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ActorScript™ extension of C#®, Java®, Objective C®, 

C++, JavaScript®, and SystemVerilog using iAdaptiveTM 

concurrency for antiCloudTM privacy and security:i 
One computer is no computer in IoT 

 

Carl Hewitt 

 

This article is dedicated to Alonzo Church, John McCarthy, 

Ole-Johan Dahl and Kristen Nygaard. 

 

ActorScript™ is a general purpose programming language for efficiently 

implementing robust applicationsii using iAdaptiveTM concurrency that 

manages resources and demand. It is differentiated from previous languages 

by the following: 

 Universality 

o Ability to directly specify exactly what Actors can and cannot do 

o Everything is accomplished with message passing using types 

including the very definition of ActorScript itself.  

o Messages can be directly communicated without requiring 

indirection through brokers, channels, class hierarchies, 

mailboxes, pipes, ports, queues etc. Programs do not expose low-

level implementation mechanisms such as threads, tasks, locks, 

cores, etc. Application binary interfaces are afforded so that no 

program symbol need be looked up at runtime. Functional, 

Imperative, Logic, and Concurrent programs are integrated.  

o A type in ActorScript is an interface that does not name its 

implementations (contra to object-oriented programming 

languages beginning with Simula that name implementations 

called “classes” that are types). ActorScript can send a message to 

any Actor for which it has an (imported) type. 

o Concurrency can be dynamically adapted to resources available 

and current load.  

                                                           
i C# is a registered trademark of Microsoft, Inc. 

Java and JavaScript are registered trademarks of Oracle, Inc. 

Objective C is a registered trademark of Apple, Inc. 
ii with no single point of failure 



 

 

 

 

 

 

 

 

 

 

 

 

 

2 

 

 Safety, security and readability 

o Programs are extension invariant, i.e., extending a program does 

not change the meaning of the program that is extended. 

o Applications cannot directly harm each other. 

o Variable races are eliminated while allowing flexible 

concurrency. 

o Lexical singleness of purpose.  Each syntactic token is used for 

exactly one purpose. 

 Performancei 

o Imposes no overhead on implementation of Actor systems in the 

sense that ActorScript programs are as efficient as the same 

implementation in machine code. For example, message passing 

has essentially same overhead as procedure calls and looping. 

o Execution dynamically adjusted for system load and capacity 

(e.g. cores) 

o Locality because execution is not bound by a sequential global 

memory model 

o Inherent concurrency because execution is not limited by being 

restricted to communicating sequential processes 

o Minimize latency along critical paths 

 

ActorScript attempts to achieve the highest level of performance, scalability, 

and expressibility with a minimum of primitives. 

 

Message passing using types is the foundation of system communication: 

 Messages are the unit of communication 

 Typesii enable secure communication with Actors 

 

Computer software should not only work; it should also appear to work.1 

 

  

                                                           
i Performance can be tricky as illustrated by the following: 

 “Those who would forever give up correctness for a little temporary 

performance deserve neither correctness nor performance.” [Philips 2013] 

 “The key to performance is elegance, not battalions of special cases” [Jon 

Bentley and Doug McIlroy] 

 “If you want to achieve performance, start with comprehensible.” [Philips 

2013] 

 Those who would forever give up performance for a feature that slows 

everything down deserve neither the feature nor performance.  
ii Each type is an Actor.  However, it may be the case that a type will work some 

places and not others.  For example, to be used in message passing, the type of an 

address may require access to particular hardware. 
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Introduction 

ActorScript is based on the Actor mathematical model of computation that 

treats “Actors” as the universal conceptual primitive of digital computation 

[Hewitt, Bishop, and Steiger 1973; Hewitt 1977; Hewitt 2010a]. Actors have 

been used as a framework for a theoretical understanding of concurrency, and 

as the theoretical basis for several practical implementations of concurrent 

systems. 

 

ActorScript 

ActorScript is a general purpose programming language for implementing 

massive local and nonlocal concurrency.  

 

This paper makes use of the following typographical conventions that arise  

from underlying namespaces for types, messages, language constructs, syntax 

categories, etc.i 
 type identifiers 

o blue for types in general (e.g., Account) 
o green for the special case of implementation types (e.g., 

SimpleAccount) 
 program variables (e.g., aBalance) 
 message names (e.g., withdraw) 
 reserved words2 for language constructs (e.g., Actor) 
 logical variables (e.g., x) 
 comments in programs (e.g. /* this is a comment */ ) 

 

There is a diagram of the syntax categories of ActorScript in an appendix of 

this paper in addition to an appendix with an index of symbols and names 

along with an explanation of the notation used to express the syntax of 

ActorScript.3 

 

Actors 

ActorScript is based on the Actor Model of Computation [Hewitt, Bishop, and 

Steiger 1973; Hewitt 2010a] in which all computational entities are Actors and 

all interaction is accomplished using message passing. 

