,

the ability to minimize locking and to avoid repeatedly recalculating a

condition for proceeding.

 Understandability: Invariants for the variables of a mutable Actor

should hold whenever entering or leaving the cheese.

 Modularity: Resources requiring scheduling should be encapsulated so

that it is impossible to use them incorrectly.

i An implementation type cannot be downcast because there is nothing to which to

downcast. Note that this means that an implementation type cannot be subtyped

although an implementation can use other implementations for modularity. Of

course, for interface types there is no semantic guarantee of what an

implementation of the interface might do as long as it obeys the signatures.

17

By contrast with the nondeterministic lambda calculus, there is an always-

halting Actor Unbounded that when sent a [] message can compute an integer

of unbounded size. This is accomplished by creating a Counter with the

following variables:

 count initially 0

 continue initially True

and concurrently sending it both a stop[] message and a go[] message such

that:

 When a go[] message is received:

1. if continue is True, increment count by 1 and return the result of

sending this counter a go[] message.

2. if continue is False, return Void

 When a stop[] message is received, return count and set continue to

False for the next message received.

By the Actor Model of Computation [Clinger 1981, Hewitt 2006], the above

Actor will eventually receive the stop[] message and return an unbounded

number.

A diagram is shown below for an implementation of Counter. In the diagram,

a hole in the cheese is highlighted in grey and variables are shown in orange.

The color has no semantic significance.

∎∎go[]

continue=True
 also

 count := count +1

continue := False

continue=False

initially: continue=True, count=0

count

go[]

stop[]

18

Actor CreateUnbounded
 []:Integer →

Let aCounter ← Counter []｡ // let aCounter be a new Counter

 Prep □aCounter∎go[]｡ // send aCounter a go message and concurrently

 □aCounter∎stop[]▮ // return the result of sending aCounter stop[]

As a notational convenience, when an Actor receives message then it can send

an arbitrary message to itself by prefixing it with “∎∎” as in the following

example for the Actor implementation SimpleCounter:

Actor Counter[]
 count ≔ 0, // the variable count is initially 0
 continue ≔ True｡
 stop[]:Integer → count // return count
 afterward continue ≔ False¶
 // continue is updated to False for the next message received

 go[]:Void →
 continue �
 True ⦂ Prep count ≔ count+1｡ // increment count
 hole ∎∎go[] ⍌ // send go[] to this counter
 False ⦂ Void ⍰§▮ // if continue is False, return Void

As a result of the above definition
 Implementation Counter has go[]↦ Void,
 stop[]↦ Integer▮

The formal syntax of the programs above is in the following end note: 29

Symbols

→ ⦂
｡⍰ ¶ § ▮

19

Coordinating Activities

Coordinating activities of readers and writers in a shared resource is a classic

problem. The fundamental constraint is that multiple writers are not allowed

to operate concurrently and a writer is not allowed operate concurrently with

a reader.

Below are two implementations of readers/writer guardians for a shared

resource that implement different policies:30

1. ReadingPriority: The policy is to permit maximum concurrency

among readers without starving writers.31

a. When no writer is waiting, all readers start as they are

received.

b. When a writer has been received, no more readers can start.

c. When a writer completes, all waiting readers start even if

there are writers waiting.

2. WritingPriority: The policy is that readers get the most recent

information available without starving writers.32

a. When no writer is waiting, all readers start as they are

received.

b. When a writer has been received, no more readers can start.

c. When a writer completes, just one waiting reader is permitted

to complete if there are waiting writers.

The interface for the readers/writer guardian is the same as the interface for

the shared resource:

 Interface ReadersWriter with read[Query]↦ QueryAnswer,
 write[Update]↦ Void▮

20

Cheese diagram for ReadersWriter implementations:

readersQ

theResource∎read[aQuery]

writersQ

theResource∎write[anUpdate]

 ¬writing
also

 numberReading := numberReading+1

numberReading=0
also

writing := True

numberReading := numberReading-1

writing := False

theResource∎read[aQuery]

theResource∎write[anUpdate]

initially: writing=False, numberReading=0

invariant: writing ⇒ numberReading=0

read[aQuery]

write[anUpdate]

Note:

1. At most one activity is allowed to execute in the cheese.

2. The value of a variablei changes only when leaving the cheese.ii

When an exception is thrown exogenously by an activity that is in a queue

(e.g., readersQ, writerQ), a backout handler can be used to clean up cheese

variables before rethrowing the exception.

The formal syntax of the programs below is in the following end note: 33

i A variable is orange in the diagram
ii Of course, other external Actors can change.

21

In the implementations below, preconditions present are commentary for error

checking. An exception is thrown if a precondition is not met at runtime. A

precondition has no operational effect.

Actor ReadingPriority[theResource:ReadersWriter]
 invariants numberReading≧0 ,writing⇨ numberReading=0｡

 queues readersQ, writersQ｡ // readersQ and writersQ are initially empty

 writing ≔ False,
 numberReading: ≔ 0｡
 implements ReadersWriter using
 read[aQuery:Query]:QueryAnswer →

 Prep (writing IsEmpty writersQ) �
 True ⦂ Enqueue readersQ // leave cheese while in readersQ

 backout (writing numberReading=0 IsEmpty readersQ) �

 True ⦂ Void permit writersQ⍌

 False ⦂ Void ⍰

 Void ⍌

 False ⦂ Void ⍰｡

 Preconditions writing｡ // commentary for error checking

 Prep numberReading++ ｡ // increment numberReading

 permit readersQ
 hole theResource∎read[aQuery] // leave cheese while reading
 afterward
 (IsEmpty writersQ) �
 True ⦂ Permit readersQ also numberReading––⍌ 34
 False ⦂ numberReading=1 �
 True ⦂ Permit writersQ also numberReading––⍌
 False ⦂ numberReading–– ⍰ ⍰¶
 write[anUpdate:Update]:Void →
 Prep (numberReading>0 IsEmpty readersQ writing IsEmpty writersQ) �
 True ⦂ Enqueue writersQ // leave cheese while in writersQ

 backout (IsEmpty writersQ writing) �
 True ⦂ Void permit readersQ⍌
 False ⦂ Void ⍰

 Void ⍌

 False ⦂ Void ⍰｡

 Preconditions35 numberReading=0, writing｡
 // commentary for error checking

 Prep writing ≔ True ｡ // record that writing is happening

 hole theResource∎write[anUpdate] // leave cheese while writing

 afterward (IsEmpty readersQ) �
 True ⦂ Permit writersQ also writing ≔ False⍌

 False ⦂ Permit readersQ also writing ≔ False⍰§▮

Symbols

→ � ⦂ ⍌

⍰ ¶ § ▮

22

Illustration of writing-priority:

Actor WritingPriority[theResource:ReadersWriter]
 invariants numberReading≧0, writing⇨numberReading=0｡

 queues readersQ, writersQ｡
 writing ≔ False,
 numberReading ≔ 0｡
 implements ReadersWriter using

 read[aQuery:Query]:QueryAnswer →

 Prep (writing Empty writersQ) �
 True ⦂ Enqueue readersQ // leave cheese while in readersQ
 backout writing numberReading=0 IsEmpty readersQ �

 True ⦂ Void permit writersQ⍌

 False ⦂ Void ⍰

 Void⍌

 False ⦂ Void ⍰｡

 Preconditions writing｡ // commentary for error checking

 Prep numberReading++｡

 permit IsEmpty writersQ �
 True ⦂ readersQ⍌
 False ⦂ Void ⍰

 hole theResource∎read[aQuery] // leave cheese while reading

 afterward
 (IsEmpty writersQ) �
 True ⦂ Permit readersQ also numberReading––⍌
 False ⦂ numberReading=1 �
 True ⦂ Permit writersQ also numberReading––⍌

 False ⦂ numberReading––⍰ ⍰¶

 write[anUpdate:Update]:Void →
 Prep (numberReading>0 IsEmpty readersQ writing IsEmpty writersQ)�
 True ⦂ Enqueue writersQ // leave cheese while in writersQ

 backout (IsEmpty writersQ writing) �
 True ⦂ Void permit readersQ⍌
 False ⦂ Void ⍰

 Void ⍌

 False ⦂ Void ⍰｡

 Preconditions numberReading=0, writing｡
 // commentary for error checking

 Prep writing ≔ True｡

 hole theResource∎write[anUpdate] // leave cheese while writing
 afterward
 (IsEmpty readersQ) �

 True ⦂ Permit writersQ also writing ≔ False⍌

 False ⦂ Permit readersQ also writing ≔ False⍰§▮

Symbols

→ � ⦂ ⍌

⍰ ¶ § ▮

23

Conclusion

Before long, we will have billions of chips, each with hundreds of hyper-

threaded cores executing hundreds of thousands of threads. Consequently,

GOFIP (Good Old-Fashioned Imperative Programming) paradigm must be

fundamentally extended. ActorScript is intended to be a contribution to this

extension.

Acknowledgements

Important contributions to the semantics of Actors have been made by: Gul

Agha, Beppe Attardi, Henry Baker, Will Clinger, Irene Greif, Carl Manning,

Ian Mason, Ugo Montanari, Maria Simi, Scott Smith, Carolyn Talcott,

Prasanna Thati, and Aki Yonezawa.

Important contributions to the implementation of Actors have been made by:

Bill Athas, Russ Atkinson, Beppe Attardi, Henry Baker, Gerry Barber, Peter

Bishop, Nanette Boden, Jean-Pierre Briot, Bill Dally, Peter de Jong, Jessie

Dedecker, Ken Kahn, Henry Lieberman, Carl Manning, Mark S. Miller, Tom

Reinhardt, Chuck Seitz, Dale Schumacher, Richard Steiger, Dan Theriault,

Mario Tokoro, Darrell Woelk, and Carlos Varela.

Research on the Actor model has been carried out at Caltech Computer

Science, Kyoto University Tokoro Laboratory, MCC, MIT Artificial

Intelligence Laboratory, SRI, Stanford University, University of Illinois at

Urbana-Champaign Open Systems Laboratory, Pierre and Marie Curie

University (University of Paris 6), University of Pisa, University of Tokyo

Yonezawa Laboratory and elsewhere.

The members of the Silicon Valley Friday AM group made valuable

suggestions for improving this paper. Discussions with Blaine Garst were

helpful in the development of the implementation of Swiss cheese that doesn't

hold a lock as well providing background on the historical development of

interfaces. Patrick Beard found bugs and suggested improvements in

presentation. Fanya S. Montalvo and Ike Nassi suggested simplifying the

syntax. Dale Schumacher found many typos, suggested including a syntax

diagram, and suggested improvements to the syntax of collections, binding

and assignment. In particular, Dale contributed greatly to the development of

the lock-freei implementation of cheese in the appendix. Chip Morningstar

provided an excellent critique with many useful comments and suggestions.

Many important comments and suggestions were provided by Stu Bailey and

members of the Silicon Valley FriAM group.

i In the sense that the implementation holds a hardware lock.

24

ActorScript is intended to provide a foundation for information coordination

in client-cloud computing that protects citizens sensitive information [Hewitt

2009b].

Bibliography
Hal Abelson and Gerry Sussman Structure and Interpretation of Computer

Programs 1984.
Paul Abrahams. A final solution to the Dangling else of ALGOL 60 and

related languages CACM. September 1966.
Sarita Adve and Hans-J. Boehm Memory Models: A Case for Rethinking

Parallel Languages and Hardware CACM. August 2010.
Mikael Amborn. Facet-Oriented Program Design. LiTH-IDA-EX–04/047–

SE Linkőpings Universitet. 2004.

Joe Armstrong History of Erlang HOPL III. 2007.

Joe Armstrong. Erlang. CACM. September 2010/

William Athas and Charles Seitz Multicomputers: message-passing

concurrent computers IEEE Computer August 1988.

William Athas and Nanette Boden Cantor: An Actor Programming System

for Scientific Computing in Proceedings of the NSF Workshop on Object-

Based Concurrent Programming. 1988. Special Issue of SIGPLAN

Notices.

Russ Atkinson. Automatic Verification of Serializers MIT Doctoral

Dissertation. June, 1980.

Henry Baker. Actor Systems for Real-Time Computation MIT EECS

Doctoral Dissertation. January 1978.

Henry Baker and Carl Hewitt The Incremental Garbage Collection of

Processes Proceeding of the Symposium on Artificial Intelligence

Programming Languages. SIGPLAN Notices 12, August 1977.

Paul Baran. On Distributed Communications Networks IEEE Transactions

on Communications Systems. March 1964.

Gerry Barber. Reasoning about Change in Knowledgeable Office Systems

MIT EECS Doctoral Dissertation. August 1981.
Philippe Besnard and Anthony Hunter. Quasi-classical Logic: Non-

trivializable classical reasoning from inconsistent information Symbolic
and Quantitative Approaches to Reasoning and Uncertainty. Springer
LNCS. 1995.

Peter Bishop Very Large Address Space Modularly Extensible Computer

Systems MIT EECS Doctoral Dissertation. June 1977.
Andreas Blass, Yuri Gurevich, Dean Rosenzweig, and Benjamin Rossman

(2007a) Interactive small-step algorithms I: Axiomatization Logical
Methods in Computer Science. 2007.

Andreas Blass, Yuri Gurevich, Dean Rosenzweig, and Benjamin Rossman
(2007b) Interactive small-step algorithms II: Abstract state machines and
the characterization theorem. Logical Methods in Computer Science.
2007.

25

Per Brinch Hansen Monitors and Concurrent Pascal: A Personal History

CACM 1996.

Don Box, David Ehnebuske, Gopal Kakivaya, Andrew Layman, Noah

Mendelsohn, Henrik Nielsen, Satish Thatte, Dave Winer. Simple Object

Access Protocol (SOAP) 1.1 W3C Note. May 2000.

Jean-Pierre Briot. Acttalk: A framework for object-oriented concurrent

programming-design and experience 2nd France-Japan workshop. 1999.

Jean-Pierre Briot. From objects to Actors: Study of a limited symbiosis in

Smalltalk-80 Rapport de Recherche 88-58, RXF-LITP. Paris, France.

September 1988.
Luca Cardelli, James Donahue, Lucille Glassman, Mick Jordan, Bill Kalsow,

Greg Nelson. Modula-3 report (revised) DEC Systems Research Center
Research Report 52. November 1989.

Luca Cardelli and Andrew Gordon Mobile Ambients FoSSaCS’98.
Arnaud Carayol, Daniel Hirschkoff, and Davide Sangiorgi. On the

representation of McCarthy's amb in the π-calculus “Theoretical
Computer Science” February 2005.

Alonzo Church “A Set of postulates for the foundation of logic (1&2)”
Annals of Mathematics. Vol. 33, 1932. Vol. 34, 1933.

Alonzo Church The Calculi of Lambda-Conversion Princeton University
Press. 1941.

Will Clinger. Foundations of Actor Semantics MIT Mathematics Doctoral

Dissertation. June 1981.

Tyler Close Web-key: Mashing with Permission WWW’08.

Eric Crahen. Facet: A pattern for dynamic interfaces. CSE Dept. SUNY at

Buffalo. July 22, 2002.

Haskell Curry and Robert Feys. Combinatory Logic. North-Holland. 1958.

Ole-Johan Dahl and Kristen Nygaard. “Class and subclass declarations” IFIP

TC2 Conference on Simulation Programming Languages. 1967.

William Dally and Wills, D. Universal mechanisms for concurrency PARLE

‘89.

William Dally, et al. The Message-Driven Processor: A Multicomputer

Processing Node with Efficient Mechanisms IEEE Micro. April 1992.

Jack Dennis and Earl Van Horn. Programming Semantics for

Multiprogrammed Computations CACM. March 1966.

Edsger Dijkstra. Cooperating sequential processes Technical Report EWD-

123, Technological University, Eindhoven, The Netherlands. 1965.

Edsger Dijkstra. Go To Statement Considered Harmful Letter to Editor

CACM. March 1968.

Jason Eisner and Nathaniel W. Filardo. Dyna: Extending Datalog for modern

AI. Datalog Reloaded. Springer. 2011.

Arthur Fine. The Shaky Game: Einstein Realism and the Quantum Theory

University of Chicago Press, Chicago, 1986.
Frederic Fitch. Symbolic Logic: an Introduction. Ronald Press. 1952.

26

Nissim Francez, Tony Hoare, Daniel Lehmann, and Willem-Paul de Roever.
Semantics of nondeterminism, concurrency, and communication Journal of
Computer and System Sciences. December 1979.

Christopher Fuchs Quantum mechanics as quantum information (and only a

little more) in A. Khrenikov (ed.) Quantum Theory: Reconstruction of

Foundations (Växjo: Växjo University Press, 2002).

Blaine Garst. Origin of Interfaces Email to Carl Hewitt on October 2, 2009.

Elihu M. Gerson. Prematurity and Social Worlds in Prematurity in Scientific

Discovery. University of California Press. 2002.
Andreas Glausch and Wolfgang Reisig. Distributed Abstract State Machines

and Their Expressive Power Informatik Berichete 196. Humboldt
University of Berlin. January 2006.

Brian Goetz State of the Lambda Brian Goetz's Oracle Blog. July 6, 2010.
Adele Goldberg and Alan Kay (ed.) Smalltalk-72 Instruction Manual SSL

76-6. Xerox PARC. March 1976.
Dina Goldin and Peter Wegner. The Interactive Nature of Computing:

Refuting the Strong Church-Turing Thesis Minds and Machines March
2008.

Cordell Green. Application of Theorem Proving to Problem Solving
IJCAI’69.

Irene Greif and Carl Hewitt. Actor Semantics of PLANNER-73 Conference

Record of ACM Symposium on Principles of Programming Languages.

January 1975.

Irene Greif. Semantics of Communicating Parallel Professes MIT EECS

Doctoral Dissertation. August 1975.

William Gropp, et. al. MPI—The Complete Reference: Volume 2, The MPI-

2 Extensions. MIT Press. 1998

Pat Hayes Some Problems and Non-Problems in Representation Theory

AISB. Sussex. July, 1974

Werner Heisenberg. Physics and Beyond: Encounters and Conversations

translated by A. J. Pomerans (Harper & Row, New York, 1971), pp. 63 –

64.

Carl Hewitt. More Comparative Schematology MIT AI Memo 207. August

1970.

Carl Hewitt, Peter Bishop and Richard Steiger. A Universal Modular Actor

Formalism for Artificial Intelligence IJCAI’73.

Carl Hewitt, et al. Actor Induction and Meta-evaluation Conference Record

of ACM Symposium on Principles of Programming Languages, January

1974.

Carl Hewitt and Henry Lieberman. Design Issues in Parallel Architecture for

Artificial Intelligence MIT AI memo 750. Nov. 1983.

Carl Hewitt, Tom Reinhardt, Gul Agha, and Giuseppe Attardi Linguistic

Support of Receptionists for Shared Resources MIT AI Memo 781. Sept.