 

The Actor model is a mathematical theory that treats “Actors” as the universal 

conceptual primitive of digital computation. The model has been used both as 

a framework for a theoretical understanding of concurrency, and as the 

theoretical basis for several practical implementations of concurrent systems. 

Unlike previous models of computation, the Actor model was inspired by 

                                                           
i The choice of typography in terms of font and color has no semantic significance. 

The typography in this paper was chosen for pedagogical motivations and is in no 

way fundamental. Also, only the abstract syntax of ActorScript is fundamental as 

opposed to the surface syntax with its many symbols, e.g., ↦, etc. 
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physical laws. The advent of massive concurrency through client-cloud 

computing and many-core computer architectures has galvanized interest in 

the Actor model. 

 

An Actor is a computational entity that, in response to a message it receives, 

can concurrently: 
 send messages to addresses of Actors that it has 
 create new Actors 
 designate how to handle the next message it receives. 

 

There is no assumed order to the above actions and they could be carried out 

concurrently. In addition two messages sent concurrently can be received in 

either order. Decoupling the sender from communication it sends was a 

fundamental advance of the Actor model enabling asynchronous 

communication and control structures as patterns of passing messages. 

 

The Actor model can be used as a framework for modeling, understanding, 

and reasoning about, a wide range of concurrent systems. For example: 
 Electronic mail (e-mail) can be modeled as an Actor system. Mail 

accounts are modeled as Actors and email addresses as Actor addresses. 
 Web Services can be modeled with endpoints modeled as Actor 

addresses. 
 Object-oriented programing objects with locks (e.g. as in Java and C#) 

can be modeled as Actors. 
 

Actor technology will see significant application for coordinating all kinds of 

digital information for individuals, groups, and organizations so their 

information usefully links together. Information coordination needs to make 

use of the following information system principles: 
 Persistence. Information is collected and indexed. 
 Concurrency: Work proceeds interactively and concurrently, 

overlapping in time. 
 Quasi-commutativity: Information can be used regardless of whether it 

initiates new work or becomes relevant to ongoing work. 
 Sponsorship: Sponsors provide resources for computation, i.e., 

processing, storage, and communications.  
 Pluralism: Information is heterogeneous, overlapping and often 

inconsistent. There is no central arbiter of truth.  
 Provenance: The provenance of information is carefully tracked and 

recorded. 
 

The Actor Model is designed to provide a foundation for inconsistency robust 

information coordination. 
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Notation 

To ease interoperability, ActorScript uses an intersection of the orthographic 

conventions of Java, JavaScript, and C++ for wordsi and numbers. 

 

Expressions 

ActorScript makes use of a great many symbols to improve readability and 

remove ambiguity. For example the symbol “▮” is used as the top level 

terminator to designate the end of input in a read-

eval-print loop. An Integrated Development 

Environment (IDE) can provide a table of these 

symbols for ease of input as explained below:ii  

 

Expressions evaluate to Actors. For example, 1+3▮iii is equivalentiv to 4▮. 

 

Parentheses “(” and “)” can be used for precedence. For example using the 

usual precedence for operators, 3*(4+2)▮ is equivalent to 18▮, while 3*4+2▮ 

is equivalent to 14▮, 

 

Identifiers, e.g., x, are expressions that can be used in other expressions. For 

example if x is 1 then x+3▮ is equivalent to 4▮. The formal syntax of identifiers 

is in the following end note:  4. 

 

Types 

Types are Actors. Type names are shown as follows: 
o  blue for types in general (e.g., Account) 
o green for the special case of implementation types (e.g., SimpleAccount) 

 

The formal syntax for types is in the following end note:  5. 

 
 

 

  

                                                           
i sometimes called “names” 
ii Furthermore, all special symbols have ASCII equivalents for input with a keyboard.  

An IDE can convert ASCII for a symbol equivalent into the symbol. See table in an 

appendix to this article. 
iii An IDE can provide a box with symbols for easy input in program development. 

The grey callout bubble is a hover tip that appears when the cursor hovers above a 

symbol to explain its use. 
iv in the sense of having the same value and the same effects 

Symbols 
▮ 

end 
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Identifier Definitions, i.e.,  ←  

An identifier definition has an identifier to be defined 

followed by “←” followed by the definition.  For 

example, x←3▮ defines the identifier x to be the 

Actor 3. 

 

The formal syntax of an identifier definition is in the end note: 6. 