1984.

Carl Hewitt, et al. Behavioral Semantics of Nonrecursive Control Structure

Proceedings of Colloque sur la Programmation, April 1974.

http://cr.openjdk.java.net/~briangoetz/lambda/lambda-state-2.html

27

Carl Hewitt. How to Use What You Know IJCAI. September, 1975.

Carl Hewitt. Viewing Control Structures as Patterns of Passing Messages AI

Memo 410. December 1976. Journal of Artificial Intelligence. June 1977.

Carl Hewitt and Henry Baker Laws for Communicating Parallel Processes

IFIP-77, August 1977.

Carl Hewitt and Russ Atkinson. Specification and Proof Techniques for

Serializers IEEE Journal on Software Engineering. January 1979.

Carl Hewitt, Beppe Attardi, and Henry Lieberman. Delegation in Message

Passing Proceedings of First International Conference on Distributed

Systems Huntsville, AL. October 1979.

Carl Hewitt and Gul Agha. Guarded Horn clause languages: are they

deductive and Logical? in Artificial Intelligence at MIT, Vol. 2. MIT Press

1991.

Carl Hewitt and Jeff Inman. DAI Betwixt and Between: From "Intelligent

Agents" to Open Systems Science IEEE Transactions on Systems, Man, and

Cybernetics. Nov./Dec. 1991.

Carl Hewitt and Peter de Jong. Analyzing the Roles of Descriptions and

Actions in Open Systems Proceedings of the National Conference on

Artificial Intelligence. August 1983.
Carl Hewitt. (2006). “What is Commitment? Physical, Organizational, and

Social” COIN@AAMAS’06. (Revised version to be published in Springer
Verlag Lecture Notes in Artificial Intelligence. Edited by Javier Vázquez-
Salceda and Pablo Noriega. 2007) April 2006.

Carl Hewitt (2007a). “Organizational Computing Requires Unstratified
Paraconsistency and Reflection” COIN@AAMAS. 2007.

Carl Hewitt (2008a) Norms and Commitment for iOrgsTM Information
Systems: Direct LogicTM and Participatory Argument Checking ArXiv
0906.2756.

Carl Hewitt (2008b) “Large-scale Organizational Computing requires
Unstratified Reflection and Strong Paraconsistency” Coordination,
Organizations, Institutions, and Norms in Agent Systems III Jaime
Sichman, Pablo Noriega, Julian Padget and Sascha Ossowski (ed.).
Springer-Verlag. http://organizational.carlhewitt.info/

Carl Hewitt (2008e). ORGs for Scalable, Robust, Privacy-Friendly Client
Cloud Computing IEEE Internet Computing September/October 2008.

Carl Hewitt (2008f) Common sense for concurrency and inconsistency
robustness using Direct LogicTM and the Actor Model in Inconsistency
Robustness. College Publications. 2015.

Carl Hewitt (2009a) Perfect Disruption: The Paradigm Shift from Mental
Agents to ORGs IEEE Internet Computing. Jan/Feb 2009.

Carl Hewitt (2009b) A historical perspective on developing foundations for
client-cloud computing: iConsultTM & iEntertainTM Apps using iInfoTM
Information Integration for iOrgsTM Information Systems (Revised version
of “Development of Logic Programming: What went wrong, What was
done about it, and What it might mean for the future” AAAI Workshop on
What Went Wrong. AAAI-08.) ArXiv 0901.4934.

Carl Hewitt (2013) Inconsistency Robustness in Logic Programs

Inconsistency Robustness. College Publications. 2015.

http://arxiv.org/abs/0906.2756
http://arxiv.org/abs/0906.2756
http://arxiv.org/abs/0812.4852
http://arxiv.org/abs/0812.4852
http://arxiv.org/abs/0901.4934
http://arxiv.org/abs/0901.4934
http://arxiv.org/abs/0901.4934

28

Carl Hewitt (2010a) Actor Model of Computation Inconsistency Robustness.

College Publications. 2015.

Carl Hewitt (2010b) iTooling™: Infrastructure for iAdaptiveTM

Concurrency

Carl Hewitt (editor). Inconsistency Robustness 1011 Stanford University.

2011.
Carl Hewitt, Erik Meijer, and Clemens Szyperski “The Actor Model

(everything you wanted to know, but were afraid to ask)”
http://channel9.msdn.com/Shows/Going+Deep/Hewitt-Meijer-and-
Szyperski-The-Actor-Model-everything-you-wanted-to-know-but-were-
afraid-to-ask Microsoft Channel 9. April 9, 2012.

Carl Hewitt. “Health Information Systems
Technologies” http://ee380.stanford.edu/cgi-
bin/videologger.php?target=120606-ee380-300.asx
Slides for this video: http://HIST.carlhewitt.info Stanford CS
Colloquium. June 6, 2012.

Carl Hewitt. What is computation? Actor Model versus Turing's Model in “A

Computable Universe: Understanding Computation & Exploring Nature as

Computation”. edited by Hector Zenil. World Scientific Publishing

Company. 2012.

Tony Hoare Quick sort Computer Journal 5 (1) 1962.

Tony Hoare Monitors: An Operating System Structuring Concept CACM.

October 1974.

Tony Hoare. Communicating sequential processes CACM. August 1978.

Tony Hoare. Communicating Sequential Processes Prentice Hall. 1985.

Tony Hoare. Null References: The Billion Dollar Mistake. QCon. August

25, 2009.

W. Horwat, Andrew Chien, and William Dally. Experience with CST:

Programming and Implementation PLDI. 1989.
Anthony Hunter. Reasoning with Contradictory Information using Quasi-

classical Logic Journal of Logic and Computation. Vol. 10 No. 5. 2000.
M. Jammer The EPR Problem in Its Historical Development in Symposium

on the Foundations of Modern Physics: 50 years of the Einstein-Podolsky-

Rosen Gedankenexperiment, edited by P. Lahti and P. Mittelstaedt. World

Scientific. Singapore. 1985.

Simon Peyton Jones, Andrew Gordon, Sigbjorn Finne. Concurrent Haskell,

POPL’96.

Ken Kahn. A Computational Theory of Animation MIT EECS Doctoral

Dissertation. August 1979.
Alan Kay. “Personal Computing” in Meeting on 20 Years of Computing

Science Instituto di Elaborazione della Informazione, Pisa, Italy. 1975.
http://www.mprove.de/diplom/gui/Kay75.pdf

Frederick Knabe A Distributed Protocol for Channel-Based Communication

with Choice PARLE’92.

Bill Kornfeld and Carl Hewitt. The Scientific Community Metaphor IEEE

Transactions on Systems, Man, and Cybernetics. January 1981.

http://arxiv.org/abs/1008.1459
http://knol.google.com/k/inconsistency-robustness/inconsistency-robustness-2011/1sx0o2as3axsf/1
http://channel9.msdn.com/Shows/Going+Deep/Hewitt-Meijer-and-Szyperski-The-Actor-Model-everything-you-wanted-to-know-but-were-afraid-to-ask
http://channel9.msdn.com/Shows/Going+Deep/Hewitt-Meijer-and-Szyperski-The-Actor-Model-everything-you-wanted-to-know-but-were-afraid-to-ask
http://channel9.msdn.com/Shows/Going+Deep/Hewitt-Meijer-and-Szyperski-The-Actor-Model-everything-you-wanted-to-know-but-were-afraid-to-ask
http://channel9.msdn.com/Shows/Going+Deep/Hewitt-Meijer-and-Szyperski-The-Actor-Model-everything-you-wanted-to-know-but-were-afraid-to-ask
http://channel9.msdn.com/Shows/Going+Deep/Hewitt-Meijer-and-Szyperski-The-Actor-Model-everything-you-wanted-to-know-but-were-afraid-to-ask
http://www.stanford.edu/class/ee380/Abstracts/110112.html
http://www.stanford.edu/class/ee380/Abstracts/110112.html
http://ee380.stanford.edu/cgi-bin/videologger.php?target=120606-ee380-300.asx
http://ee380.stanford.edu/cgi-bin/videologger.php?target=120606-ee380-300.asx
http://ee380.stanford.edu/cgi-bin/videologger.php?target=120606-ee380-300.asx
http://hist.carlhewitt.info/

29

Bill Kornfeld. Parallelism in Problem Solving MIT EECS Doctoral

Dissertation. August 1981.

Robert Kowalski. A proof procedure using connection graphs JACM.

October 1975.

Robert Kowalski Algorithm = Logic + Control CACM. July 1979.

Robert Kowalski. Response to questionnaire Special Issue on Knowledge

Representation. SIGART Newsletter. February 1980.

Robert Kowalski (1988a) The Early Years of Logic Programming CACM.

January 1988.

Robert Kowalski (1988b) Logic-based Open Systems Representation and

Reasoning. Stuttgart Conference Workshop on Discourse Representation,

Dialogue tableaux and Logic Programming. 1988.
Edya Ladan-Mozes and Nir Shavit. An Optimistic Approach to Lock-Free

FIFO Queues Distributed Computing. Sprinter. 2004.
Leslie Lamport How to make a multiprocessor computer that correctly

executes multiprocess programs IEEE Transactions on Computers. 1979.
Peter Landin. A Generalization of Jumps and Labels UNIVAC Systems

Programming Research Report. August 1965. (Reprinted in Higher Order
and Symbolic Computation. 1998)

Peter Landin A correspondence between ALGOL 60 and Church’s lambda

notation CACM. August 1965.

Edward Lee and Stephen Neuendorffer Classes and Subclasses in Actor-

Oriented Design. Conference on Formal Methods and Models for

Codesign (MEMOCODE). June 2004.

Steven Levy Hackers: Heroes of the Computer Revolution Doubleday. 1984.

Henry Lieberman. An Object-Oriented Simulator for the Apiary Conference

of the American Association for Artificial Intelligence, Washington, D. C.,

August 1983

Henry Lieberman. Thinking About Lots of Things at Once without Getting

Confused: Parallelism in Act 1 MIT AI memo 626. May 1981.

Henry Lieberman. A Preview of Act 1 MIT AI memo 625. June 1981.

Henry Lieberman and Carl Hewitt. A real Time Garbage Collector Based on

the Lifetimes of Objects CACM June 1983.

Barbara Liskov and Liuba Shrira Promises: Linguistic Support for Efficient

Asynchronous Procedure Calls SIGPLAN’88.

Barbara Liskov and Jeannette Wing . A behavioral notion of subtyping,

TOPLAS, November 1994.

Carl Manning. Traveler: the Actor observatory ECOOP 1987. Also appears

in Lecture Notes in Computer Science, vol. 276.

Carl Manning. Acore: The Design of a Core Actor Language and its Compile

Master Thesis. MIT EECS. May 1987.

Satoshi Matsuoka and Aki Yonezawa. Analysis of Inheritance Anomaly in

Object-Oriented Concurrent Programming Languages Research

Directions in Concurrent Object-Oriented Programming MIT Press. 1993.

30

John McCarthy Programs with common sense Symposium on Mechanization
of Thought Processes. National Physical Laboratory, UK. Teddington,
England. 1958.

John McCarthy. A Basis for a Mathematical Theory of Computation Western
Joint Computer Conference. 1961.

John McCarthy, Paul Abrahams, Daniel Edwards, Timothy Hart, and
Michael Levin. Lisp 1.5 Programmer’s Manual MIT Computation Center
and Research Laboratory of Electronics. 1962.

John McCarthy. Situations, actions and causal laws Technical Report Memo

2, Stanford University Artificial Intelligence Laboratory. 1963.

John McCarthy and Patrick Hayes. Some Philosophical Problems from the

Standpoint of Artificial Intelligence Machine Intelligence 4. Edinburgh

University Press. 1969.

Alexandre Miquel. A strongly normalising Curry-Howard correspondence

for IZF set theory in Computer science Logic Springer. 2003

Giuseppe Milicia and Vladimiro Sassone. The Inheritance Anomaly: Ten

Years After SAC. Nicosia, Cyprus. March 2004.

Mark S. Miller Robust Composition: Towards a Unified Approach to Access

Control and Concurrency Control Doctoral Dissertation. John Hopkins.

2006.

Mark S. Miller et. al. Bringing Object-orientation to Security Programming.

YouTube. November 3, 2011.
George Milne and Robin Milner. “Concurrent processes and their syntax”

JACM. April, 1979.
Robert Milne and Christopher Strachey. A Theory of Programming

Language Semantics Chapman and Hall. 1976.
Robin Milner. Logic for Computable Functions: description of a machine

implementation. Stanford AI Memo 169. May 1972
Robin Milner Processes: A Mathematical Model of Computing Agents

Proceedings of Bristol Logic Colloquium. 1973.
Robin Milner Elements of interaction: Turing award lecture CACM. January

1993.
Marvin Minsky (ed.) Semantic Information Processing MIT Press. 1968.
Eugenio Moggi Computational lambda-calculus and monads IEEE

Symposium on Logic in Computer Science. Asilomar, California, June
1989.

Allen Newell and Herbert Simon. The Logic Theory Machine: A Complex
Information Processing System. Rand Technical Report P-868. June 15,
1956

Carl Petri. Kommunikation mit Automate Ph. D. Thesis. University of Bonn.
1962.

Simon Peyton Jones, Alastair Reid, Fergus Henderson, Tony Hoare, and
Simon Marlow. A semantics for imprecise exceptions Conference on
Programming Language Design and Implementation. 1999.

Paul Philips. We're Doing It all Wrong Pacific Northwest Scala 2013.
Gordon Plotkin. A powerdomain construction SIAM Journal of Computing.

September 1976.

31

George Polya (1957) Mathematical Discovery: On Understanding, Learning
and Teaching Problem Solving Combined Edition Wiley. 1981.

Karl Popper (1935, 1963) Conjectures and Refutations: The Growth of
Scientific Knowledge Routledge. 2002.

John Reppy, Claudio Russo, and Yingqi Xiao Parallel Concurrent ML
ICFP’09.

John Reynolds. Definitional interpreters for higher order programming
languages ACM Conference Proceedings. 1972.

Bill Roscoe. The Theory and Practice of Concurrency Prentice-Hall. Revised
2005.

Kenneth Ross, Yehoshua Sagiv. Monotonic aggregation in deductive
databases. Principles of Distributed Systems. June 1992Dana Scott and
Christopher Strachey. Toward a mathematical semantics for computer
languages Oxford Programming Research Group Technical Monograph.
PRG-6. 1971

Charles Seitz. The Cosmic Cube CACM. Jan. 1985.

Peter Sewell, et. al. x86-TSO: A Rigorous and Usable Programmer’s Model

for x86 Microprocessors CACM. July 2010.

Michael Smyth. Power domains Journal of Computer and System Sciences.

1978.

Guy Steele, Jr. Lambda: The Ultimate Declarative MIT AI Memo 379.

November 1976.

Guy Steele, Jr. Debunking the 'Expensive Procedure Call' Myth, or,

Procedure Call Implementations Considered Harmful, or, Lambda: The

Ultimate GOTO. MIT AI Lab Memo 443. October 1977.

Gunther Stent. Prematurity and Uniqueness in Scientific Discovery Scientific

American. December, 1972.

Bjarrne Stroustrup Programming Languages — C++ ISO N2800. October

10, 2008.

Gerry Sussman and Guy Steele Scheme: An Interpreter for Extended Lambda

Calculus AI Memo 349. December, 1975.

David Taenzer, Murthy Ganti, and Sunil Podar, Problems in Object-

Oriented Software Reuse ECOOP'89.

Daniel Theriault. A Primer for the Act-1 Language MIT AI memo 672. April

1982.

Daniel Theriault. Issues in the Design and Implementation of Act 2 MIT AI

technical report 728. June 1983.
Hayo Thielecke An Introduction to Landin’s“A Generalization of Jumps and

Labels” Higher-Order and Symbolic Computation. 1998.
Dave Thomas and Brian Barry. Using Active Objects for Structuring Service

Oriented Architectures: Anthropomorphic Programming with Actors
Journal of Object Technology. July-August 2004.

Kazunori Ueda A Pure Meta-Interpreter for Flat GHC, A Concurrent

Constraint Language Computational Logic: Logic Programming and

Beyond. Springer. 2002.

32

Darrell Woelk. Developing InfoSleuth Agents Using Rosette: An Actor Based

Language Proceedings of the CIKM '95 Workshop on Intelligent

Information Agents. 1995.

Akinori Yonezawa, Ed. ABCL: An Object-Oriented Concurrent System MIT

Press. 1990.

Aki Yonezawa Specification and Verification Techniques for Parallel

Programs Based on Message Passing Semantics MIT EECS Doctoral

Dissertation. December 1977.

Hadasa Zuckerman and Joshua Lederberg. Postmature Scientific Discovery?

Nature. December, 1986.

33

Appendix 1. Extreme ActorScript

Parameterized Types, i.e., ,

Parameterized Types are specialized

using other types delimited by “” and

“”:
Actor DoubleaType⊒Arithmetic

 [x:aType]:aType → aType[x+x]§▮
 // addition for aType that is Arithmetic

The formal syntax of parameterized types is in the following end note: 36 .

Type Discrimination, i.e., Discrimination and ↓

A discrimination definition is a type of alternatives differentiated by type

using “Discrimination” followed by a type name, “between”, types separated

using “,” terminated by “▮”.

A discriminate can constructed using the discrimination followed by “[”, an

expression for the discriminant and “]”,

A discriminate can be projected as follows:

 In an expression, by using an expression for a discrimination

followed by “↓” and the type to be projected. Also, a discrimination

can be tested if it holds a discrimination of a certain type with an

expression for the discrimination followed by “↓?” and the type to be

tested.

 In a pattern, by using a pattern followed by “↓”and the type to be

projected

For example, consider the following definition:

 Discrimination IntegerOrString between Integer, String▮
 Consequently,

 (IntegerOrString[3])↓Integer▮ is equivalent to 3▮.
 (IntegerOrString["a"]) ↓Integer▮ throws an exception because

String is not the same as the discriminant Integer.

 (IntegerOrString[3]) ↓?Integer▮ is equivalent to True▮.
 The pattern x↓String matches IntegerOrString["a"] and binds x to

"a".

 The expression below is equivalent to 2▮:

IntegerOrString[3] � y↓Integer ⦂ y-1⍌
 x↓String ⦂ x ⍰▮

Symbols

→ ↦ ▮

type
 parameter

34

The formal syntax of type discrimination is in following end note: 37.

Structures

A structure is an Actor used in pattern matching that can be defined using an

identifier by “[”, parts separated by “,” and “]”.

Discrimination can be used with structures. For example, a TrieaType is a

discrimination of TerminalaType and TrieForkaType:

Discrimination TrieaType between
 TerminalaType,
 TrieForkaType▮

where the structure Terminal can be defined as follows:
Structure TerminalaType[aType]▮

For example,

 The expression Let xi ← 3｡ TerminalInteger[x]▮ is equivalent to

TerminalInteger[3]▮
 The pattern TerminalInteger[x] matches TerminalInteger[3]

and binds x to 3.

The structure TrieFork can be defined as follows:

 Structure TrieForkaType[left:TrieaType, right:TrieaType]
 flip[]:TrieForkaType → // flip the branches

 TrieForkaType[right, left]▮

i x is of type Integer

35

For example,

 The expression

 Let x ← 3｡

 TrieFork[Terminal[x], Terminal[x+1]]▮38

is equivalent to the following:

 TrieFork[Trie[Terminal[5], Trie[Terminal[6]]▮

 The pattern TrieForkInteger[x, y] matches

 TrieFork[Trie[Terminal[5], Trie[Terminal[6]]▮

and binds x to Terminal[5] and y to Terminal[6].

Below is the definition of a procedure that computes a list that is the “fringe”

of the terminals of a Trie.i

Actor TrieFringeaType

 [aTrie:TrieaType]:[aType*] →
 aTrie �
 TerminalaType[x] ⦂ [x] ⍌
 TrieForkaType[left, right] ⦂
 [⩛TrieFringe∎[left], ⩛TrieFringeaType∎[right]] ⍰▮39

The above procedure can be used to define TrieSameFringe? that determines

if two lists have the same fringe [Hewitt 1972]:

 Actor TrieSameFringe?aType
 [left:TrieaType, right:TrieaType]:Boolean →
 // test if two Tries have the same fringe

 TrieFringeaType∎[left] = TrieFringeaType∎[right]▮40

The formal syntax of structures is in the following end note: 41

i See definition of Trie above in this article.

36

Nullable

Distinguishing a special case to indicate the absence of an Actor of a type
is a long-time issue [Hoare 2009].

In an expression,

 “Nullable” followed by an Expression is a non-null nullable.
 “Null” followed by a type is the nullable that is the null of that

type.
 “⦾” followed by an expression for a nullable is the Actor in the

nullable or throws an exception if an only if the nullable is null.

For example,

 Nullable 3 is of type NullableInteger
 3▮ is equivalent to ⦾Nullable 3▮

 ⦾Null Integer▮ throws an exception

In a pattern,

 “⦾” followed by a pattern matches a nullable if and only if it is
non-null and the pattern matches the Actor in the nullable.

 “Null” followed by a type only matches the null of the type.

For example,

 The pattern ⦾x matches Nullable 3, binding x to 3

The formal syntax of nullables is in following end note: 42.

37

Processing Exceptions, i.e., Try catch� ⦂ , ⦂ ⍰ and Try cleanup

It is useful to be able to catch exceptions. The following illustration returns

the string “This is a test.”:

 Try Throw Exception["This is a test."] catch�
 Exception[aString] ⦂ aString ⍰▮

The following illustration performs Reset∎[] and then rethrows

Exception["This is another test."]:
 Try Throw Exception["This is another test."] cleanup Reset∎[]▮

The formal syntax of processing exceptions is in the following end note: 43.

Runtime Requirements, i.e., Preconditions and postcondition

A runtime requirement throws exception an exception if does not hold.

For example, the following expression throws an exception that the

requirement x0 doesn't hold:

 Let x ← –1｡

 Preconditions x0｡ // commentary for error checking
 SquareRoot∎[x]▮

Post conditions can be tested using a procedure. For example, the following

expression throws an exception that postcondition failed because square root

of 2 is not less than 1:

 SquareRoot∎[2] postcondition [y:Float]:Boolean → y<1▮

The formal syntax requirements is in the following end note: 44.

38

Multiple implementations of a type

The interface type Complex is defined as follows:

 Interface Complex with ⟦Real⟧ |••> Float,
 ⟦Imaginary⟧ |••> Float,
 ⟦Magnitude⟧ |••> Float,
 ⟦Angle⟧ |••> Degrees▮

Cartesian Actors that implement Complex can be defined as follows:

Structure Cartesian[myReal:Float default 0, myImaginary:Float default 0]
 implements Complex using
 ⟦real⟧:Float → myReal¶
 ⟦imaginary⟧:Float → myImaginary¶
 ⟦magnitude⟧:Float →

 SquareRoot∎[myRealmyReal + myImaginarymyImaginary]¶
 ⟦angle⟧:Degrees →

 Let theta ← Arcsine∎[myImaginary/∎∎⟦magnitude⟧]｡

 myReal>0 �

 True ⦂ theta⍌
 False ⦂ myImaginary >0 �
 True ⦂180o−theta⍌45
 False ⦂180o+theta ⍰ ⍰§▮

Consequently,

 Cartesian[1, 2]∎⟦real⟧▮ is equivalent to 1▮
 Cartesian[3, 4]∎⟦magnitude⟧▮ is equivalent to 5.0▮

For example:
 Actor Times
 [u:Complex, v:Complex]:Complex →
 Cartesian[u∎⟦real⟧v∎⟦real⟧ – u∎⟦imaginary⟧v∎⟦imaginary⟧,
 u∎⟦imaginary⟧v∎⟦real⟧ + u∎⟦real⟧v∎⟦imaginary⟧]▮46

 Actor Equivalent
 [u:Complex, v:Complex]:Boolean →
 myReal= u∎⟦real⟧= v∎⟦real⟧ u∎⟦imaginary⟧=v∎⟦imaginary⟧▮

39

Arguments with named fields, i.e., ⌸ and :⌸

Polar Actors that implement

Complex with named arguments

angle and magnitude can be

defined as follows:

Structure Polar[angle⌸ _:Degrees default 0o,
 // angle of type Degrees is a named argument of Polar with

 // default 0o
 magnitude⌸ _:Length default 1]
 implements Complex using
 ⟦real⟧:Float → magnitudeSine∎[angle]¶
 ⟦imaginary⟧:Float → magnitudeCosine∎[angle]§▮

Consequently,

 Polar[]∎⟦real⟧▮ is equivalent to 1▮

For example:
 Actor Times
 [Polar[angle⌸ anAngle, magnitude⌸ aMagnitude],
 Polar[angle⌸ anotherAngle, magnitude⌸ anotherMagnitude]]
 :Complex →
 Polar[angle⌸ anAngle+anotherAngle,
 magnitude⌸ aMagnitudeanotherMagnitude]▮47

The formal syntax of named arguments is in the following end note: 48.

Symbols

→ ⌸

⍰ ¶ § ▮

keyword
argument

40

Lists, i.e., [] using Spread, i.e., [⩛]

The prefix operator "⩛" can be used to spread the elements of a list. For

example

 [1, ⩛[2, 3], 4] is equivalent to [1, 2, 3, 4].
 [[1, 2], ⩛[3, 4]] is equivalent to [[1, 2], 3, 4]
 If y is [5, 6], then [1, 2, y, ⩛y]▮ is equivalent [1, 2, [5, 6], 5, 6]▮

The formal syntax of list expressions is in the following end note: 49.

Within a list, “⩛”is used to match the pattern that follows with the list zero or

more elements. For example:

 [[x, 2], ⩛y] is a pattern that matches [[1, 2], 3, 4] and binds x to 1 and

y to [3, 4]

 if y is [3, 4] then [[1, 2], ⩛⌕y] matches [[1, 2], 3, 4]
 [⩛x, ⩛y] is an illegal pattern because it can match ambiguously

The formal syntax of patterns is in the following end note: 50.

41

As an example of the use of

spread, the following procedure

returns every other element of a

list beginning with the first:

Actor AlternateElementsaType

 [aList:[aType*]]:[aType*] →
 aList �
 [] ⦂ [] ⍌
 [anElement] ⦂ [anElement] ⍌
 [firstElement, secondElement] ⦂ [firstElement] ⍌
 else ⦂
 [firstElement, secondElement, ⩛remainingElements] ⦂

 [firstElement, ⩛AlternateElements∎[remainingElements]] ⍰▮51

Consequently,

 AlternateElementsInteger∎[[]]▮ is equivalent to []:[Integer*]▮
 AlternateElementsInteger∎[[3]]▮ is equivalent to

[3]:[Integer*]▮
 AlternateElementsInteger∎[[3, 4]]▮ is equivalent to

[3]:[Integer*]▮
 AlternateElementsInteger∎[[3, 4, 5]]▮ is equivalent to

[3, 6]:[Integer*]▮

Sets, i.e., { } using spreading, i.e., { ⩛ }

A set is unordered with duplicates removed.

The formal syntax of sets is in the following end note: 52.

Multisets, i.e., ⦃⦄ using spreading, i.e., ⦃ ⩛ ⦄

A set is unordered with duplicates allowed.

The formal syntax of multisets is in the following end note: 53.

Symbols

� ⦂ ⍌ ⩛

⍰ ▮

spread

42

Maps, i.e., Map{ }

A map is composed of pairs. For example Map{[3, “a”], [“x”, “b”]}▮

Pairs in maps are unordered, e.g., Map{[3, “a”], [“x”, “b”]}▮ is equivalent to

Map{[“x”, “b”], [3, “a”]}▮.

However, the expression Map{[“y”, “b”], [“y”, “a”]} throws an exception

because a map is univalent.

As another example, for the contact records of 1.1 billion people, the

following can compute a list of pairs from age to average number of social

contacts of US citizens sorted by increasing age making use of the

following:

 Structure ContactRecord[yearsOld ⌸ _:Age,
 numberOfContacts ⌸ _:Integer,
 citizenship ⌸ _:String]▮

[ContactRecord*] has

 filter[[ContactRecord] |••> Boolean]
 |••> {ContactRecord*},

 collect [[ContactRecord] |••> [Age, Integer]]
 |••> MapAge, {Integer*}▮

MapAge, {Integer*} has
 reduceRange[[{Integer*}] |••> Float]
 |••> MapAge, Float▮

{Number*} has: average[] |••> Float▮

MapAge, Float has
 sort[[Age, Age] |••> Boolean]
 |••> [Age, Float]▮

43

The program is a follows:54

Actor AgeWithAverageOfNumberOfContactsSortedByAge

 [records:{ContactRecord*}]:SortedAge →
 records∎filter [[aRecord:ContactRecord]
 ••> aRecord∎⟦citizenship⟧ �
 “US” ⦂ True ⍌
 else ⦂ False ⍰]
 ∎collect [[aRecord:ContactRecord]
 ••> [aRecord∎⟦yearsOld⟧,
 aRecord∎⟦numberOfContacts⟧]
 ∎reduceRange
 [[aSetOfNumberOfContacts:{Integer*}]
 ••> aSetOfNumberOfContacts∎average[]]
 ∎sort[LessThanOrEqualAge]▮

The formal syntax of maps is in the following end note: 55.

Futures, i.e., Future and ⦾

A future [Baker and Hewitt 1977] for an expression can be created in

ActorScript by using “Future” preceding the expression. The operator “⦾”

can be used to "reduce" a future by returning an Actor

computed by the future or throwing an exception. For

example, the following expression is equivalent to

Factorial∎[9999]▮

 Let aFuturei ←Future Factorial∎[9999]｡

 ⦾aFuture▮ // do not proceed until Factorial∎[9999] has
 // been reducedii

Futures allow execution of expressions to be adaptively executed indefinitely

into the future.56 For example, the following returns a future

 Let aFuture ← Future Factorial∎[9999],
 g ← ([afuture:FutureInteger]:Integer → 5)｡
 // g returns 5 regardless of its argument

 g∎[aFuture])▮
 // return 5 regardless of whether Factorial∎[9999] has completediii

i f is of type FutureInteger

ii i.e. returned or threw an exception

iii i.e. Factorial∎[1000] might not have returned or thrown an exception when 5 is

returned. The future f will be garbage collected.

Symbols

← ⦾

▮

reduce

44

Note that the following are all equivalent:

 ⦾Future (4+Factorial∎[9999])▮
 4+⦾Future Factorial∎[9999]▮

 4+□Factorial∎[9999]▮

 □(4+Factorial∎[9999])▮

Also □Factorial∎[9999]+ □Fibonacci∎[9000]▮ is equivalent to the following:
 Let n ←□Factorial∎[9999],
 m ←□Fibonacci∎[9000]｡
 n+m▮ // return Factorial∎[9999]+Fibonacci∎[9000]

In the following example, Factorial∎[9999] might never be executed if

readCharacter∎[] returns the character 'x':

 Let aFuture ← Future Factorial∎[9999]｡
 readCharacter∎[] �
 'x' ⦂ 1⍌ // readCharacter∎[] returned 'x'

 else ⦂ 1+ ⦾aFuture ⍰▮
 // readCharacter∎[] returned something other than 'x'

In the above, program resolution of aFuture is highlighted in yellow.

The procedure Size below can compute the size of a FutureListString57

concurrently with its being created:

 Actor Size
 [aFutureList:FutureListString]:Integer →

 aFutureList �
 [] ⦂ 0⍌
 [first, ⩛rest] ⦂ first∎⟦length⟧ + Size∎[⦾rest] ⍰▮58

 // reducing a FutureList reduces only the head

Below is the definition of a procedure that postpones computation of a

FutureList that is the “fringe” of a Trie.i

 Actor TrieFringeaType

 [aTrie:TrieaType]:FutureListaType →

 aTrie �
 TerminalaType[x] ⦂ [x] ⍌
 ForkTrieaType[left, right] ⦂
 [⩛TrieFringe∎[left], ⩛Postpone59 TrieFringeaType∎[right]] ⍰▮60

The above procedure can be used to define SameFringe? that determines if

two lists have the same fringe [Hewitt 1972]:

i See definition of Tree above in this article.

45

 Actor TrieSameFringe?aType
 [aTrie:TrieaType, anotherTrie:TrieaType]:Boolean →
 // test if two Tries have the same fringe

 TrieFringeaType∎[aTrie] = TrieFringeaType∎[anotherTrie]▮
 // = reduces futures in the fringes

The procedure below given a list of futures returns a FutureList with the same

elements reduced:

Actor FutureListOfReducedElementsaType

 [aListOfFutures:[FutureaType*]]:FutureListaType →
 aListOfFutures �
 [] ⦂ [] ⍌

 [aFirst, ⩛aRest] ⦂
 [⦾aFirst,
 ⩛Future FutureListOfReducedElementsaType∎[⦾aRest]] ⍰▮61

The formal syntax of futures is in the following end note: 62.

Language extension, i.e., ⦅ ⦆

The following is an illustration of language extension that illustrates

postponed execution:63

Actor ⦅“Postpone” anExpression:Expression aType⦆
 :PostponeaType
 implements ExpressionFutureaType using

eval[e:Environment]:FutureaType →
 Future Actor implements aType using
 aMessage → // aMessage received

 Let postponed ← anExpression∎eval[e]｡
 postponed∎aMessage
 // return result of sending aMessage to postponed

 become postponed§▮

 // become the Actor postponed for

 // the next message receivedi

The formal syntax of language extension is in the following end note: 64.

i this is allowed because postponed is of type aType

46

In-line Recursion (e.g., looping) , i.e. ∎[← , ←] ≜

Inline recursion (often called looping) is accomplished using an initial

invocation with identifiers initialized using “←” followed by

“≜” and the body.i

Below is an illustration of a loop Factorial with two loop identifiers n and

accumulation. The loop starts with n equals 9 and value equal 1. The loop is

iterated by a call to Factorial with the loop identifiers as arguments.

Factorial∎[n ←9, accumulation ←1] ≜
 n=1 � True ⦂ accumulation ⍌
 False ⦂ Factorial∎[n–1, n accumulation] ⍰▮ii

The above compiles as a loop because the call to Factorial in the body is a “tail

call” [Hewitt 1970, 1976; Steele 1977].

The following expression returns a list of ten times successively calling the

parameterless procedure Piii (of type []↦ Integer):

FirstTenSequentially∎[n ←10] ≜
 n=1 � True ⦂ [P∎[]] ⍌
 False ⦂ Let x ← P∎[]｡

 [x, ⩛FirstTenSequentially∎[n–1]] ⍰▮65

The following returns one of the results of concurrently calling the procedure

Piv (which has no arguments and returns Integer) ten times with no

arguments:

 OneOfTen∎[n ←10] ≜
 n=1 � True ⦂ P∎[] ⍌

 False ⦂ □P∎[] either □OneOfTen∎[n–1]] ⍰▮66

The formal syntax of looping is in the following end note: 67.

i This construct takes the place of while, for, etc. loops used in other programming

languages.
ii equivalent to the following:

 Factorial∎[n:Integer ←9, accumulation:Integer ←1]:Integer ≜
 n=1 � True ⦂ accumulation ⍌

 False ⦂ Factorial∎[n–1, n accumulation] ⍰▮
iii The procedure P may be indeterminate, i.e., return different results on successive

calls.
iv The procedure P may be indeterminate, i.e., return different results on different

calls.

47

Strings

Strings are Actors that can be expressed using ““”, string arguments, and “””.

For example,

 “"1", "23", "4"”▮ is equivalent to "1234"▮.

 “"1", "2", "34", “56”]▮ is equivalent to "123456"▮.

 “ “"1", "2"”, "34"”▮ is equivalent to "1234"▮.

 “ ”▮ is equivalent to ""▮.

String patterns are delimited by ““” and “””. Within a string pattern, “⩛” is

used to match the pattern that follows with the list zero or more characters.

For example:

 “x, "2", ⩛y] is a pattern that matches "1234" and binds x to "1" and
y to "34".

 “"1", "2", ⩛⌕y” is a pattern that only matches “1234” if y is "34".
 “⩛x, ⩛y” is an illegal pattern because it can match ambiguously.

48

As an example of the use of spread, the following procedure reverses a

string:68

Actor Reverse

 [aString:String]:String

 aString �

 “ ” ⦂ “ ” ⍌
 “first, ⩛rest” ⦂ “⩛rest, first” ⍰▮

The formal syntax of string expressions is in the following end note: 69.

General Messaging, i.e., ∎ and ⨀

The syntax for general messaging is to use an expression for the recipient

followed by “∎” and an expression for the message.

For example, if anExpression is of type ExpressionInteger then,

 anExpression∎eval[anEnvironment]▮
is equivalent to the following:

 Let aMessage ← eval⨀ExpressionInteger[anEnvironment]｡
 anExpression∎aMessage▮

The formal syntax of general messaging is in the following end note: 70.