 

Procedure Definitions, i.e.,  →  

A procedure is an Actor that can receive a list of Actors in a message and 

return an Actor as its value, which can be defined using “Actor”, followed 

by a procedure name, a list of formal arguments, return type, “→” and body 

of the procedure. For example,  
 
Actor Double [v:Integer]:Integer → v+v▮  

 

The formal syntax of a procedure definition is in the end note: 7. 
 

Sending messages to procedures, i.e., ∎[    ]   

Sending a message to a procedure (i.e. “calling” a procedure with arguments) 

is expressed by an expression that evaluates to a procedure followed by “∎”8 

followed by a message with arguments delimited by “[” and “]”. For example, 

Double∎[2+1]▮ means send Double the message [3]. Thus Double∎[2+1]▮ is 

equivalent to 6▮. 

 

The formal syntactic definition of procedural message sending is in the end 

note: 9. 

 

  

Symbols 

 ▮ ← 

defined 
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Patterns 

Patterns are fundamental to ActorScript. For example,  

 3 is a pattern that matches 3  

 “abc” is a pattern that matches “abc”.  

 _ is a pattern that matches anythingi 
 ⌕x is a pattern that matches the value of x. 
 ⌕(x+2) is a pattern that matches the value of the expression x+2. 

 

Identifiersii can be bound using patterns as in the following examples: 
 x is a pattern that matches “abc” and binds x to “abc” 

 

  

                                                           
i e.g., _ matches 7 
ii An identifier is a name that is used in a program to designate an Actor 
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Cases, i.e.,   �  ⦂ , ⦂  ⍰  

Cases are used to perform conditional testing. In a Cases Expression, an 

expression for the value on which to perform case analysis is specified first 

followed by “�”i and then followed by a number of cases separated by “⍌” 

terminated by “⍰”.10 A case consists of 
 a pattern followed by “⦂” and an expression to compute the value for 

the case.  All of the patterns before an else case must be disjoint; i.e., 

it must not be possible for more than one to match. 

 optionally (at the end of the cases) one or more of the following 

cases: “else”  followed by an optional pattern, “⦂”, and an expression 

to compute the value for the case. An else case applies only if none 

of the patterns in the preceding casesii match the value on which to 

perform case analysis.  

 

As an arbitrary example purely to illustrate the above, suppose that the 

procedure Random, which has no argument and returns Integer, in the 

following example: 
 
Random∎[ ] �   
     0 ⦂          // Random∎[ ] returned 0iii 

        Throwiv RandomNumberException[ ] ⍌      
         // throw an exception  

               // because Fibonacci∎[0] is undefined 

     1 ⦂                  // Random∎[ ] returned 1 

             6⍌                // the value of the cases expression is 6 

     else y thatIs < 5  ⦂ 
                       // Random∎[ ] returned y that is not 0 or 1 and is less than 5 

         Fibonacci∎[y] ⍌ 

                        // return Fibonacci of the value returned by Random∎[ ] 

     else z ⦂   

            // Random∎[ ] returned z that is not 0 or 1 and is not less than 5 

         Factorial∎[z] ⍰▮  

                             // return Factorial of the value returned by Random∎[ ] 

The formal syntax of cases is in the following end note: 11. 

 

  

                                                           
i “�” is fancy typography for “?” 
ii including patterns in previous else cases 
iii As is standard, ActorScript uses the token “//” to begin a one-line comment.   
iv Reserved words are shown in bold black. 

Symbols 

� ⍌  ⦂ 
⍰ ▮ 

case 
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Binding locals, i.e., Let  ← ｡ 

Local identifiers can be bound using “Let” followed by a list of bindings 

separated by commas and terminated with “｡” Each binding consists of a 

pattern, “←”, and an expression for the Actor to be matched.  For example, 

aProcedure∎[“G”, “F”, “F”]▮ is equivalent to the following: 

 

Let x ← “F”｡                       //  x is “F”      

   aProcedure∎[“G”, x, x]▮   
 

 

 

Dependent bindings (in which each can depend on previous ones) can be 

accomplished by nesting Let. For example: 

Let x ←“F”｡            //  x is  “F”  

  Let  y ← aProcedure∎[“G”, x, x]]｡           

                      //  y is  aProcedure∎[“G”, “F”, “F”]  

      anotherProcedure∎[x, y]▮ 
 

The above is equivalent to  

anotherProcedure∎[“F”, aProcedure∎[“G”, “F”, “F”]]▮ 
   

The formal syntax of bindings is in the following end note:  12. 
 
The formal syntactic definition of named-message sending is in the following 

end note: 13 
                              

General Message-passing interfaces 

An interface can be defined using “Interface” followed by an interface name, 

“with”, and a list of message handler signatures, where message handler 

signature consists of a message name followed by argument types delimited 

by “[” and “]”, “↦”, and a return type. For example, the interface type can be 

defined as follows: 

 

Interface Account  with availableBalance[ ]↦Euro,  
                                               deposit[Euro]↦Void, 
                                               withdraw[Euro]↦Void▮  
  

  

Symbols 

 ← 
▮ 

bind 
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Actors that change, i.e., Actor using ≔     

Using the expressions introduced so far, actors do not change. However, some 

Actors change behaviors over time. 