Symbols

� ⦂ ⍌ ⩛

⍰ ¶ § ▮

49

Atomic Operations, i.e. Atomic compare update updated notUpdated

For example, the following example implements a lockable that spins to

lock:71

Actor SpinLock[]
 locked ≔ False｡// initially unlocked

 implements Lockablei using

 lock[]:Void →

 Attempt∎[] ≜ // perform the loop Attempt as follows
 Atomic locked compare False update True �

 // attempt to atomically update locked from False to True

 updated ⦂ Preconditions locked=True｡
 // commentary for error checking:

 // locked must have contents True

 Void⍌ // if updated return Void

 notUpdated ⦂ Attempt∎[] ⍰¶ // if not updated, try again

 unLock[]:Void →
 Preconditions locked =True｡ // commentary for error checking:

 // locked must have contents True
 Void afterward locked ≔ False §▮ // reset locked to False

The formal syntax of atomic operations is in the following end note: 72.

i Interface Lockable with lock[]↦ Void,
 unLock[]↦ Void▮

Symbols

 → � ⍌ ⦂
⍰ ¶ § ▮

50

Enumerations, i.e., Enumeration of using Qualifiers, i.e., `

An enumeration definition provides symbolic names for alternatives using

“Enumeration” followed by the name of the enumeration, “of”, a list of

distinct identifiers terminated by “▮”.

For example,

 Enumeration DayName of Monday, Tuesday, Wednesday, Thursday,
 Friday, Saturday, Sunday▮

From the above definition, an enumerated day is available using a qualifier,
e.g., Monday⨀DayName. Qualifiers provide for namespaces.

The formal syntax of qualifiers is in the following end note: 73.

The procedure below computes the name of following day of the week given
the name of any day of the week:

UsingNamespace DayName▮
Actor FollowingDay
 [aDay:DayName]:DayName Actor
 aDay � Monday ⦂ Tuesday,
 Tuesday ⦂ Wednesday,
 Wednesday ⦂ Thursday,
 Thursday ⦂ Friday,
 Friday ⦂ Saturday,
 Saturday ⦂ Sunday,
 Sunday ⦂ Monday ⍰▮

The formal syntax of enumerations is in the following end note: 74.

Native types, e.g., JavaScript, JSON, Java, and XML

Object can be used to create JavaScript Objects. Also, Function can be used

to bind the reserved identifier This. For example, consider the following

ActorScript for creating a JavaScript object aRectangle (with length 3 and

width 4) and then computing its area 12:

 Let aRectanglei ← Object {"length": 3, "width": 4]},
 aFunction ← Function []→ This⟦"length"⟧ * This⟦"width"⟧｡

 Prep Rectangle⟦"area"⟧ ≔ aFunction｡
 aRectangle⟦"area"⟧∎[]▮

i aRectangle is of type Object`JavaScript

51

The setTimeout JavaScript object can be invoked with a callback as follows

that logs the string "later" after a time out of 1000:

 setTimeout⨀JavaScript∎[1000,
 Function []→
 console⨀JavaScript∎["log"]∎["later"]]▮

JSON is a restricted version of Object that allows only Booleans, numbers,

strings in objects and arrays.i

Native types can also be used from Java. For example, if s:String⨀Java,
then s∎substring[3, 5]ii is the substring of s from the 3rd to the 5th characters

inclusive.

Java types can be imported using Import, e.g.:

Namespace mynamespace▮
Import java.math.BigInteger▮
Import java.lang.Number▮

After the above, BigInteger∎new["123"]∎instanceof[Number]▮ is equivalent

to True▮.

The following notation is used for XML:75

XML <“PersonName”> <“First”>“Ole-Johan” </“First”>

 <“Last”> “Dahl”</“Last”> </“PersonName”>

and could print as:

<PersonName> <First> Ole-Johan </First>

 <Last> Dahl </Last> </PersonName>

XML Attributes are allowed so that the expression

XML <“Country” “capital”=“Paris”> “France” </“Country”>
and could print as:

<Country capital=“Paris”> France </Country>

i i.e. the following JavaScript types are not included in JSON: Date, Error, Regular

Expression, and Function.
ii substring is a method of the String class in Java

XML construction can be performed in the following ways using the append
operator:

 XML <“doc”> 1, 2, ⩛[3] </“doc”>]▮ is equivalent to XML <“doc”>1, 2,

3</“doc”>▮

 XML <“doc”>1, 2, ⩛[3], ⩛[4] </“doc”>]▮ is equivalent to XML <“doc”> 1, 2, 3,

4 </“doc”>▮

52

One-way messaging, e.g., ⊝, ↞, and ↠

One-way messaging is often used in hardware implementations.

Each one-way named-message send consists of an expression followed by

“↞”, a message name, and arguments delimited by “[” and “]”.

The following is a interface for a

customer that is used in

request/response message passing for

return type aType:76

e-way message send
Interface CustomeraType with
 return [aType] ↦ ⊝,
 throw[Exception] ↦ ⊝▮
For example, if aCustomer is of type CustomerInteger, then 3 can be

returned to aCustomer using aCustomer↞return[3].

The formal syntactic definition of one-way named-message sending is in the

end note: 77

Each one-way message handler implementation consists of a named-message

declaration pattern followed by “↠” and a body for the response which must

ultimately be “⊝” which denotes no response.

The formal syntactic definition of one-way named-message implementation

is in the following end note: 78

Symbols

 ↦
⊝

one-way
message send

53

The following is an implementation of an arithmetic logic unit that

implements jumpGreater and addJumpPositive one-way messages:

Actor ArithmeticLogicUnitaType[]
 implements ALUaType using
 jumpGreater[x:aType, y:aType,
 firstGreaterAddress:Address, elseAddress:Address]↠
 InstructionUnit↞Execute[(x>y) �
 True ⦂ firstGreaterAddress⍌
 False ⦂ elseAddress ⍰]¶
 addJumpPositive[x:aType, y:aType, sumLocation:LocationaType,
 positiveAddress:Address, elseAddress:Address]↠

 Let z ← (x+y)｡

 sumLocation �
 aVariableLocation:VariableLocationaTypei ⦂

 Prep VariableLocation∎store[z]｡

 // continue after acknowledgement of store
 (z >0) � True ⦂ InstructionUnit↞execute[positiveAddress] ⍌
 False ⦂ InstructionUnit↞execute[elseAddress] ⍰⍌
 aTemporaryLocation:TemporaryLocationaTypeii ⦂

 aTemporaryLocation↞write[z],
 // continue concurrently with processing write
 (z >0) � True ⦂ InstructionUnit↞execute[positiveAddress] ⍌
 False ⦂ InstructionUnit↞execute[elseAddress] ⍰ ⍰§▮

i VariableLocationaType has store[aType]↦ Void▮
ii TemporaryLocationaType has write[aType] ↦ ⊝▮

Symbols

 � ⦂ ⍌ ↞ ↠
⍰ ¶ § ▮

one-way
message receive

54

Using multiple other implementations , i.e., ⍠

This section presents an example of using multiple other
implementations such as the ones below:

Actor Male[aLength:Meter]
 ⟦length⟧:Meter → aLength§▮

Actor Human[aMagnitude:Year]
 ⟦magnitude⟧:Year → aMagnitude§▮

Boy below makes use of both the Male and Human implementations:

Actor Boy[aMagnitude:Meter, aLength:Year]

 uses Male[aMagnitude], Human[aLength]｡
 // uses implementations Male and Human79

 ⟦magnitude⟧:Meter → (⍠Male)∎⟦length⟧¶
 // using this Actor with Male interface
 ⟦length⟧:Year → (⍠Human)∎ ⟦magnitude⟧§▮

 // using this Actor with Human interface

For example,
 Boy[Meter[3], Year[4]]∎⟦magnitude⟧▮ is equivalent to Meter[3]▮

 Boy[Meter[3], Year[4]]∎ ⟦length⟧▮ is equivalent to Year[4]▮

55

Inconsistency Robust Logic Programs

Logic Programs80 can logically infer computational steps.

Forward Chaining

Forward chaining is performed using ⊢

Illustration of forward chaining:

⊢t Human[Socrates]▮

When ⊢t Human[x] → ⊢t Mortal[x]▮

 will result in asserting Mortal[Socrates] for theory t

Backward Chaining

Backward chaining is performed using ⊩

⦅“⊢”
Theory

 PropositionExpression ⦆

 Assert PropositionExpression for Theory.

⦅“When” “⊢”
Theory

 aProposition:Pattern “→” Expression ⦆

 When aProposition holds for Theory, evaluate Expression.

⦅“⊩”
Theory

 aGoal:Pattern “→” Expression ⦆

Set aGoal for Theory and when established evaluate Expression.

⦅“⊩”
Theory

 aGoal:Pattern ⦆:Expression
Set aGoal for Theory and return a list of assertions that satisfy the goal.

⦅“When” “⊩”
Theory

 aGoal:Pattern “→” Expression ⦆

 When there is a goal that matches aGoal for Theory, evaluate

Expression.

56

Illustration of backward chaining:

⊢t Human[Socrates]▮

When ⊩t Mortal[x] → (⊩t Human[⌕x] → ⊢t Mortal[x])▮
⊩t Mortal[Socrates]▮

will result in asserting Mortal[Socrates] for theory t.

SubArguments

This section explains how subargumentsi can be implemented in natural

deduction.

When ⊩s (psi ⊢t phi) →
 Let t’ ← Extension∎[t]｡
 ⊢t’ psi,
 ⊩t’ phi → ⊢s (psi ⊢t phi)▮

Note that the following hold for t’ because it is an extension of t:

 when ⊢t theta → ⊢t’ theta ▮

 when ⊩t’ theta → ⊩t theta ▮

i See appendix on Inconsistency Robust Natural Deduction.

57

Aggregation using Ground-Complete Predicates

Logic Programs in ActorScript are a further development of Planner. For example,

suppose there is a ground-complete predicate81 Link[aNode, anotherNode,
aCost] that is true exactly when there is a path from aNode to anotherNode

with aCost.

When ⊩ Path[aNode, aNode, aCost]→
 // when a goal is set for a cost between aNode and itself

 ⊢ aCost =0▮ // assert that the cost from a node to itself is 0

The following goal-driven Logic Program works forward from start to
find the cost to finish : 82

When ⊩ Path[start, finish, aCost]→

 ⊢ aCost =Minimum {nextCost + remainingCost
 | ⊨ Link[start, next≠start, nextCost],
 Path[next, finish, remainingCost]}▮
 // a cost from start to finish is the minimum of the set of the sum of the
 // cost for the next node after start and

 // the cost from that node to finish

The following goal-driven Logic Program works backward from finish to
find the cost from start :
When ⊩ Path[start, finish, aCost]→

 ⊢ aCost = Minimum {remainingCost + previousCost
 | ⊨ Link[previous≠finish, finish, previousCost],
 Path[start, previous, remainingCost]}▮
 // the cost from start to finish is the minimum of the set of the sum of the
 // cost for the previous node before finish and

 // the cost from start to that Node

Note that all of the above Logic Programs work together concurrently
providing information to each other.

start

finish

next

start

nextCost

finish

previous

previousCost

remainingCost

remainingCost

finish

finish

58

Appendix 2: Meta-circular definition of ActorScript

It might seem that a meta-circular definition is a strange way to define a

programming language. However, as shown in the references, concurrent

programming languages are not reducible to logic. Consequently, an

augmented meta-circular definition may be one of the best alternatives

available.

The message eval

John McCarthy is justly famous for Lisp. One of the more remarkable aspects

of Lisp was the definition of its interpreter (called Eval) in Lisp itself. The

exact meaning of Eval defined in terms of itself has been somewhat

mysterious since, on the face of it, the definition is circular.83

The basic idea is to send an expression an eval message with an environment

to instead of the Lisp approach of sending the procedure Eval the expression

and environment as arguments.

Constructi is the fundamental type for ActorScript programming language

constructs. ExpressionaType is an extension of Construct with an eval
message that has an environment with the bindings of program identifiers

and a message with an environment and cheese:

 Interface ExpressionaType extends Construct with
 eval[Environment]↦ aType,
 perform[Environment, CheeseQ]↦ aType▮

BasicExpressionaType is an implementation that performs the functionality

of leaving the cheese for expression being used as the continuation:

 Actor BasicExpressionaType[]
 perform[e:Environment, c:CheeseQ] →
 Try Let anActor ← ⍠ExpressionaType∎eval[e]｡
 Prep c∎leave[]｡
 anActor
 cleanup c∎leave[]§▮

The tokens ⦅ and ⦆ are used to delimit program syntax.

i Interface Construct▮

Actor ⦅anIdentifier:IdentifieraType⦆:Expression aType

 uses BasicExpressionaType[]
 partially implements ExpressionaType using

 eval[e:Environment]→ e∎lookup[anIdentifier]▮

59

The interface Type

The interface Type is defined as follows:

 Interface TyperecipientType⊒(Message↦returnType) with
 extension?[Type] |••> Boolean,
 has?[MethodSignature] |••> Boolean,
 send[recipientType, Message] ↦ returnType,
 // possible encryption of message
 return[returnType] ↦ Void,
 // possible decryption of returned Actor
 throw[Exception] ↦ Void,
 // possible decryption of thrown exception
 ⟦constructor⟧ |••> Procedure,
 ⟦sending⟧ |••> SendingTyperecipientType,
 ⟦receiving⟧ |••> ReceivingTypereturnType▮

SendingType is a restriction of Type that can be used only for sending:

Interface SendingTyperecipientType⊒(Message↦returnType)

 restricts TyperecipientType⊒(Message↦returnType) using

 send[recipientType, Message] ↦ returnType]▮

ReceivingType is a restriction of Type that can be used only for receiving:

Interface ReceivingType recipientType⊒(Message↦returnType)

 restricts TyperecipientType⊒(Message↦returnType) using

 return[returnType] ↦ Void,
 throw[Exception] ↦ Void▮

Actor ⦅anotherType:Type anotherType

 “⊒” aType:Type aType⦆:Expression Boolean

 uses BasicExpressionaType[]
 partially implements ExpressionBoolean using
 eval[e:Environment]:Boolean →
 (anotherType ∎eval[e])∎extension?[aType∎eval[e]]▮

Actor ⦅aType:Type

 “has?” aSignature:Signatture ⦆:Expression Boolean

 uses BasicExpressionaType[]
 partially implements ExpressionBoolean using
 eval[e:Environment]:Boolean →
 (aType ∎eval[e])∎has?[aSignature∎eval[e]]▮

60

Interface CastableTypefromType, toType extends Type with
 up[fromType]↦ toType,
 down[fromType]↦ toType,

 down?[fromType]↦ Boolean▮

Actor SimpleCastableTypefromType, toType[]
 uses FundamentalType[]
 partially reimplements CastableTypefromType, toType using
 up[anActor:fromType]:toType → Throw IllegalUpcast[]¶
 down[anActor:fromType]:toType → Throw IllegalDowncast[]¶
 down?[anActor: fromType]:Boolean →
 Throw IllegalDowncastQuery[]§

Interface RestrictionTypeaType extends Type▮

Actor ⦅anExpression:Expression fromType

 “↑” castExpression:Type toType⦆:Up toType

 uses BasicExpressiontoType[]
 partially implements ExpressiontoType using
 eval[e:Environment]:toType →
 castExpression∎eval[e] �
 aRestrictionType↓RestrictionType ⦂
 aRestrictionType∎up[anExpression∎eval[e]] ⍌
 else ⦂

 (fromType↓CastableTypefromType, toType)
 ∎up[anExpression∎eval[e]] ⍰▮

Actor ⦅anExpression:Expression fromType

 “↓” castExpression:Type toType⦆:Down toType

 uses BasicExpressiontoType[]
 partially implements ExpressiontoType using
 eval[e:Environment]:toType →
 ((castExpression∎eval[e])↓CastableTypefromType, toType)
 ∎down[anExpression∎eval[e]]▮

61

Type Discrimination

Actor ⦅anExpression:Expression fromType

 “↓?” castExpression:Type toType⦆
 :DownQuery Boolean

 uses BasicExpressionfromType[]
 partially implements ExpressionBoolean using
 eval[e:Environment]:Boolean →
 ((castExpression∎eval[e])↓CastableTypefromType, toType)
 ∎down?[anExpression∎eval[e]]▮

Actor ⦅“Discrimination” aDiscriminationType “between”
 typeExpressions:Types “▮”⦆:Definition
 Actor implements Definition using
 eval[e:Environment]:Environment →
 e∎bind[aDiscriminationType,

 SimpleDiscrimination[{⩛typeExpressions∎eval[e]}]]▮

Actor SimpleDiscrimination[types:{Type*}]
 [aDiscriminant:aType∊types]:InstanceDiscriminationType →
 SimpleInstanceDiscriminationTypeaType[aDiscriminant]

Actor SimpleInstanceDiscriminationTypeaType[aDiscriminant:aType]
 extends InstanceDiscriminationType

 uses SimpleCastableTypeInstanceDiscriminationTypeaType,
 aType[]
 partially reimplements
 CastableTypeInstanceDiscriminationTypeaType,
 aType using
 down[anActor:InstanceDiscriminationTypeaType]:aType →
 anActor �

 ⍠CastableTypeInstanceDiscriminationTypeaType,
 aType⦂
 aDiscriminant ⍌

 else ⦂ Throw IllegalDowncast[]¶

 down?[anActor:InstanceDiscriminationTypeaType]
 :Boolean→
 anActor �

 ⍠CastableTypeInstanceDiscriminationTypeaType,
 aType ⦂
 True ⍌

 else ⦂ False ⍰§▮

62

Type extends

Actor ⦅“Actor” anExtensionType
 “extends” typeExpression:Type aType “▮”⦆:Definition
 Actor implements Definition using
 eval[e:Environment]:Environment →
 e∎bind[anExtensionType,
 SimpleExtensionTypeanExtensionType,
 typeExpression∎eval[e]]▮

Actor SimpleExtensionTypeaType, extendedFrom

 extends ExtensionType

 uses SimpleCastableTypeaType, extendedFrom[]
 partially reimplements CastableTypeaType,
 extendedFrom using
 up[anInstance:aType]:extendedFrom →
 SimpleUppedTypeaType, extendedFrom[anInstance]§▮

Actor SimpleUppedTypeaType, extendedFrom

 [anInstance:aType]
 uses SimpleCastableTypeaType, extendedFrom[]
 partially reimplements CastableTypeaType,
 extendedFrom using
 down[anActor:CastableTypeaType,
 extendedFrom]:aType →
 anActor �

 ⍠CastableTypeaType, extendedFrom ⦂ anInstance ⍌

 else ⦂ Throw IllegalDownCast[] ⍰¶

 down?[anActor:CastableTypeaType,
 extendedFrom]:Boolean →
 anActor �

 ⍠CastableTypeaType, extendedFrom ⦂ True ⍌

 else ⦂ False ⍰ §▮

63

Nullable, e.g., ⦾

The type Nullable is used for nullables:

 Interface NullableaType
 extends Type with reduce[]↦ aType▮

Actor ⦅“Nullable” anExpression:Expression aType⦆
 :Nullable aType

 uses BasicExpressionNullableaType[]
 partially implements ExpressionNullableaType using
 eval[e:Environment]:NullableaType→
 Let anActor ← anExpression∎eval[e]｡
 Actor implements NullableaTypeusing
 reduce[]→ anActor§▮