 

Message handlers in an Actor execute mutually exclusively while in a region 

of mutual exclusion which is called “cheese.” In this paper assignable 

variables are colored orange, which by itself has no semantic significance, i.e., 

printing this article in black and white does not change any meaning. The use 

of assignments is strictly controlled in order to achieve better structured 

programs.14 

 

Below is a diagram for the implementation SimpleAccount of Account: 

 

  

             

availableBalance[ ]

deposit[anAmount]
myBalance := myBalance + anAmount 

myBalance

initially: myBalance=startingBalance

withdraw[anAmount] amount > myBalance 
also

myBalance := myBalance - anAmount 

(amount > myBalance) 

Overdrawn[ ]

SimpleAccount[StartingBalance]
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Variable races are impossible in ActorScript 

An Actor can be created using "Actor" optionally followed by the following: 

 constructor name with formal arguments delimited using brackets 

 declarations of variablesi terminated by “｡” 

 implementations of interface(s). 

 

ActorScript is referentially transparent in the sense that a variable never 

changes while in a continuous part of the cheese.15  For example, in the 

deposit message handler change is accomplished using the following: 

         Void afterward myBalance ≔ myBalance+anAmount 
which returns Void and updates myBalance for the next  message received. 

 

An implementation that of the Account interface can be expressed as follows: 

 
 
 
 
 
Actor SimpleAccount[startingBalance:Euro] 
    myBalance ≔ startingBalance｡ 
        // myBalance is an assignable variable initialized with startingBalance 

     implements Account using 

        availableBalance[ ]:Euro →   myBalance¶ 
        deposit[anAmount:Euro]:Void →  
              Void                                                                                         // return Void 
                    afterward  myBalance ≔ myBalance+anAmount¶    
                                             // the next  message is processed with 

                                                           //  myBalance reflecting the deposit 

          withdraw[anAmount:Euro]:Void → 
              (amount > myBalance) �  
                   True ⦂ Throw Overdrawn[ ] ⍌ 
                   False ⦂ Void                                                                  //  return Void 
                                     afterward myBalance ≔ myBalance–anAmount ⍰§▮ 
                                  //  the next  message is processed with updated myBalance  

 
As a result of the above definition,  

  Implementation SimpleAccount extends Account▮ 
 
The formal syntax of Actor expressions is in the following end note:  16. 

 

                                                           
i variable declarations separated by commas  

Symbols 

 → � ⦂ ≔ 
⍰ ¶ § ▮  

assignment 
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Antecedents, Preparations, and Necessary Concurrency, i.e., □ 

Concurrency can be controlled using preparation that is expressed in a 

continuation using preparatory expressions, “” and an expression that 

proceeds only after the preparations have been completed. 

 

The following expression creates an account anAccount with initial balance 

€6 and then concurrently withdraws €1 and €2 in preparation for reading the 

balance: 

 

Let anAccount ← SimpleAccount [€6]｡  // € is a reserved prefix operator 
    Prep anAccount∎withdraw[€1], 
  

               anAccount∎withdraw[€2]｡  
                   // proceed only after both of the  
                 //  withdrawals have been acknowledged 

            anAccount∎availableBalance[ ]▮ 
The above expression returns €3.  

 

Operations are quasi-commutative to the extent that it doesn’t matter in which 

order they occur.  

 

Quasi-commutativity can be used to tame indeterminacy while at the 

same time facilitating implementations that run exponentially faster than 

those in the parallel lambda calculus.i 

 

The formal syntax of compound expressions is in the following end note: 17 

 

An expression can be annotated for concurrent execution by preceding it with 

“□” indicating that the following expression must be considered for 

concurrent execution if resources are available. For example 

□Factorial∎[1000]+□Fibonacci∎[2000]▮ is annotated for concurrent 

execution of Factorial∎[1000] and Fibonacci∎[2000] both of which must 

complete execution. This does not require that the executions of 

Factorial∎[1000] and Fibonacci∎[2000] actually overlap in time.18 

 

The formal syntax of explicit concurrency is in the following end note:  19. 

 

 

  

                                                           
i For example, implementations using Actors of Direct Logic can be exponentially 

faster than implementations in the parallel lambda calculus. 

Symbols 

 ← € 
｡ ▮ 

Euro 
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Implementing multiple interfaces , i.e., also implements 

 

The above implementation of Account can be extended as follows to provide 

the ability to revoke20 some abilities to change an account.21 For example, the 
AccountSupervisor implementation below implements both the Account 
and AccountRevoker interfaces as an extension of the implementation 

SimpleAccount where: 

   Interface AccountRevoker with revokeDepositable[ ] ↦ Void, 
                                                                revokeWithdrawable[ ]↦ Void▮ 
 
Actor AccountSupervisor[initialBalance:Euro]  

                                 uses SimpleAccount[initialBalance]｡  

                                              //  uses SimpleAccount implementation 22  
withdrawableIsRevoked ≔ False, 
depositableIsRevoked ≔ False｡ 
⟦revoker⟧:AccountRevoker → ⍠AccountRevoker¶ 

                                                                                   //  this Actor as AccountRevoker 
 

⟦account⟧:Account → ⍠Account¶                   //  this Actor as Account 
 

withdrawFee[anAmount:Euro]:Void →  
                        Void afterward myBalance ≔ myBalance–anAmount§ 

                                  //  withdraw fee even if balance goes negative 23 

partially reimplements Account using 
         //  (availableBalance[ ]↦Euro) from SimpleAccount 
          withdraw[anAmount:Euro]:Void → 

         withdrawableIsRevoked � 

                    True ⦂ Throw Revoked[ ] ⍌ 
               False ⦂ ⍠Account⨀SimpleAccount∎withdraw[anAmount] ⍰¶ 
                                     //  use withdraw of SimpleAccount 
    deposit[anAmount:Euro]:Void → 
           depositableIsRevoked � 

                      True ⦂ Throw Revoked[ ] ⍌ 
                      False ⦂ ⍠Account⨀SimpleAccount∎deposit[anAmount] ⍰§ 

      also implements AccountRevoker using 
    revokeDepositable[ ]:Void →  
          Void afterward depositableIsRevoked ≔ True¶    
    revokeWithdrawable[ ]:Void →  
          Void afterward withdrawableIsRevoked ≔ True§▮ 
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As a result of the above definition:  

   Implementation AccountSupervisor has 

        ⟦revoker⟧ ↦ AccountRevoker, 
        ⟦account⟧  ↦ Account, 
        withdrawFee[Euro] ↦ Void▮ 
 

For example, the following expression returns negative €3: 

   Let  anAccountSupervisor ← AccountSupervisor[€3]｡ 
      Let  anAccount ← anAccountSupervisor∎⟦account⟧, 

             aRevoker ← anAccountSupervisor∎⟦revoker⟧｡ 
           Prep anAccount∎withdraw[€2]                           //  the balance is €1 
 

                      aRevoker∎revokeWithdrawable[ ] 
                                                                  //  withdrawableIsRevoked is True         
                      Try anAccount∎withdraw[€5]           //  try another withdraw 
                           catch�  _  ⦂ Void ⍰               //  ignore the thrown exception24 

                                                                                        //  myBalance remains €1 
                       anAccountSupervisor∎withdrawFee[€4]｡ 

                                 //  €4 is withdrawn even though  withdrawableIsRevoked 
                                                                               //  myBalance is negative €3 
               anAccount∎availableBalance[ ]▮ 

 
The formal syntax of the programs below is in the following end note: 25 

 

Type Extension 

Subtyping of an implementation is not allowed so that an implementation 

can be securely branded.i  
 

The following interface expresses that each Tree has an integer identifier: 

    Interface Tree with ⟦hash⟧↦Integer▮ 
 

An implementation of Leaf can be defined as an extension of Tree as follows: 
Structure Leaf[aString:String]  
   implements Tree using 
       ⟦hash⟧:Integer → Hash∎[aString]▮  

 

As a result of the above definition: 

     Implementation structure Leaf[String] extends Tree▮  

                                                           
i As shown elsewhere in this article, multiple implementations can be used in 

another implementation. Of course, interface types can be extended 
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For example, 

 "The"▮ is equivalent to the following: 

 Let Leaf [aString] ← Leaf ["The"]｡aString▮. 

 Leaf ["The"]∎⟦hash⟧▮ is equivalent to Hash∎["The"]▮. 
 

Conversion from of a type to an extension of a type is done using an expression 

of the extension can followed by “:” and the type. For example,  

((Leaf ["The"]):Tree) ∎⟦hash⟧▮ is equivalent to Hash∎["The"]▮. 
 
Fork  can be defined as an extension of Tree using: 

Structure Fork[aLeft:Tree, aRight:Tree]  
   extends Tree   using 
       ⟦hash⟧:Integer → Hash∎[aLeft∎⟦hash⟧, aRight∎⟦hash⟧§▮ 

 

As a result of the above definition: 

     Implementation structure Fork[Tree, Tree] extends Tree▮ 
 

For example, Hash∎[Hash∎["The"], Hash∎["boy"]]▮ is equivalent to the 

following: 

         (Fork [Leaf ["The"], Leaf ["boy"]])∎⟦hash⟧▮ 

 

Testing for convertibility from of a type to an extension of the type is done 

using an expression of the extension can followed by “↓?” and the type. For 

example,  

 ((Leaf ["The"]):Tree)↓?Fork▮ is equivalent to False▮. 