Actor ⦅Null aType:Type aType⦆:NullExpression aType

 uses BasicExpressionNullableaType[]
 partially implements ExpressionNullableaType using
 eval[e:Environment]:NullableaType →
 Actor implements NullableaType using
 reduce[]→ Throw IsNullException[] §▮

Actor ⦅Null aType:Type aType⦆:NullPattern aType
 implements PatternNullableaType using
 match[anActor:NullableaType, e:Environment]
 :NullableEnvironment →
 anActor �

 Null aType∎eval[e] ⦂ Nullable e ⍌

 else ⦂ Null Environment §▮

Actor ⦅“⦾” anExpression:Expression NullableaType⦆
 :Reduction aType
 uses BasicExpressionaType[]
 partially implements ExpressionaType using
 eval[e:Environment]:aType →
 ((anExpression∎eval[e])↓NullableaType)∎reduce[]§▮

64

Future, e.g., ⦾, and □

The type Future is used for futures:

 Interface FutureaType
 extends Type with reduce[]↦ aType▮

Actor ⦅“Future” anExpression:Expression aType⦆
 :Future aType

 uses BasicExpressionFutureaType[]

 partially implements ExpressionFutureaType using
 eval[e:Environment]:FutureaType →
 Let aFuture ←
 Future Try anExpression∎eval[e]
 catch�
 anException ⦂
 Actor
 implements FutureaType
 reduce[]→Throw anException§⍰｡
 Actor implements FutureaTypeusing
 reduce[]→ ⦾aFuture §▮

Actor ⦅“⦾” anExpression:Expression FutureaType⦆
 :Reduction aType

 uses BasicExpressionaType[]

 partially implements ExpressionaType using
 eval[e:Environment]:aType →
 ((anExpression∎eval[e])↓FutureaType)∎reduce[]§▮

Actor ⦅“□” anExpression:Expression aType⦆

 :Mandatory aType

 uses BasicExpressionaType[]
 implements ExpressionaType using
 eval[e:Environment]:aType →
 ⦾Future anExpression∎eval[e] §▮

65

The message match

Patterns are analogous to expressions, except that they take receive match

messages:

 Interface PatternaType with
 match [aType, Environment]↦ NullableEnvironment▮

Actor ⦅anIdentifier:Identifier aType⦆:Pattern aType
 implements PatternaType using

 match[anActor:aType, e:Environment]:NullableEnvironment →
 e∎bind[anIdentifier, to ⌸ anActor]▮

Actor ⦅“_”⦆:UniversalPattern aType

 implements PatternaType using
 match[anActor:aType, e:Environment]:NullableEnvironment →
 Nullable e▮

Actor ⦅“⌕” anExpression:Expression aType⦆
 :ValuePattern aType

implements PatternaType using
 match[anActor, e:Environment]:NullableEnvironment →
 anActor �
 anExpression∎eval[e] ⦂ Nullable e ⍌
 else ⦂ Null Environment ⍰▮

66

Message sending, e.g., ∎

Actor ⦅procedure:Expression argumentsType↦returnType

 “∎” “[” arguments:Arguments argumentsType “]”⦆
 :ProcedureSend returnType

 uses BasicExpressionreturnType[]
 partially implements ExpressionreturnType using

 eval[e:Environment]:returnType →
 (procedure∎eval[e])∎[⩛(expressions∎eval[e])]§▮

Actor ⦅recipient:Expression recipientType

 “∎” name:MessageName
 “[” arguments:Arguments argumentsType “]”⦆
 :NamedMessageSend returnType

 uses BasicExpressionreturnType[]
 partially implements ExpressionreturnType using
 eval[e:Environment]:returnType →
 Let aRecipient ← recipient∎eval[e]｡
 aRecipient
 ∎SimpleMessage[QualifiedName[name, recipientType],
 [⩛arguments∎eval[e]]]§▮

Actor ⦅recipient:Expression recipientType
 “∎” aMessage:Message messageType⦆
 :UnnamedMessageSend returnType

 uses BasicExpressionreturnType[]
 partially implements ExpressionreturnType using
 eval[e:Environment]:returnType →

 recipientType∎send[recipient∎eval[e], aMessage∎eval[e]]§▮

67

List Expressions and Patterns

Actor ⦅“[” first:Expression aType “,”
 second:Expression aType“]”⦆:Expression [aType*]

 uses BasicExpression[aType*][]
 partially implements Expression[aType*] using
 eval[e:Environment]:[aType*] →
 [first∎eval[e], second∎eval[e]]:[aType*] §▮

Actor ⦅“[” first:Expression aType “,”

 “⩛” rest:Expression aType “]”⦆ :Expression [aType*]

 uses BasicExpression[aType*][]

 partially implements Expression[aType*] using
 eval[e:Environment]:[aType*] →

 [first∎eval[e], ⩛ rest∎eval[e]]:[aType*]§▮

Actor ⦅“[” first:Pattern aType “,”

 “⩛” rest:Pattern [aType*] “]”⦆:Pattern [aType*]

 implements Pattern[aType*] using
 match[anActor:aType, e:Environment]:NullableEnvironment →
 anActor �
 [first, ⩛rest]:[aType*] ⦂
 first∎match[first, e] �
 Null Environment ⦂ Null Environment ⍌
 ⦾aNewEnvironment ⦂
 rest∎match[restValue, aNewEnvironment] ⍰⍌
 else ⦂ Null Environment⍰§▮

68

Exceptions

Continuations using perform

A continuations is a generalization of expression for executing in cheese,

which receives perform messages:

 Interface ContinuationaType extends Construct with

 perform[Environment, CheeseQ]↦ aType▮

Actor ⦅“Try” anExpression:Expression aType

 “catch�” exceptions:ExpressionCases Exception, aType “⍰”⦆
 :TryExpression aType

 uses BasicExpressionaType[]

 partially implements ExpressionaType using
 eval[e:Environment]:aType →
 Try anExpression∎eval[e] catch�
 anException:Exception ⦂
 CasesEval∎[anException, exceptions, e] ⍰§▮

Actor ⦅“Try” anExpression:Expression aType

 “cleanup” aCleanup:Expression aType⦆
 :TryExpression aType

 uses BasicExpressionaType[]

 partially implements ExpressionaType using
 eval[e:Environment]:aType →
 Try anExpression∎eval[e] catch�
 _ ⦂ Prep aCleanup∎eval[e]｡

 Rethrow⍰§▮

Actor ExecuteaType
 [aConstruct:Construct,
 e:Environment,
 c:CheeseQ]:aType →
 aConstruct � aContinuation↓ContinuationaType ⦂
 aContinuaton∎perform[e, c] ⍌
 anExpression↓ExpressionaType ⦂
 anExpression∎eval[e] ⍰▮

69

Atomic compare and update

Actor ⦅“Atomic” location:Expression LocationanotherType,
 “compare” comparison:Expression anotherType

 “update” update:Expression anotherType “�”
 “updated” “⦂”
 compareIdentical:ContinuationListaType “⍌”

 “notUpdated” “⦂”
 compareNotIdentical:ContinuationList aType⦆
 :Atomic aType

 implements ContinuationaType using
 perform[e:Environment, c:CheeseQ]:aType →
 (location∎eval[e])
 ∎compareAndConditionallyUpdate[comparison∎eval[e],
 update∎eval[e]] �

 True ⦂ compareIdentical∎perform[e, c] ⍌
 False ⦂
 compareNotIdentifical∎perform[e, c] ⍰▮

 Actor SimpleLocationanotherType[initialContents]

 contents ≔ initialContents｡

 implements LocationanotherType using

 compareAndConditionallyUpdate[comparison, update]:Boolean →
 (contents = comparison) �
 True ⦂ True afterward contents ≔ update⍌
 False ⦂ False ⍰§▮

70

Cases

Actor ⦅anExpression:Expression anotherType “�”

 cases:ExpressionCases anotherType, aType “⍰”⦆
 :CasesExpression aType

 uses BasicExpressionaType[]
 partially implements ExpressionaType using
 eval[e:Environment]:aType →
 CasesEval∎[anExpression∎eval[e], cases, e]§▮

Actor CasesEval
 [anActor:anotherType,

 cases:[ExpressionCaseanotherType, aType*],

 e:Environment]:aType →

 cases �
 [] ⦂ Throw NoApplicableCase[] ⍌

 [first, ⩛rest] ⦂

 first � ⦅aPattern:Pattern anotherType “⦂”

 anExpression:Expression aType⦆
 :ExpressionCase aType ⦂

 aPattern∎match[anActor, e] �
 ⦾Null ⦂
 CasesEval∎[anActor, rest, e] ⍌
 ⦾newEnvironment ⦂
 anExpression∎eval[newEnvironment] ⍰⍌
 ⦅“else” elsePattern:Pattern anotherType“⦂”

 elseExpression:Expression aType⦆
 :ExpressionElseCase aType ⦂
 elsePattern∎match[anActor, e] �
 ⦾Null ⦂
 Throw ElsePatternMustMatch[] ⍌
 ⦾newEnvironment ⦂
 elseExpression∎eval[newEnvironment] ⍰⍌
 ⦅“else” “⦂”

 elseExpression:Expression aType⦆
 :ExpressionElseCase aType ⦂
 elseExpression∎eval[e] ⍌
 else ⦂ Throw NoApplicableCase[] ⍰⍰▮

71

Actor ⦅anExpression:Expression anotherType “�”

 cases:ContinuationCases anotherType, aType “⍰”⦆
 :CasesContinuation aType
 implements ContinuationaType using
 perform[e:Environment, c:CheeseQ]:aType →
 CasesPerform∎[anExpression∎eval[e], cases, e, c]§▮

Actor CasesPerform
 [anActor:anotherType,

 cases:[ContinuationCaseaType*],
 e:Environment,

 c:CheeseQ]:aType →

 cases �

 [] ⦂ Throw NoApplicableCase[],
[first, ⩛rest] ⦂

 first � ⦅aPattern:Pattern anotherType“⦂”

 aContinuation:Continuation aType⦆
 :ContinuationCase aType ⦂
 aPattern∎match[anActor, e] �
 ⦾Null ⦂
 CasesPerform∎[anActor, rest, e, c] ⍌
 ⦾newEnvironment ⦂
 aContinuation∎perform[newEnvironment, c] ⍰⍌

 ⦅“else”

 elsePattern:Pattern anotherType “⦂”

 elseContinuation:Continuation aType⦆
 :ContinuationElseCase aType ⦂
 elsePattern∎match[anActor, e] �
 ⦾Null ⦂
 Throw ElsePatternMustMatch[] ⍌
 ⦾newEnvironment ⦂
 elseContinuation∎eval[newEnvironment] ⍰⍌
 ⦅“else” “⦂”

 elseContinuation:Continuation aType⦆
 :ContinuationElseCase aType ⦂
 elseContinuation∎perform[e, c] ⍌
 else ⦂ Throw NoApplicableCase[] ⍰⍰▮

72

Holes in the cheese

Actor ⦅anExpression:Expression aType

 “afterward” someAssignments:Assignments “｡”⦆
 :Afterward aType
 implements ContinuationaType using
 perform[e:Environment, c:CheeseQ]:aType →
 Let anActor ← anExpression∎eval[e]｡
 Prep someAssignments∎carryOut[e, c]

 c∎leave[]｡
 anActor§▮

Actor ⦅aVariable:Variable aType
 “≔” anExpression:Expression aType⦆:Assignment
 implements Assignment using

 carryOut[e:Environment]:Void →

 e∎assign[aVariable, to ⌸ anEpression∎eval[e]]§▮

Actor ⦅“Hole” anExpression:Expression aType⦆:Hole aType
 implements ContinuationaType using
 perform[e:Environment, c:CheeseQ]:aType →
 Let frozenEnvironment ← e∎freeze[]｡
 // create frozen environment so that subsequent assignments

 // subsequent assignments do not affect evaluating anExpression
 Prep c∎leave[]｡
 anExpression∎eval[frozenEnvironment§▮

Actor ⦅“Prep” aPreparations:Preparations “｡”
 anExpression:Expression aType⦆:Prep aType

 implements ContinuationaType using
 perform[e:Environment, c:CheeseQ]:aType →
 Let frozenEnvironment ← e∎freeze[]｡
 // create frozen environment so that

 // preparation does not affect evaluating anExpression
 Prep aPreparation∎carryOut[e, c]

 c∎leave[]｡

 anExpression∎eval[frozenEnvironment] §▮

73

Actor ⦅“Hole” anExpression:Expression anotherType

 “afterward”
 anAfterward:AfterwardContinuation aType “⍰”⦆
 :Hole aType

implements ContinuationaType using
 perform[e:Environment, c:CheeseQ]:aType →
 Let frozenEnvironment ← e∎freeze[]｡
 Prep c∎leave[]｡

 Try Let anActor ← anExpression∎eval[frozenEnvironment]｡
 Prep c∎enter[]

 anAfterward∎perform[e, c]]

 c∎leave[]｡
 anActor
 catch�
 _ ⦂
 Prep c∎enter[]

 anAfterward∎perform[e, c]

 c∎leave[]｡
 Rethrow⍰§▮

⦅“Hole” anExpression:Expression anotherType

 “returned�”
 returnedCases:ContinuationCases anotherType, aType “⍰”

 “threw�”
 threwCases:ContinuationCases anotherType, aType “⍰”⦆

 :HoleanotherType, aType

implements ContinuationaType using
 perform[e:Environment, c:CheeseQ]:aType →
 Let frozenEnvironment ← e∎freeze[]｡

 Prep c∎leave[]｡

 Try Let anActor ← anExpression∎eval[frozenEnvironment]｡

 Prep c∎enter[]｡

 CasesPerform∎[anActor, returnedCases, e, c]
 cleanup

 Prep c∎enter[]｡

 CasesPerform∎[anException, threwCases, e, c]⍰§▮

74

Actor ⦅“Enqueue” anExpression:QueueExpression “”⦆:Enqueue

 implements Continuation using
 perform[e:Environment, c:CheeseQ]→

 anExpression∎eval[e]∎enqueueAndLeave[] §▮

Actor ⦅“Enqueue” anExpression:QueueExpression “”

 aContinuation:Continuation aType⦆:Enqueue aType
 implements ContinuationaType using
 perform[e:Environment, c:CheeseQ]:aType →

 Let anInternalQ ← anExpression∎eval[e]｡

 Prep anInternalQ∎enqueueAndLeave[]｡

 aContinuation∎perform[e, c] §▮

75

Type Discrimination, i.e., Discrimination, ↓

Actor ⦅“↓↓” discriminant:Pattern aType⦆⦆
 :Pattern aDiscrimination
 implements PatternaDiscrimination using
 match[anActor:aDiscrimination, e:Environment]
 :NullableEnvironment →
 anActor↓?aType �
 True ⦂ apattern∎match[anActor↓aType, e] ⍌

 False ⦂ Null Environment ⍰▮

Actor ⦅“Discrimination” aDiscrimination “between”
 typeExpressions:Expressions Type “▮”⦆:Definition
 implements Definition using
 eval[e:Environment]:Void →
 Let types ← typeExpressions∎eval[e]｡
 Actor aDiscrimination
 [aType:Type] →
 aType∊types �

 True ⦂ DiscriminationInstance∎[x, aType] ⍌
 False ⦂ Throw NotADisciminant[] ⍰▮

 Actor DiscriminationInstance[x:aType, aType:Type]
 partially reimplements CastableTypeDiscriminationInstance,
 aType using

 down[anotherType]:aType →
 anotherType �

 aType ⦂ x ⍌

 else ⦂ Throw WrongDisciminant[] ⍰
 down?[anotherType]:Boolean →
 anotherType �

 aType ⦂ True ⍌

 else ⦂ False⍰▮

76

A Simple Implementation of Actor

The implementation below does not implement queues, holes, and relaying.

Actor ⦅“Actor” declarations:ActorDeclarations

 “implements” IdentifieraType

 “using” handlers:Handlers anInterface “§”⦆:Definition
 implements ExpressionanInterface using
 eval[e:Environment]→
 InitializedaType∎[anInterface∎eval[e],
 handlers,
 declarations∎initialize[e],
 CheeseQ[]]§▮

Actor InitializedaType
 [anInterface:aType,
 handlers:[Handler*],
 e:Environment,
 c:CheeseQ]:aType →
 Actor implements anInterface using
 receivedMessage → // receivedMessage received for anInterface

 Prep c∎enter[]｡

 Let aReturned ←
 Try Select∎[receivedMessage, handlers, e, c]
 cleanup c∎leave[]｡
 // leave cheese and rethrow exception

 Prep c∎leave[]｡

 aReturned§▮

77

Actor Select
 [receivedMessage:Message,
 handlers:[Handler*],
 e:Environment,
 c:CheeseQ]:aType →
 handlers �
 [] ⦂ Throw MessageRejected[] ⍌
 [⦅aMessageDeclaration:MessageDeclaration aType “→”
 body:Continuation aType⦆
 :ContinuationHandleraType⍌
 ⩛restHandlers] ⦂
 aMessageDeclaration∎match[receivedMessage, e] �
 Null Environment ⦂
 Select∎[receivedMessage, restHandlers, e, c] ⍌
 // process next handler
 ⦾newEnvironment ⦂
 ExecuteaType∎[body, newEnvironment, c] ⍰⍰▮
 // execute body with augmentation of e

78

An implementation of cheese that never holds a lock

The following is an implementation of cheese that does not hold a lock:
 Actor CheeseQ []
 invariants aTail=Null Activity ⇨ previousToTail=Null Activity｡

aHeadHint ≔ Null Activity, // aHeadHint:NullableActivity84

aTail ≔ Null Activity｡ // aTail:NullableActivity85

enter[]:Void nonexclusive in myActivity →86
 Preconditions myActivity∎⟦previous⟧= Null Activity,
 myActivity∎⟦nextHint⟧= Null Activity｡

 // commentary for error checking

 attempt∎[]:Void ≜

 Prep myActivity∎⟦previous ≔ aTail⟧｡ // set provisional tail of queue

 Atomic aTail compare aTail update myActivity �
 updated ⦂ // inserted myActivity in cheese queue with previous
 myActivity∎⟦previous⟧ �
 Null Activity ⦂ Void⍌ // successfully entered cheese

 else ⦂ Suspend ⍰⍌ // current activity is suspended

 notUpdated ⦂ attempt∎[] ⍰¶ // make another attempt
leave[]:Void nonexclusive in myActivity →
 // leave message received running myActivity
 Preconditions aTail≠Null Activity｡87 // commentary for error checking

 Let ahead ← ⍠SubCheeseQ∎⟦head⟧｡

 Preconditions ahead=myActivity // commentary for error checking
 Atomic aTail compare ahead update Null Activity�

 updated ⦂ // last activity has left this cheese queue
 Void afterward aHeadHint ≔ Null Activity⍌
 notUpdated ⦂ // another activity is in this cheese queue
 MakeRunnable ⦾ahead∎⟦nextHint⟧
 afterward aHeadHint ≔ ahead∎⟦nextHint⟧⍰§
 internal SubCheeseQ using // internal interface
 ⟦head⟧:Activity nonexclusive →
 Preconditions aTail≠Null Activity｡// commentary for error checking
 findHead∎[backIterator:Activity ←
 aHeadHint �
 Null Activity ⦂ ⦾aTail ⍌

 ⦾anActivity ⦂ anActivity ⍰]:Activity ≜
 backIterator∎⟦previous⟧ �
 Null Activity ⦂ // backIterator is head of this cheese queue

 Prep aHeadHint ≔ Nullable backIterator｡

 backIterator⍌
 ⦾previousBackIterator ⦂
 // backIterator is not the head of this cheese queue

 Prep previousBackIterator∎⟦nextHint ≔ Nullable backIterator⟧｡

 // set nextHint of previous to backIterator
 findHead∎[previousBackIterator] ⍰§▮

79

The algorithm used in the implementation of CheeseQ above is due to Blaine

Garst [private communication] cf. [Ladan-Mozes and Shavit 2004].