 ((Leaf ["The"]):Tree)↓?Leaf ▮ is equivalent to True▮. 
 

Conversion from of a type to an extension of the type is done using an 

expression of the extension can followed by “↓” and the type. For example,  

 ((Leaf ["The"]):Tree)↓Leaf ▮ is equivalent to Leaf ∎["The"]▮. 

 ((Leaf ["The"]):Tree)↓Fork▮ throws an exception. 
 

“↓↓” followed by a pattern can be used to match the pattern with something 

which has been extended from the type of that pattern. For example,  

Actor Fringe 

   [aTree:Tree]:[String*] → 
     aTree �  
       ↓↓Leaf[aString] ⦂ [aString] ⍌ 
       ↓↓Fork[aLeft, aRight] ⦂  
                [⩛Fringe∎[aLeft],  ⩛Fringe∎[aRight]] ⍰▮26 
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For example, ["The", "boy"]:[String*]▮ is equivalent to the following: 

        Fringe∎[Fork [Leaf["The"], Leaf["boy"]]]▮27 

 

The procedure Fringe can be used to define SameFringe? that determines if 

two trees have the same fringe [Hewitt 1972]: 

   Actor SameFringe? 
      [aTree:Tree, anotherTree:Tree]:Boolean →      
                                                     //  test if two trees have the same fringe 

          Fringe∎[aTree] = Fringe∎[anotherTree]▮ 
 

Casting is as allowed only as follows: 

1. Casting self to an interface implemented by this Actor 

2. Upcasting 

a. an Actor of an implementation type to the interface type of the 

implementation 

b. an Actor of an interface type to the interface type that was 

extended 

3. Conditional downcasting of an Actor of an interface type to an 

extension of the interface type.i  Downcasting of an interface type I is 

allowed only to an extension of I.  For example, if x is of interface 

type I, then either 

i. E is an extension of I and there is some y of type E such that x=y:I 
and therefore x↓E=y 

ii. x↓E throws an exception because E is not an extension of I or 

there is no y of type E such that x=y:I 
 

Swiss cheese 

Swiss cheese [Hewitt and Atkinson 1977, 1979; Atkinson 1980]28 is a 

generalization of mutual exclusion with the following goals:   

 Generality:  Ability to conveniently program any scheduling policy 

 Performance:  Support maximum performance in implementation, e.g., 

the ability to minimize locking and to avoid repeatedly recalculating a 

condition for proceeding. 

 Understandability:  Invariants for the variables of a mutable Actor 

should hold whenever entering or leaving the cheese. 

 Modularity:  Resources requiring scheduling should be encapsulated so 

that it is impossible to use them incorrectly. 

 

                                                           
i An implementation type cannot be downcast because there is nothing to which to 

downcast.  Note that this means that an implementation type cannot be subtyped 

although an implementation can use other implementations for modularity.  Of 

course, for interface types there is no semantic guarantee of what an 

implementation of the interface might do as long as it obeys the signatures. 
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By contrast with the nondeterministic lambda calculus, there is an always-

halting Actor Unbounded that when sent a [ ] message can compute an integer 

of unbounded size. This is accomplished by creating a Counter with the 

following variables: 

 count initially 0 

 continue initially True 

and concurrently sending it both a stop[ ] message and a go[ ] message such 

that: 

 When a go[ ] message is received: 

1. if continue is True, increment count by 1 and return the result of 

sending this counter a go[ ] message. 

2. if continue is False, return Void 

 When a stop[ ] message is received, return count and set continue to 

False for the next message received. 

 

By the Actor Model of Computation [Clinger 1981, Hewitt 2006], the above 

Actor will eventually receive the stop[ ] message and return an unbounded 

number. 

 

A diagram is shown below for an implementation of Counter. In the diagram,  

a hole in the cheese is highlighted in grey and variables are shown in orange. 

The color has no semantic significance.  

 

  

             
∎∎go[ ] 

continue=True
 also

 count := count +1 

continue := False

continue=False

initially: continue=True, count=0

count

go[ ]

stop[ ]
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Actor CreateUnbounded 
   [ ]:Integer → 

Let aCounter ←  Counter [ ]｡    // let aCounter be a new Counter 

         Prep □aCounter∎go[ ]｡  // send aCounter a go message and concurrently 

             □aCounter∎stop[ ]▮  // return the result of sending aCounter stop[ ] 
 
As a notational convenience, when an Actor receives message then it can send 

an arbitrary message to itself by prefixing it with “∎∎” as in the following 

example for the Actor implementation SimpleCounter:  
 

Actor Counter[ ] 
     count ≔ 0,         // the variable count is initially 0 
     continue ≔ True｡ 
     stop[ ]:Integer  →  count                     // return count 
                   afterward continue ≔ False¶              
                             // continue is updated to False for the next message received 

     go[ ]:Void  →   
          continue �                                                                    
                       True ⦂ Prep count ≔ count+1｡       // increment count                                      
                                       hole ∎∎go[ ] ⍌      // send go[ ] to this counter 
                       False ⦂ Void ⍰§▮                        // if continue is False, return Void 

 

As a result of the above definition 
  Implementation Counter has go[ ]↦ Void,  
                                                           stop[ ]↦ Integer▮    
 
The formal syntax of the programs above is in the following end note: 29  
 

  

Symbols 

→ ⦂  
｡⍰ ¶ § ▮ 
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Coordinating Activities 

Coordinating activities of readers and writers in a shared resource is a classic 

problem. The fundamental constraint is that multiple writers are not allowed 

to operate concurrently and a writer is not allowed operate concurrently with 

a reader.  

 

Below are two implementations of readers/writer guardians for a shared 

resource that implement different policies:30 

1. ReadingPriority: The policy is to permit maximum concurrency 

among readers without starving writers.31 

a. When no writer is waiting, all readers start as they are 

received.  

b. When a writer has been received, no more readers can start.   

c. When a writer completes, all waiting readers start even if 

there are writers waiting. 

2. WritingPriority: The policy is that readers get the most recent 

information available without starving writers.32  

a. When no writer is waiting, all readers start as they are 

received.  

b. When a writer has been received, no more readers can start.  

c. When a writer completes, just one waiting reader is permitted 

to complete if there are waiting writers. 

 

The interface for the readers/writer guardian is the same as the interface for 

the shared resource: 

   Interface ReadersWriter with read[Query]↦ QueryAnswer,  
                                 write[Update]↦ Void▮ 
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Cheese diagram for ReadersWriter implementations: 
 

             

readersQ

theResource∎read[aQuery] 

writersQ

theResource∎write[anUpdate] 

 ¬writing 
also

 numberReading := numberReading+1 

numberReading=0
also 

writing := True

numberReading := numberReading-1 

writing := False

theResource∎read[aQuery] 

theResource∎write[anUpdate] 

initially: writing=False, numberReading=0

invariant: writing ⇒  numberReading=0

read[aQuery]

write[anUpdate]

 
 
Note: 

1. At most one activity is allowed to execute in the cheese.  

2. The value of a variablei changes only when leaving the cheese.ii 
 
When an exception is thrown exogenously by an activity that is in a queue 

(e.g., readersQ, writerQ), a backout handler can be used to clean up cheese 

variables before rethrowing the exception. 

 

The formal syntax of the programs below is in the following end note: 33 
   

                                                           
i A variable is orange in the diagram 
ii Of course, other external Actors can change. 
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In the implementations below, preconditions present are commentary for error 

checking.  An exception is thrown if a precondition is not met at runtime.  A 

precondition has no operational effect. 
 
Actor ReadingPriority[theResource:ReadersWriter]  
   invariants numberReading≧0 ,writing⇨ numberReading=0｡ 

   queues readersQ, writersQ｡      // readersQ and writersQ are initially empty 

   writing ≔ False,  
   numberReading: ≔ 0｡  
   implements ReadersWriter using 
    read[aQuery:Query]:QueryAnswer →  

     Prep (writing  IsEmpty writersQ) �  
                True ⦂  Enqueue readersQ   //  leave cheese while in readersQ 

                                     backout (writing  numberReading=0  IsEmpty readersQ) �  

                                                                 True ⦂ Void permit writersQ⍌  

                                                           False ⦂ Void ⍰                                                                                 

                                                  Void ⍌            

                 False ⦂ Void ⍰｡  

         Preconditions writing｡                   // commentary for error checking 

             Prep numberReading++  ｡    // increment numberReading 
 

               permit readersQ 
                     hole theResource∎read[aQuery]    // leave cheese while reading  
                          afterward 
                               (IsEmpty writersQ) �  
                                    True ⦂ Permit readersQ also numberReading––⍌ 34  
                                    False ⦂ numberReading=1 �  
                                                     True ⦂  Permit writersQ also numberReading––⍌  
                                                     False ⦂  numberReading–– ⍰ ⍰¶ 
  write[anUpdate:Update]:Void →     
     Prep (numberReading>0    IsEmpty readersQ  writing  IsEmpty writersQ) �  
               True ⦂ Enqueue writersQ       //  leave cheese while in writersQ 