There is a state diagram for the implementation below:

As a consequence of the definition of CheeseQ:
 Implementation CheeseQ has enter[] ↦ Void

 leave[] ↦ Void▮

The implementation CheeseQ uses activities to implement its queue
where
 Implementation Activity has

⟦previous⟧ ↦ NullableActivity
 // if null then head of queue else, pointer to backwards list to head

⟦previous ≔ NullableActivity⟧ ↦ NullableActivity
 // returns self so that updates can be chained

 ⟦nextHint⟧ ↦ NullableActivity
 // if non-null then pointer to next activity to get cheese after this one

⟦nextHint ≔ NullableActivity⟧ ↦ NullableActivity▮
 // returns self so that updates can be chained

Implementation type InternalQ is defined on the next page

where:
 Implementation InternalQ has

enqueueAndLeave[] ↦ Void,
enqueueAndDequeue[InternalQ] ↦ Activity
dequeue[] ↦ Activity
empty?[] ↦ Boolean▮

0 in thisCheeseQ

aTail = NullTask
aHeadHint = NullTask

1 in thisCheeseQ

aTail != NullTask
aHeadHint = aTail

> 1 in thisCheeseQ

aTail != NullTask
aHeadHint != aTail

enter[]
leave[]

enter[]

leave[]

enter[]

1 left

> 1 left

80

Actor InternalQ[c:CheeseQ]
 aQueue ← SimpleFIFOActivity[] ｡
 enqueueAndLeave[]:Void in myActivity →

 // enqueueAndLeave message received in myActivity

 Prep aQueue∎add[myActivity]

 c∎leave[]｡ // myActivity is the head of aCheeseQ

 Suspend¶
 // myActivity is suspended and when resumed returns Void ¶
 enqueueAndDequeue[anInternalQ:InternalQ]:Activity in myActivity →

 Preconditions anInternalQ∎empty?[]｡
 // commentary for error checking

 Prep aQueue∎add[myActivity]

 ∎∎dequeue[]｡
 Suspend¶
 dequeue[]:Activity in myActivity →
 Preconditions ∎∎empty?[]｡ // commentary for error checking

 Prep c∎leave[]｡

 // myActivity is the head of aCheeseQ

 MakeRunnable aQueue∎remove[]¶
 // make runnable the removed activity
 empty?[]:Boolean → aQueue∎empty?[]§▮

where
 Interface FIFOaType has

 add[anActivity:aType] ↦ Void,
 remove[anActivity:aType] ↦ aType,

 empty?[] ↦ Boolean▮

81

Appendix 3. ActorScript Symbols with IDE ASCII, and Unicode codes

Symbol IDE

ASCIIi

Read as Category Matching

Delimiters
Unicode

(hex)

▮ ;; end top level

terminator

 25AE

: : of specified type infix
⍠ [:] this Actor with

interface (aspect)

prefix 2360

⦾ \O88 reduce

(nullables, futures)

prefix 29BE

↓ \v/ down infix 2193

↓? \v/? down query infix

↓↓ \v/\v/ match downed prefix

↑ (^) up infix 2191

⨀ (.) qualified by infix 22A1
∎ . is sent infix
∎∎ .. send to this

Actor

prefix 2025

□
||| necessarily

concurrent

prefix 29B7

↦ |-> message type

returns type89

infix 21A6

|••> |..> cacheable ↦

→ --> message received90 infix ¶ 2192

← <-- be91 infix 2190

� ? cases separator ⍰ FFFD
⍌ [\/] alternative case separator � and ⍰ 29B6
⍰ [?] end cases terminator � and catch� 2370

¶ \p another

message handler

separator for

handlers
→ 00B6

§ \s end handlers terminator implements and
extension

00A7

⦂ (:) case separator for

case

 2982

 _/ before separator Let binding,
preparation, and

Enqueue

2BC3

｡ \. end terminator preparations,
Preconditions,

extends, and ⦂

FF61

≜ =/\= to be infix 225C

≔ := is assigned infix 2254

⌕ \o92 matches value

of93

prefix 2315

= = same as? infix

≠ != Different from? infix 2260

i These are only examples. They can be redefined using keyboard macros according

to personal preference.

82

⌸ [=] keyword or field infix 2338
:⌸ :[=] assignable field infix
 <| begin type

parameters

left delimiter
(Unicode hex:

0077)

0076

⩛ \|/ spread94 prefix 2A5B

{ { begin set left delimiter }

[[begin list left delimiter]

⦃ {| begin multi-set left delimiter ⦄ 2983

⟦ [| formatted

message

left delimiter ⟧ 27E6

“
\" Left string

structure

left delimiter ”
201C

((begin grouping left delimiter)

⦅ (| begin syntax left delimiter ⦆ 2985

⊝ (-) nothing95 expression 229D

↞ one-way send infix 219E

↠ one-way receive infix ¶ 21A0

⊔ |_| join infix 2294

⊑ constrained by infix 2291

⊒ extends infix 2292

⇒ logical

implication

infix 21E8

⇔ logical

equivalence

infix 21D4

 /\ logical

conjunction

infix 00D9

 \/ logical

disjunction

infix 00DA

 -| logical negation prefix 00D8

⊢ |- assert prefix and

infix

 22A2

⊩ ||- goal prefix and

infix

 22A9

// // begin 1-line

comment

prefix EndOfLine

/* /* begin comment prefix */

83

Index

––, 21
�, 8, 71, 81
� ... ⍰, 70
⦅, 82
⟦, 43, 50, 78, 82

, 12, 33, 81, 82
⦃, 41, 82
(, 82, See Expressions
*, 46
｡, 81
/*, 82
//, 82
:, 15
:, 81
:⌸, 82
[, 6, 9, 33, 46, 82

list, 67
_, 65
{, 82
|••>, 81
++, 21
⊝, 52, 82
⦾, 36, 43, 44, 63, 64, 78, 81
=, 49, 51, 78, 81
≠, 57, 78, 81
∎, 6, 48, 66, 81
∎∎, 18, 38, 80, 81
⩛, 35, 40, 41, 44, 45, 47, 66, 82

expression, 67
pattern, 67

≔, 11, 72, 78, 80, 81
≜, 46, 49, 78, 81
⊑, 82
⊒, 33, 59
⊔, 82
⊢, 55, 57, 82
⊩, 55, 57, 82
⨀, 13, 48, 50, 51, 81
⌕, 56, 81
⌸, 39, 82
⍌, 81
⍠, 54, 58, 78, 80, 81
⍰, 8, 81
□, 12, 18, 64, 81
▮, 5, 81, See Expressions
↑, 60, 81
→, 11, 21, 22, 81
↠, 52, 82
↦, 9, 81

⇨, 82
↓, 15, 33, 60, 81
↓?, 15, 60, 81
↓↓, 15, 75, 81
←, 6, 46, 81, See Binding locals, See

definition
↞, 52, 82
⇔, 82
§, 11, 81
¶, 11, 81
⦂, 8, 81
Activity, 79
Actor, 11, 13, 18, 21, 54, 76

CheeseQ, 78
dequeue, 80
enqueueAndDequeue, 80
enqueueAndLeave, 80
InternalQ, 80
Swiss cheese, 16

Actor Model
Message passing, 2
types, 2

afterward, 11, 18, 49
Agha, G., 23
ASCII, 81
Athas, W., 23
Atkinson, R., 23
Atomic, 49, 78
Atomic ... compare ... update ... updated

... notUpdated ..., 69
Attardi, G., 23
backout, 21, 22
Baker, H., 23
Barber, G., 23
Beard, P., 23
become, 45
Bishop, P., 23
Boden, N., 23
Briot, J., 23
Cartesian, 38
cases, 8
cast

downcast, 16
self to interface of this Actor, 16
upcast, 16

catch�, 37
cheese, 20

dequeue, 79
enqueueAndDequeue, 79
enqueueAndLeave, 79

84

CheeseQ, 76, 78, 79
SubCheeseQ, 78

cleanup, 37
Clinger, W., 23
Complex, 38, 39
Construct, 58, 68
Continuation, 68
Customer, 52
Dahl, O., 1
Dally, W., 23
de Jong, P., 23
Dedecker, J., 23
default, 38, 39
definition

identifier, 6
procedure, 6

Discrimination, 33, 75
down, 60, 62
down?, 60, 62
either, 46
Enqueue, 21, 22, 73
Enumeration, 50
eval, 58
exception, 37
Expressions, 5
extension?, 59
Fork, 15
ForkTrie, 44
FriAM, 23
Fringe, 15
Function (JavaScript), 50
Future, 43, 45, 64
FutureList, 44, 45
Garst, B., 23, 79
general messaging, 48
getReceiving, 59
Greif, I., 23
has, 42
has?, 59
hole, 18
Hole, 72
Hole ... after, 72
Hole ... returned ... threw, 73
identifier, 6
Implementation, 11, 14, 79
implements, 11, 13, 21, 22
Import, 51
in, 78, 80
Integrated Development Environment,

5
Interface, 9, 13, 14, 58, 63, 64, 65, 68
internal, 78
InternalQ, 79

JavaScript, 50
JSON, 51
Kahn, K., 23
Leaf, 14
Let, 9, 12, 18, 34, 38, 44, 45, 48, 50, 53,

56
Let, 43

Let ... , 78
Lieberman, H., 23
Logic Program

Backward chaining, 55
forward chaining, 55
subarguments, 56

MakeRunnable, 78, 80
Manning, C., 23
Map, 42
Mason, I., 23
match, 65
Miller, M. S., 23
Montalvo, F. S., 23
Montanari, U., 23
Morningstar, C., 23
Nassi, I., 23
nextHint, 79
Null, 36, 63, 78
Nullable, 36, 63, 65, 67, 75, 78, 79
Nygaard, K., 1
Object, 50
Object (JavaScript), 50
One-way messaging, 52
parameterized

type, 33
partially, 13
patterns, 7
perform, 68
permit, 21, 22
Polar, 39
postcondition, 37
Postpone, 44, 45
Precondition, 22, 37
Prep, 12, 18

Prep ... , 78
previous, 79
procedure, 6
Qualifiers, 50
queues, 21, 22
reimplements, 13
Reinhardt, T., 23
resolve future, 43
Rethrow, 68, 73
return, 52, 59
Schumacher, D., 23
Seitz, C., 23

85

send, 59
Simi, M., 23
Smith, S., 23
Steiger, R., 23
String, 47
Structure, 14, 15
Suspend, 78, 80
Swiss cheese, 16
Symbols, 81
Talcott, C., 23
Terminal, 34, 44
Thati, P., 23
thatIs, 8
Theriault, D., 23
This (JavaScript), 50
throw, 52, 59
Throw, 11, 37
Tokoro, M., 23
Tree, 14, 15
Trie, 34, 44
TrieFork, 34
Try, 37
Try ... catch�, 68

Try ... cleanup, 68
type

Discrimination, 62
paramaterized, 33

Type, 59
ReceivingType, 59
Restriction, 60
SendingType, 59

types, 5
Unicode, 81
uses, 13, 54
UsingNamespace, 50
Varela, C., 23
variable

Actor, 20
ActorScript, 10

variables, 10, 20
Void, 11
When, 55, 56, 57
Woelk, D., 23
XML, 51
Yonezawa, A., 23

86

End Notes

1 Quotation by the author from late 1960s.
2 to use a reserved word as an identifier it could prefixed, e.g., _actor
3 The delimiters ⦅ and ⦆ are used to delimit program syntax with the character

“ and the character ” to delimit tokens. For example, ⦅3 “+” 4⦆ is an

expression that can be evaluated to 7. A special font is used for syntactic

categories.

 For example,

 ⦅x:Numerical “+” y:Numerical ⦆:Numerical ▮

 Numerical ⊑Expression ▮

Also,

⦅Numerical “-” Numerical ⦆:Numerical ▮

⦅“-” Numerical ⦆:Numerical ▮

⦅Numerical “” Numerical ⦆:Numerical ▮

⦅Numerical “” Numerical ⦆:Numerical ▮

⦅“Remainder” Numerical “” Numerical ⦆:remainder:Numerical ▮

⦅“QuotientRemainder” Numerical “” Numerical ⦆
 :[Numerical, Numerical]▮

⦅“True” ⊔ “False” ⦆:Expression Boolean▮

⦅Expression Boolean “” Expression Boolean⦆
 :Expression Boolean▮

⦅Expression “” Expression ⦆:Expression Boolean▮

⦅ “” Expression Boolean⦆:Expression Boolean▮

⦅ “Throw” Expression ⦆:Expression ▮

87

4 See explanation of syntactic categories above. A word must begin with an

alphabetic character and may be followed by one or more numbers and

alphabetic characters.

 Identifier ⊑Word ⊑Expression ▮

// an Identifier is a Word, which is a subcategory of Expression

 ⦅⦅Expression ⊔ Definition ⊔ Judgment ⦆⦆ “▮”⦆:Top▮

5 ⦅Type ←Expression Type⦆:Definition ▮

 ⦅messageType:Type ⦅ “↦”⊔ “|••>”⦆ returnType:Type ⦆:Type ▮

 ⦅“[” Types “]”⦆:Type ▮

 ⦅ ⊔ MoreTypes ⦆:Types ▮

 ⦅Type ⊔ ⦅Type “,”MoreTypes ⦆⦆:MoreTypes ▮

6 ⦅IdentifieraType

“←” Expressions aType⦆:Definition ▮

⦅⦅Expression aType ⦅ ⊔ “｡”⦆⦆

 ⊔ ⦅Expression ⦅“,” ⊔ “”⦆ MoreExpressions aType⦆⦆

 :Expressions aType▮

⦅⦅ExpressionaType “｡”⦆

 ⊔ ⦅Expression ⦅“,” ⊔ “”⦆ MoreExpressionsaType⦆⦆

 :MoreExpressions aType▮

7 ⦅“Actor” ProcedureName
 “[” ArgumentDeclarations “]” ⦅ “:” Type returnType⦆ →

 Expression returnType⦆:Definition ▮

ProcedureName ⊑Expression ▮

⦅ ⊔ MoreDeclarations ⦆:ArgumentDeclarations ▮

⦅SimpleDeclaration ⦅ ⊔ ⦅“,” MoreKeywordDeclarations ⦆⦆

 ⊔ ⦅SimpleDeclaration “,” MoreDeclarations ⦆⦆

 :MoreDeclarations ▮

 // Comma is used to separate declarations.

⦅⦅Identifier

 ⊔ ⦅Identifier “:” Type ⦆⦆

 ⦅ ⊔ “default” Expression ⦆⦆:SimpleDeclaration ▮
⦅KeywordArgumentDeclaration

 ⊔ ⦅KeywordDeclaration “,”MoreKeywordDeclarations ⦆⦆

 :MoreKeywordDeclarations ▮

⦅Keyword “⌸”SimpleDeclaration ⦆⦆:KeywordDeclaration ▮

Keyword ⊑Word ▮

8 The symbol ∎ is fancy typography for an ordinary period when it is used to

denote message sending.

9 ⦅Recipient:Expression “∎” “[” Arguments “]” ⦆:ProcedureSend ▮

 ProcedureSend ⊑Expression ▮

 // Recipient is sent a message with Arguments

⦅ ⊔ MoreArguments ⦆:Arguments ▮

88

 ⦅⦅Expression ⦅ ⊔ ⦅“,” MoreKeywordArguments ⦆⦆⦆

 ⊔ ⦅Expression “,” MoreArguments ⦆⦆:MoreArguments ▮
⦅KeywordArgument

 ⊔ ⦅KeywordArgument

 “,” MoreKeywordArguments ⦆⦆:MoreKeywordArguments ▮

⦅Keyword “⌸” Expression ⦆:KeywordArgument ▮
⦅IdentifierProcedure
 “[”ArgumentDeclarations “]” “:” returntype:Type aType⦆ →
 Expressions aType “▮”⦆:Definition Procedure▮

10 ⍰ takes care of the infamous "dangling else" problem [Abrahams 1966].

11 ⦅test:ExpressionpatternType “�”

 ExpressionCases patternType, aType “⍰”⦆:Expression aType▮

⦅ExpressionCase patternType, aType

 ⊔ MoreExpressionCases patternType, aType⦆

 :ExpressionCases patternType, aType▮
⦅ExpressionCase patternType, aType ⊔

 ⦅ExpressionCase patternType, aType

 “⍌” MoreExpressionCases patternType, aType⦆

 ⊔ ExpressionElseCases patternType, aType⦆
 :MoreExpressionCases patternType, aType▮

⦅ ⊔ ExpressionElseCase patternType, aType

 ⊔ ⦅ExpressionElseCase patternType, aType

 “⍌” MoreExpressionElseCases patternType, aType⦆⦆

 :ExpressionElseCases patternType, aType▮
⦅ExpressionElseCase patternType, aType

 ⊔ ⦅ExpressionElseCase patternType, aType

 “⍌” MoreExpressionElseCases patternType, aType ⦆⦆

 :MoreExpressionElseCases patternType, aType▮

⦅ ⦅“else” “⦂” Expressions aType⦆

 ⊔ ⦅“else” Pattern patternType “⦂” Expressions aType⦆⦆

 :ExpressionElseCase patternType, aType▮
 // The else case is executed only if the patterns before

 // the else case do not match the value of test.
⦅Pattern patternType “⦂” Expressions aType⦆

 :ExpressionCase aType▮

12 ⦅“Let” MoreLetBindings “｡”

 result:Expressions aType⦆:Expression aType▮
 // Bindings are independent of each other

⦅LetBinding ⊔ ⦅LetBinding “,” MoreBindings ⦆⦆:MoreLetBindings ▮

89

⦅LetBinding

 ⊔ ⦅LetBinding ⦅“,” ⊔ “”⦆ MoreDependentLetBindings ⦆⦆

 :MoreDependentLetBindings ▮

 // Each binding before a “” is completed before its successors

⦅Pattern “←” Expression ⦆:LetBinding ▮

13 ⦅recipient:Expression

 “∎” MessageName “[” Arguments “]”⦆:NamedMessageSend ▮

 NamedMessageSend ⊑Expression ▮

 // Recipient is sent message MessageName with Arguments

MessageName ⊑Word ▮

 ⦅“Interface” Identifier “with”
 MessageHandlerSignatures “▮”⦆:InterfaceDefinition ▮

 InterfaceDefinition ⊑Definition ▮

 ⦅ ⊔ MoreMessageHandlerSignatures ⦆⦆

 :MessageHandlerSignatures ▮
 ⦅MessageHandlerSignature

 ⦅ ⊔ MoreMessageHandlerSignatures ⦆⦆
 :MoreMessageHandlerSignatures ▮

 ⦅MessageName “[” ArgumentTypes “]” ⦅ “↦”⊔ “|••>”⦆
 returnType:Type ⦆:MessageHandlerSignature ▮

 MessageHandlerSignature ⊑Expression ▮

14 Dijkstra[1968] famously blamed the use of the goto as a cause and symptom

of poorly structure programs. However, assignments are the source of much

more serious problems.

15 Continuations in ActorScript are related to continuations introduced in

[Reynolds 1972] in that they represent a continuation of a computation. The

difference is that a continuation of Reynolds is a procedure that takes as an

argument the result of the preceding computation. Consequently, a

continuation of Reynolds is closer to a customer in the Actor Model of

computation.

90

16 ⦅“Actor” ConstructorDeclaration ActorBody ⦆:Expression ▮
 // The above expression creates an Actor with

 // declarations for variables and message handlers

 ⦅ ⊔ ⦅ “uses” ConstructorList ⦆⦆⦆⦆

 ⦅ ⊔ “management” Expression Management⦆
 NamedDeclaration

 MessageHandlers

 InterfaceImplementations⦆:ActorBody ▮

⦅Identifier“” ParametersDeclarations “”
 ⦅ ⊔ ⦅“[” ArgumentDeclarations “]”⦆⦆⦆
 :ConstructorDeclaration ▮

⦅Constructor ⦅ ⊔ “｡”⦆

 ⦅ ⊔ ⦅Constructor “,” MoreConstructors “｡”⦆⦆:ConstructurList ▮

⦅Constructor

 ⊔ ⦅Constructor “,” MoreConstructors ⦆⦆:MoreConstructors ▮

⦅ActorQueues NamesDeclarations ⦆:NamedDeclaration ▮

⦅ ⊔ ⦅MoreNameDeclarations “｡”⦆⦆:NamesDeclarations ▮

⦅NameDeclaration

 ⊔ ⦅NameDeclaration

 “,” MoreNamesDeclarations ⦆⦆:MoreNameDeclarations ▮

⦅Identifier

 ⦅ ⊔ ⦅“:” Type aType⦆⦆
 “←” Expression aType⦆:IdentifierDeclaration ▮
IdentifierDeclaration ⊑NameDeclaration ▮

⦅Variable ⦅ ⊔ ⦅“:”Type aType⦆⦆

 “≔” Expression aType InstanceVariableAQualifications ⦆
 :VariableDeclaration ▮

VariableDeclaration ⊑NameDeclaration ▮

Variable ⊑Word ▮

InstanceIVariableQualifications ⊑ InstanceQualifications ▮

⦅ ⊔ InstanceVariableQualification
 ⊔ ⦅ InstanceVariableQualification

 InstanceIVariableQualifications ⦆

 :InstanceIVariableQualifications ▮

 “nonpersistent”⊑InstanceVariableQualification ▮

 // A nonpersistent variable must be Nullable,
 // and can be nulled out before a message is received

⦅ “queues” QueueNames “｡”⦆ :ActorQueues ▮

⦅QueueName ⊔ ⦅QueueName “,” QueueNames ⦆⦆:QueueNames ▮

QueueName ⊑Word ▮

QueueName ⊑Expression Queue▮

⦅“Void”⦆:Expression ▮

91

 ⦅InterfaceImplementation

 ⦅ ⊔ MoreInterfaceImplementations ⦆⦆

 :InterfaceImplementations ▮

 ⦅“also” InterfaceImplementation

 ⦅ ⊔ MoreInterfaceImplementations ⦆⦆

 :MoreInterfaceImplementations ▮
 ⦅⦅ ⊔ “partially”⦆
 ⦅“implements” ⊔ “reimplements”⦆

 ⦅ ⊔ “exportable”⦆ Type “using”
 ⦅MessageHandlers “§”⦆⊔ UniversalMessageHandler ⦆
 :InterfaceImplementation aType▮

 ⦅MessagePattern

 ⦅ ⊔ ⦅“:” Type ⦆⦆

 ⦅ ⊔ ⦅“sponsor” IdentifierSponsor⦆⦆

 “→” ExpressionsContinuationaType ⦆
 :UniversalMessageHandler aType▮

⦅ ⊔ MoreMessageHandlers ⦆:MessageHandlers ▮

⦅MessageHandler

 ⊔ ⦅MessageHandler “§” MoreMessageHandlers ⦆⦆
 :MoreMessageHandlers ▮
 // The message handler separator is ¶.
⦅MessageName “[” ArgumentDeclarations “]”
 ⦅ ⊔ ⦅ “:” returnType:Type aType⦆

 ⦅ ⊔ ⦅“sponsor” Identifier Sponsor⦆⦆

 “→” ExpressionsContinuationaType⦆:MessageHandler ▮

 // For a message with MessageName with arguments,

 // the response is Continuation

⦅Expression aType

 “afterward” VariableAssignments ⦆:Continuation aType▮

 // Return Expression and afterward perform

 // MoreVariableAssignments

⦅VariableAssignment
 ⊔ ⦅VariableAssignment
 “,” MoreVariableAssignments “｡”⦆⦆:VariableAssignments ▮

⦅VariableAssignment
 ⊔ ⦅VariableAssignment
 “,” MoreVariableAssignments ⦆⦆
 :MoreVariableAssignments ▮

⦅Variable “≔” Expression aType⦆:VariableAssignment aType▮

92

17 ⦅“Prep” MoreAntecedents “｡”

 Continuation aType “｡”⦆:Preparation aType▮

 ⦅Antecedent ⊔ ⦅ Antecedent ⦅“,” ⊔ “”⦆ MoreAntecedents ⦆⦆

 :MoreAntecedents ▮

 Expression ⊑Antecedent ▮

 StructureAssignment ⊑Antecedent ▮

 ArrayAssignment ⊑Antecedent ▮

18 For example, consider the following:

 Actor NeedTwo[]
 queues waiting｡

 hasOne ≔ False｡
 go[]:Void → hasOne � True ⦂ Void permit waiting ⍌

 False ⦂ Prep hasOne ≔ True｡
 enqueue waiting
 Void⍰§▮

The following expression must return Void because of mandatory

concurrency:

 Let aNeedTwo ← NeedTwo []｡

 Prep □aNeedTwo∎ go[]｡
 aNeedTwo∎ go[]▮

However following expression might never return because of optional

concurrency:

 Let aNeedTwo ← NeedTwo []｡

 Prep aNeedTwo∎ go[]｡
 aNeedTwo∎go[]▮

19 ⦅“□” anExpression:Expression aType

 ⦅ ⊔ ⦅“sponsor” Expression Sponsor▮⦆⦆:Expression aType▮

// Execute anExpression concurrently and respond with the outcome.
// In every case, anExpression must complete before execution leaves

 // the lexical scope in which it appears.
20 cf. [Crahen 2002, Amborn 2004, Miller, et. al. 2011]
21 The ability to extend implementation is important because it helps to avoid

code duplication.
22 note the absence of “∎” in the implementation subexpression
23 equivalent to the following:

myBalance⨀SimpleAccount ≔
 myBalance⨀SimpleAccount – anAmount

24 ignoring exceptions in this way is not a good practice

93

25 ⦅“Enqueue” QueueExpression “”

 Continuation aType⦆:Continuation aType▮
 /*

1. Enqueue activity in QueueExpression

2. Leave the cheese

3. When the cheese is re-entered perform Continuation . */

 ⦅“Prep” Preparation “｡”

 “enqueue” QueueExpression “”

 Continuation aType⦆:Continuation aType▮
 /*

1. Perform Preparation

2. Enqueue activity in QueueExpression

3. Leave the cheese

4. When the cheese is re-entered perform Continuation . */

 Cases can be continuations:

⦅test:Expression “�”

 ContinuationCases patternType, aType “⍰”⦆
 :Continuation aType▮
⦅ContinuationCase patternType, aType

 ⊔ ⦅ContinuationCase patternType, aType

 “⍌” MoreContinuationCases patternType, aType⦆⦆
 ContinuationElseCases ⦆

 :ContinuationCasespatternType, aType ▮
⦅ContinuationCase patternType, aType

 ⊔ ⦅ContinuationCase patternType, aType

 “⍌” MoreContinuationCases patternType, aType⦆⦆

 :MoreContinuationCases patternType, aType▮
⦅PatternpatternType “⦂”

 ExpressionsContinuationpatternType, aType⦆

 :ContinuationCase patternType, aType▮

⦅ ⊔

 MoreContinuationElseCases patternType, aType⦆
 :ContinuationElseCases patternType, aType▮

⦅ContinuationElseCase patternType, aType

 ⊔ ⦅ContinuationElseCase patternType, aType

 “⍌” MoreContinuationElseCases patternType, aType⦆⦆
 :MoreContinuationElseCases patternType, aType▮

⦅⦅“else” “⦂” ExpressionsContinuationaType⦆

 ⊔ ⦅“else” Pattern patternType “⦂”

 ExpressionsContinuation patternType, aType⦆⦆

 :ContinuationElseCase patternType, aType▮

94

⦅⦅Continuation ⦅ ⊔ “｡”⦆⦆

 ⊔ ⦅Expression ⦅“,” ⊔ “”⦆ MoreExpressionsContinuation ⦆⦆

 :ExpressionsContinuation ▮

⦅⦅Continuation “｡”⦆

 ⊔ ⦅Expression “,”MoreExpressionsContinuation⦆⦆

 : MoreExpressionsContinuation ▮

26 Equivalent to the following:
Actor Fringe

 [aTree:Tree]:[String*] →
 aTree �
 Leaf[aString] ⦂ [aString]:[String*] ⍌
 Fork[aLeft, aRight] ⦂

 [⩛Fringe∎[aLeft], ⩛Fringe∎[aRight]]:[String*] ⍰▮
27 Equivalent to the following:
 Fringe∎[Fork [Leaf["The"]↑Tree, Leaf["boy"]↑Tree]↑Tree]
28 Swiss cheese was called “serializers” in the literature.
29⦅“∎∎” Message aType⦆:Expression aType▮
 // Delegate message to this Actor.

⦅“Prep” Preparation “｡”

 “hole” Expression aType⦆:Continuation aType▮
 /*

1. Carry out Preparation

2. Leave the cheese

3. The result is the result of evaluating Expression */

30 ReadersWriterConstraintMonitor defined below monitors a resource and

throws an exception if it detects that ReadersWriter constraint is violated,

e.g., for a resource r using the above scheduler:

 ReadingPriority[ReadersWriterConstraintMonitor[r]].

 Actor ReadersWriterConstraintMonitor[theResource:ReadersWriter]
 writing ≔ False,
 numberReading ≔ 0,
implements ReadersWriter using
 read[aQuery:Query]:QueryAnswer

 Preconditions writing｡ // commentary for error checking

 Prep numberReading++｡
 hole theResource∎read[aQuery]
 afterward numberReading––¶
 write[anUpdate:Update]:Void →
 Preconditions numberReading=0, writing｡

 Prep writing ≔ True｡
 hole theResource∎write[anUpdate]
 afterward writing ≔ False §▮

95

31 A downside of this policy is that readers may not get the most recent

information.
32 A downside of this policy is that writing and reading may be delayed

because of lack of concurrency among readers.

33 ⦅“Prep” Preparation ｡

 “enqueue” QueueExpression

 ⦅ ⊔ “backout” Expressions ⦆

 Continuation aType⦆⦆⦆:Continuation aType▮
 /*

1. Perform Preparation

2. Enqueue activity in QueueExpression.

3. Leave the cheese
4. If an exception is generated by the activity while in the queue,

then reenter the cheese, perform Expressions, and leave the

cheese.
5. If no exception is generated by the activity while in the queue,

then when allowed to continue, re-enter the cheese to perform

Continuation . */

 Cases can be continuations:

 ⦅test:ExpressionpatternType “�”

 ContinuationCases patternType, aType “⍰”⦆
 :Continuation aType▮

⦅ContinuationCase patternType, aType

 ⊔ MoreContinuationCases patternType, aType⦆
 :ContinuationCases patternType, aType▮

 ⦅ContinuationCase patternType, aType ⊔
 ⦅ContinuationCase patternType, aType

 “⍌” MoreContinuationCases patternType, aType⦆

 ⊔ ContinuationElseCases patternType, aType⦆

 :MoreContinuationCases patternType, aType▮
⦅ ⊔ ContinuationElseCase patternType, aType

 ⊔ ⦅ContinuationElseCase patternType, aType

 “⍌” MoreContinuationElseCases patternType, aType⦆⦆
 :ContinuationElseCases patternType, aType▮

⦅ContinuationElseCase patternType, aType

 ⊔ ⦅ContinuationElseCase patternType, aType

 “⍌” MoreContinuationElseCases patternType, aType ⦆⦆
 :MoreContinuationElseCases patternType, aType▮

⦅⦅“else” “⦂” ContinuationList aType⦆

 ⊔ ⦅“else” Pattern patternType

 “⦂”ExpressionsContinuation aType⦆⦆

 :ContinuationElseCase patternType, aType▮
 // The else case is executed only if the patterns before

 // the else case do not match the value of test.

96

⦅Pattern patternType “⦂” ExpressionsContinuationaType⦆

 :ContinuationCase patternType, aType▮

The following are allowed in the cheese for a response to message affecting

the next message:

⦅Expression aType

 ⦅ ⊔ ⦅ “permit” aQueue:Expression ⦆⦆
 ⦅ ⊔ ⦅“afterward” Afterward ⦆⦆⦆:Continuation aType▮

/* If there are activities in aQueue, then the one of them gets the

cheese next and also perform Afterward, then leave the cheese

and return the value of Expression . /*

VariableAssignments :Afterward ▮

⦅“Permit” aQueue:Expression FIFO

 ⦅ ⊔ ⦅“also” VariableAssignments⦆⦆⦆:Afterward ▮
The following can be used temporarily leave the cheese:

⦅“Hole” Expression aType⦆:Continuation aType▮
 /*

1. Leave the cheese

2. The response is the result of evaluating Expression */

⦅“Prep” Preparation “｡”

 hole Expression aType

 ⦅ ⊔ ⦅ “afterward” Afterward ⦆:Continuation aType▮
 /*

1. Carry out Preparation

2. Leave the cheese

3. Evaluate Expression

4. When a response is received, reacquire the cheese,

carry out Afterward and the result is the result of

evaluating Expression */

⦅“Prep” Preparation “｡”

 hole Expression anotherType

 ⦅ ⊔ ⦅ “returned�”

 normal:ContinuationCases anotherType, aType “⍰”⦆⦆

 ⦅ ⊔ ⦅ “threw�”

 exceptional:ContinuationCases anotherType, aType

 “⍰”⦆⦆ :Continuation aType▮

 /*

1. Carry out Preparation

2. Leave the cheese

3. Evaluate Expression

4. When a response is received, reacquire the cheese

 If Expression returns, continue using the returned

Actor with normal.
 If Expression throws an exception, continue using the

exception with exceptional. */

97

34 -- is postfix decrement
35 Preconditions present for error checking
36 ⦅IdentifierType

 “” ParametersDeclarations “”
 Expressions ⦆:ParameterizedDefinition ▮
 ParameterizedDefinition ⊑Definition ▮
 // Parameterize definition with ParametersDeclarations ▮

⦅ ⊔ MoreParameterDeclarations ⦆:ParametersDeclarations ▮

⦅ParameterDeclaration

 ⊔ ⦅ParameterDeclaration

 “,” MoreParameterDeclarations ⦆⦆
 :MoreParameterDeclarations ▮

⦅IdentifierType ⦅ ⊔ Qualifier ⦆⦆:ParameterDeclaration ▮

⦅ ⊔ ⦅“extends” Type ⦆⦆:TypeQualifier ▮

⦅IdentifierType “” Parameters “”⦆:TypeExpression ▮

⦅IdentifierType

 ⊔ ⦅ ⊔ ⦅IdentifierType “,” Parameters ⦆⦆:Parameters ▮

37 ⦅“Discrimination” IdentifierType

 MoreTypeDescriminations “▮“ ⦆:Definition ▮

⦅IdentifierType

 ⊔ ⦅IdentifierType “,”MoreTypeDescriminations ⦆⦆

 :MoreTypeDescriminations ▮

 ⦅Expression DiscriminationType “↓” Type aType⦆

 :Expression aType▮
 // Discriminate to have the type Type aType if possible.

 // Otherwise, an exception is thrown.

 ⦅Expression aDiscriminationType “↓?” Type aType⦆

 :Expression Boolean▮
 // If Expression discriminates to have the type Type aType,

 // then True, else False.

 ⦅Pattern DiscriminationType “↓” Type aType⦆

 :Pattern aType▮
 // If matching Actor is a discrimination that can be discriminated
 // then Pattern must match the discriminate.

 ⦅“↓↓” Type aType⦆:Pattern aType▮
 // Matching Actor must be discrimination that can be

 // discriminated as aType
38 Equivalent to the following:

 Let x ← 3｡

 TrieForkInteger[TerminalInteger[x]↑TrieInteger,
 TerminalInteger[x+1]↑TrieInteger]▮

98

39 Equivalent to the following:

 Actor TrieFringeaType

 [aTrie:TrieaType]:[aType*] →
 aTrie �
 ↓↓TerminalaType[x] ⦂ [x]:[aType*] ⍌
 ↓↓TrieForkaType[left, right] ⦂
 [⩛TrieFringe∎[left],
 ⩛TrieFringeaType∎[right]]:[aType*] ⍰▮

40 Equivalent to the following:

 Actor TrieSameFringe?aType
 [left:TrieaType, right:TrieaType]:Boolean →
 TrieFringe∎[left] = TrieFringe∎[right]▮
41 ⦅IdentifieraType “[” Arguments “]”⦆:Expression aType▮

 ⦅IdentifieraType “[” Patterns “]”⦆:Pattern aType▮

42 ⦅“Nullable” Expression aType⦆:Expression NullableaType▮

 ⦅“⦾” Expression NullableaType⦆:Expression aType▮
 // reduce Expression if not null.

 // Otherwise, an exception is thrown.

 ⦅“⦾” Pattern aType⦆:Pattern NullableaType▮
 // If matching Actor is a non-null nullable
 // then Pattern must match the Actor in the nullable.
43 ⦅“Try” anExpression:Expression aType

 “catch�” ExpressionCases Exception, aType “⍰”⦆

 :Expression aType▮
 /*

 If anExpression throws an exception that matches the pattern

of a case, then the value of TryExpression is the value

computed by ExpressionCases

 If anExpression doesn’t throw an exception, then then the

value of TryExpression is the value computed by

anExpression. /*
 ⦅“Try” anExpression:Expression aType

 “catch�” ContinuationCases Exception, aType“⍰”⦆

 :Continuation aType▮
 /*

 If anExpression throws an exception that matches the pattern of

a case, then the response of TryContinuation is the

response computed by the expression of the case.

 If aContinuation doesn’t throw an exception, then then the

response of TryExpression is the response computed by

anExpression. */

99

 ⦅“Try” anExpression:Expression aType

 “cleanup” cleanup:Expression aType⦆:Expression aType▮
 */

 If anExpression throws an exception, then the value of

TryExpression is the value computed by cleanup.

 If anExpression doesn’t throw an exception, then then the

value of TryExpression is the value computed by

anExpression. */
44 ⦅“Preconditions” test:Expressions Boolean “｡”

 Expressions aType⦆:Expression aType▮
 // Each of expressions in test must evaluate to True or

 // an exception is thrown

 ⦅“Preconditions” Expressions Boolean“｡”

 ExpressionsContinuation aType⦆:Continuation aType▮
 // Each of expressions in Expressions must evaluate to True or

 // an exception is thrown

 ⦅value:Expression aType

 “postcondition” pre:Expression [aType]↦Boolean⦆

 :Expression aType▮

 // The expression pre must evaluate to True when sent value
 // or an exception is thrown

45 o is a reserved postfix operator for degrees of angle
46 Equivalent to the following:
 Actor Times
 [u:Complex, v:Complex]:Complex →
 Cartesian[u∎⟦real⟧v∎⟦real⟧ – u∎⟦imaginary⟧v∎⟦imaginary⟧,
 u∎⟦imaginary⟧v∎⟦real⟧
 + u∎⟦real⟧v∎⟦imaginary⟧]↑Complex▮
47 Equivalent to the following:
 Actor Times
 [Polar[angle⌸ anAngle, magnitude⌸ aMagnitude],
 Polar[angle⌸ anotherAngle,
 magnitude⌸ anotherMagnitude]]:Complex →
 Polar[angle⌸ anAngle+anotherAngle,

 magnitude⌸ aMagnitudeanotherMagnitude]↑Complex▮
48 ⦅“Structure” IdentifierType “[” FieldDeclarations “]”
 ⦅ ⊔ ⦅ “uses” ConstructorList ⦆⦆

 NamedDeclaration

 MessageHandlers

 MoreInterfaceImplementations ⦆:Definition ▮
 // Structure definition with StructureImplementation

 ⦅anExpression:ExpressionanotherType “↓” Type aType⦆

 :Expression aType▮

100

 ⦅anExpression:Expression anotherType

 “↓?” Type aType⦆:Expression Boolean▮

 // If anExpression is an extension of aType, then True else False

 ⦅aPattern:Pattern anotherType

 “↓” Type anotherType⦆:Pattern aType▮

 // Matching Actor must be an extension of aType which

 // matches aPattern

 ⦅“↓↓” Type ExtensionanotherType⦆:Pattern aType▮
 // Matching Actor must be an extension of aType

⦅ ⊔ MoreFieldDeclarations ⦆:FieldDeclarations ▮

⦅⦅SimpleFieldDeclaration

 ⦅ ⊔ ⦅ “,” MoreNamedFieldDeclarations ⦆⦆⦆

 ⊔ ⦅SimpleFieldDeclaration

 “,” MoreFieldDeclarations ⦆⦆:MoreFieldDeclarations ▮

⦅⦅Identifier

 ⊔ ⦅Identifier “:” TypeExpression ⦆⦆

 ⦅ ⊔ “default” Expression ⦆⦆:SimpleFieldDeclaration ▮
⦅NamedFieldDeclaration

 ⊔ ⦅NamedFieldDeclaration

 “,” MoreNamedFieldDeclarations ⦆⦆

 :MoreNamedFieldDeclarations ▮
⦅FieldName

 ⦅“⌸” ⊔ “:⌸”⦆ SimpleFieldDeclaration ⦆⦆

 :NamedFieldDeclaration ▮

FieldName ⊑QualifiedName ▮

 // “:⌸” is used for assignable fields.

 ⦅⦅ ⊔ Identifier ⦆ ActorBody ⦆:StructureImplementation ▮

 ⦅Expression “⟦” FieldName “⟧” ⦆:FieldSelector▮
 // FieldName of Expression which must be a structure
 FieldSelector ⊑Expression ▮

 ⦅StructureName “[” FieldExpressions “]” ⦆:StructureExpression ▮

StructureExpression ⊑Expression ▮

⦅ ⊔ MoreFieldExpressions ⦆:FieldExpressions ▮

⦅⦅SimpleFieldExpression ⦅ ⊔ ⦅“,” MoreNamedFieldExpressions ⦆⦆⦆

 ⊔ ⦅SimpleFieldExpression

 “,” MoreFieldExpressions ⦆⦆:MoreFieldExpressions ▮

⦅NamedFieldExpression

 ⊔ ⦅ NamedFieldExpression

 “,” MoreNamedFieldExpressions ⦆⦆

 :MoreNamedFieldExpressions ▮
⦅FieldName

 ⦅“⌸” ⊔ “:⌸”⦆ SimpleFieldExprression ⦆⦆

 :NamedFieldExpression ▮

101

 ⦅StructureName “[” FieldPatterns “]” ⦆:StructurePattern ▮

StructurePattern ⊑Pattern ▮

⦅ ⊔ MoreFieldPatterns ⦆:FieldPatterns ▮

⦅⦅SimpleFieldPattern ⦅ ⊔ ⦅“,” MoreNamedFieldPatterns ⦆⦆⦆

 ⊔ ⦅ SimpleFieldPattern “,” MoreFieldPatterns ⦆⦆
 :MoreFieldPatterns ▮

⦅NamedFieldPattern

 ⊔ ⦅ NamedFieldPattern

 “,” MoreNamedFieldPatterns ⦆⦆

 :MoreNamedFieldPatterns ▮

⦅FieldName ⦅“⌸” ⊔ “:⌸”⦆ SimpleFieldExprression ⦆⦆

 :NamedFieldPattern ▮
49 ⦅“[” ComponentExpressioonsaType “]”⦆
 :Expression [aType*]▮

// An ordered list with elements ComponentExpressions

⦅ ⊔ MoreComponentExpressioons aType⦆

 :ComponentExpressioons aType▮

⦅⦅⦅ ⊔ “⩛”⦆ Expression aType⦆

 ⊔ ⦅⦅ ⊔ “⩛”⦆ Expression aType

 “,” MoreComponentExpressioons aType⦆⦆

 :MoreComponentExpressioons aType ▮

 ⦅“[” TypeExpressions aType“]”⦆:TypeExpression aType▮

⦅ ⊔ MoreTypeExpressions aType⦆:TypeExpressions aType▮

⦅TypeExpression aType

 ⊔ ⦅TypeExpression aType “,” MoreTypeExpressions aType⦆⦆

 :MoreTypeExpressions aType▮
50 ⦅“_”⦆:UnderscorePattern ▮

 UnderscorePattern ⊑Pattern ▮

 Identifier ⊑Pattern ▮

⦅Pattern “thatIs” Expression ⦆:ThatIs ▮

ThatIs ⊑Pattern ▮

⦅“⌕” Expression aType⦆:Pattern aType▮

⦅“[” ComponentPatterns aType “]”⦆:Pattern [aType*]▮
 // A pattern that matches a list whose elements match

 // ComponentPatterns

⦅ ⊔ MoreComponentPatterns aType⦆

 :ComponentPatterns aType▮

⦅Pattern aType

 ⊔ ⦅ “⩛”Pattern aType ⦆

 ⊔ ⦅Pattern aType “,” MoreComponentPatterns aType⦆⦆

 :MoreComponentPatterns aType▮

102

51 Equivalent to the following:

 Actor AlternateElementsaType

 [aList:[aType*]]:[aType*] →
 aList �
 []:[aType*] ⦂ []:[aType*] ⍌
 [anElement]:[aType*] ⦂ [anElement]:[aType*] ⍌
 [firstElement, secondElement]:[aType*] ⦂
 [firstElement]:[aType*] ⍌
 else ⦂
 [firstElement, secondElement, ⩛remainingElements]:[aType*] ⦂
 [firstElement,

 ⩛AlternateElements∎[remainingElements]]:[aType*] ⍰▮
52 ⦅“{” ComponentExpressioons “}”⦆:Expression {aType*}▮

// A set of Actors without duplicates

 ⦅“{” ComponentPatterns “}”⦆:Pattern {aType*}▮

53 ⦅“⦃” ComponentExpressioons “⦄”⦆:Expression ⦃aType*⦄▮
// A multiset of the Actors with possible duplicates

 ⦅“⦃” ComponentPatterns “⦄”⦆:Pattern ⦃aType*⦄▮

54 Optimization of this program is facilitated because:

 The records are cacheable because their type is {ContactRecord*}

 All of the operators are cacheable

 The operators are annotated as cacheable using “|••>”
55 ⦅“Map” “{” ComponentExpressioons “}” ⦆:Expression Map▮

56 It is possible to define a procedure that will produce a “bottomless” future.

For example, Actor f []:FutureaType → Future f∎[]▮

57 An Actor of FutureListaType is either

1. the empty list of type FutureListaType or

2. a list whose first element is of aType and whose rest is of

FutureFutureListaType.
58 Equivalent to the following:

 Actor Size
 [aFutureList:FutureListString]:Integer →

 aFutureList �
 []:FutureListString ⦂ 0⍌

 [first, ⩛rest]:FutureListString ⦂
 first∎⟦length⟧+Size∎[⦾rest]⍰▮
59 ⦅Postpone Expression aType⦆:Expression FutureaType▮
 // postpone execution of the expression until the value is needed.

103

60 Equivalent to the following:

 Actor TrieFringeaType

 [aTrie:TrieaType]:FutureListaType →
 aTrie �
 ↓↓TerminalaType[x] ⦂ [x]:[aType*] ⍌
 ↓↓ForkTrieaType[left, right] ⦂
 [⩛TrieFringe∎[left]],
 ⩛Postpone TrieFringeaType∎[right]]:[aType*]⍰▮

61 Equivalent to the following:

 Actor FutureListOfReducedElementsaType

 [aListOfFutures:[FutureaType*]]:FutureListaType →
 aListOfFutures �
 []:[FutureaType*] ⦂ []:FutureListaType ⍌

 [aFirst, ⩛aRest]:[FutureaType*] ⦂
 [⦾aFirst,

 ⩛Future FutureListOfReduceddElementsaType∎[⦾aRest]]
 :FutureListaType ⍰▮

62 ⦅“Future” aValue:Expression aType

 ⦅ ⊔ ⦅“sponsor” Expression Sponsor⦆⦆⦆
 :Expression FutureaType▮

 // A future for aValue.

⦅“⦾” Expression FutureaType⦆:Expression aType▮

 // Reduce a future
63 A Postpone expression does not begin execution of Expression1 until a request is

received as in the following example:

 Actor IntegersBeginningWith
 [n:Integer]:FutureListInteger →
 [n, ⩛Postpone IntegersBeginningWith∎[n+1]]▮

Note: A Postpone expression can limit performance by preventing
concurrency

64 ⦅ “⦅” MoreGrammers “⦆” ⦆:Grammar ▮

 ⦅ “⦅”Grammar “⊔”Grammar “⦆” ⦆:Grammar ▮

 ⦅ReservedWord ⦅ ⊔ StartsWithIdentifier ⦆⦆:StartsWithReserved ▮

StartsWithReserved ⊑MoreGrammers ▮

 ⦅Identifier ⦅ ⊔ StartsWithReserved ⦆⦆⦆:StartsWithIdentifier ▮

StartsWithIdentifier ⊑MoreGrammers ▮

⦅“\ “” Word “\””⦆ :ReservedWord ▮

 // The use of \ escapes the next character in a string so

 // that “\“” has just one character that is “.

 ⦅Grammar “:” GrammarIdentifier “▮”⦆:Judgment ▮

 ⦅IdentifierGrammar “⊑”IdentifierGrammar “▮”⦆: Judgment ▮

104

65 Equivalent to the following:

FirstTenSequentially∎[n ←10]:[Integer*] ≜
 n=1 � True ⦂ [P∎[]]:[Integer*] ⍌
 False ⦂ Let x ← P∎[]｡

 [x, ⩛FirstTenSequentially∎[n–1]]:[Integer*] ⍰▮
66 Equivalent to the following:

 OneOfTen∎[n:Integer ←10]:Integer ≜
 n=1 � True ⦂ P∎[] ⍌

 False ⦂ □P∎[] either □OneOfTen∎[n–1]] ⍰▮
67 ⦅LoopName:Identifier “∎” “[” Initializers “]”
 ⦅ ⊔ ⦅ “:” ReturnType:aType ⦆⦆

 “≜” Expression aType ⦆:Expressions aType▮

⦅ ⊔ MoreInitializers ⦆:Initializers ▮

⦅Initializer ⊔ ⦅Initializer “,” MoreInitializers ⦆⦆
 :MoreInitializers ▮

⦅Identifier ⦅ ⊔ ⦅“:” TypeExpression ⦆⦆ “←” Expression ⦆:Initializer ▮

68 The implementation below requires careful optimization.

69 ⦅“String” “[” ComponentExpressioons “]”⦆:Expression String▮

 ⦅“String” “[” ComponentPatterns “]”⦆:Pattern String▮

70 ⦅recipient:Expression recipientType

 “∎” message:MessageExpression recipientType⦆:Expression ▮

// Send recipient the message

71 The implementation below can be highly inefficient.

72 ⦅“Atomic” aLocation:Expression anotherType

 “compare” comparison:Expression anotherType

 “update” update:Expression anotherType “�”

 “updated” “⦂”
 compareIdentical:ExpressionsContinuation aType “⍌”

 “notUpdated” “⦂”

 compareNotIdenticial:ExpressionsContinuation aType “⍰”⦆
 :Continuation aType▮

/* Atomically compare the contents of aLocation with the value of

comparison. If identical, update the contents of aLocation with the

value of update and execute compareIdentical.

73 ⦅Identifier “`”Qualifier ⦆:QualifiedName ▮

 QualifiedName ⊑Expression ▮
 Identifier ⊑QualifiedName ▮

 ⦅Identifier ⊔ ⦅Identifier “`”Qualifier ⦆⦆:Qualifier ▮

74 ⦅“Enumeration” IdentifieraType

 MoreEnumerationNames “｡” ⦆:Definition ▮

105

 ⦅EnumerationName

 ⊔ ⦅EnumerationName

 “,” MoreEnumerationNames ⦆⦆:MoreEnumerationNames ▮
 EnumerationName ⊑Word ▮

75 Declarations provide version number, encoding, schemas, etc.

76 If a customer is sent more than one response (i.e., return or throw message)

then it will throw an exception to the sender of the response.

77 ⦅recipient:Expression

 “↞” MessageName “[” Arguments “]”⦆:Expression Void▮

 /* recipient is sent one-way message with MessageName and

Arguments . Note that Expression ⊝cannot be used to produce

a value. */

78 ⦅MessageName “[” ArgumentDeclarations “]”

 ⦅ ⊔ ⦅“sponsor” IdentifierSponsor⦆⦆⦆⦆
 “↠”ExpressionsContinuation⊝⦆:MessageHandler ▮

/* one-way message handler implementation with
ArgumentDeclarations that has a one-way continuation

that returns nothing */

⦅“⊝” ⦅ ⊔ ⦅ “permit” aQueue:Expression ⦆⦆

 ⦅ ⊔ ⦅“ afterward” Afterward ⦆⦆⦆:Continuation “⊝”▮

79 note the absence of “∎” in the implementation subexpressions
80 [Church 1932; McCarthy 1963; Hewitt 1969, 1971, 2010; Milner 1972,

Hayes 1973; Kowalski 1973]. Note that this definition of Logic Programs

does not follow the proposal in [Kowalski 1973, 2011] that Logic Programs

be restricted only to clause-syntax programs.

81 A ground-complete predicate is one for which all instances in which the

predicate holds are explicitly manifest, i.e., instances can be generated using

patterns. See [Ross and Sagiv 1992, Eisner and Filardo 2011].
82 Execution can proceed differently depending on how sets fit into computer

storage units.

106

83 /* Consider a dialect of Lisp which has a simple conditional expression

of the following form:

 ⦅“(” “if ” test:Expression then:Expression else:Expression “)” ⦆

which returns the value of then if test evaluates to True and otherwise

returns the value of else.

 The definition of Eval in terms of itself might include something like

the following [McCarthy, Abrahams, Edwards, Hart, and Levin 1962]:

 Define (Eval expression environment)
 // Eval of expression using environment defined to be
 (if (Numberp expression) // if expression is a number then
 expression // return expression else
 (if ((Equal (First expression) (Quote if))
 // if First of expression is “if” then

 (if (Eval (First (Rest expression) environment)
 // if Eval of First of Rest of expression is True then
 (Eval (First (Rest (Rest expression)) environment)
 // return Eval of First of Rest of Rest of expression else
 (Eval (First (Rest (Rest (Rest expression)) environment))
 // return Eval of First of Rest of Rest of Rest of expression
 …))

The above definition of Eval is notable in that the definition makes use

of the conditional expressions using if expressions in defining how to

evaluate an if expression! */
84 If non-null points to head with current holder of cheese
85 If non-null, pointer to backwards list ending with head that holds cheese
86 // enter message received running myActivity
87 /* this cheese queue is not empty because myActivity is at the head of

 the queue */
88 Not to be confused with \0 which is the null character or with \o which is

⌕.
89 Used in type specifications for interfaces.
90 Used in message handlers.
91 Used to bind identifiers in Let.

92 Not to be confused with \0 which is the null character or with \O which

is ⦾.
93 Used in patterns.
94 Used in structures.
95 Used in one-way message passing.