                                             backout  (IsEmpty writersQ   writing) �  
                                                                    True ⦂ Void permit readersQ⍌  
                                                                     False ⦂ Void ⍰                                                 

                                   Void ⍌ 

                False ⦂  Void ⍰｡   

      Preconditions35  numberReading=0, writing｡ 
                                                                                    // commentary for error checking          

         Prep writing ≔ True ｡       //  record that writing is happening 

             hole theResource∎write[anUpdate]  //  leave cheese while writing 

                afterward (IsEmpty readersQ) �  
                                          True ⦂ Permit writersQ also writing ≔ False⍌ 
 

                                      False ⦂ Permit readersQ also writing ≔ False⍰§▮ 

Symbols 

→ � ⦂ ⍌    

⍰ ¶ § ▮ 
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Illustration of writing-priority: 
 

Actor WritingPriority[theResource:ReadersWriter] 
     invariants numberReading≧0, writing⇨numberReading=0｡ 

  queues readersQ, writersQ｡ 
     writing ≔ False,  
     numberReading ≔ 0｡  
     implements ReadersWriter using     

       read[aQuery:Query]:QueryAnswer → 

           Prep (writing  Empty writersQ) �  
                        True ⦂ Enqueue readersQ       //  leave cheese while in readersQ 
                                      backout writing  numberReading=0  IsEmpty readersQ �  

                                                                     True ⦂ Void permit writersQ⍌   

                                                               False ⦂ Void ⍰                                                                 

                                       Void⍌ 

                        False ⦂  Void ⍰｡ 

           Preconditions writing｡  // commentary for error checking 

              Prep numberReading++｡ 
 

                  permit IsEmpty writersQ �  
                                                           True ⦂ readersQ⍌ 
                                                           False ⦂ Void ⍰ 

                        hole theResource∎read[aQuery]  //  leave cheese while reading 

                           afterward 
                                  (IsEmpty writersQ) �  
                                      True ⦂  Permit readersQ also numberReading––⍌   
                                       False ⦂ numberReading=1 �  
                                                        True ⦂  Permit writersQ also numberReading––⍌ 
 

                                                        False ⦂ numberReading––⍰ ⍰¶ 

       write[anUpdate:Update]:Void  → 
         Prep (numberReading>0  IsEmpty readersQ  writing  IsEmpty writersQ)� 
                       True ⦂ Enqueue writersQ                //  leave cheese while in writersQ 

                                             backout  (IsEmpty writersQ   writing) �  
                                                                    True ⦂ Void permit readersQ⍌  
                                                                     False ⦂ Void ⍰                                            

                                                Void ⍌ 

                        False ⦂ Void ⍰｡ 

         Preconditions numberReading=0, writing｡  
                                    // commentary for error checking                

                     Prep writing ≔ True｡ 

                         hole theResource∎write[anUpdate]  //  leave cheese while writing 
                       afterward 
                           (IsEmpty readersQ) �  

                                    True ⦂ Permit writersQ also writing ≔ False⍌ 
   

                                    False ⦂ Permit readersQ also writing ≔ False⍰§▮  

 

Symbols 

→ � ⦂ ⍌    

⍰ ¶ § ▮ 
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Conclusion 

Before long, we will have billions of chips, each with hundreds of hyper-

threaded cores executing hundreds of thousands of threads. Consequently, 

GOFIP (Good Old-Fashioned Imperative Programming) paradigm must be 

fundamentally extended. ActorScript is intended to be a contribution to this 

extension. 
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ActorScript is intended to provide a foundation for information coordination 

in client-cloud computing that protects citizens sensitive information [Hewitt 

2009b]. 
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Appendix 1. Extreme ActorScript 

 

Parameterized Types, i.e.,    ,   

 

Parameterized Types are specialized 

using other types delimited by “” and 

“”: 
Actor DoubleaType⊒Arithmetic 

    [x:aType]:aType → aType[x+x]§▮    
                                                              // addition for aType that is Arithmetic 

 

The formal syntax of parameterized types is in the following end note:  36 . 
 

Type Discrimination, i.e., Discrimination and ↓  

A discrimination definition is a type of alternatives differentiated by type  

using “Discrimination” followed by a type name, “between”, types separated 

using “,” terminated by “▮”. 

  

A discriminate can constructed using the discrimination followed by “[”, an 

expression for the discriminant and  “]”, 

  

A discriminate can be projected as follows: 

 In an expression, by using an expression for a discrimination 

followed by “↓” and the type to be projected. Also, a discrimination 

can be tested if it holds a discrimination of a certain type with an 

expression for the discrimination followed by “↓?” and the type to be 

tested. 

 In a pattern, by using a pattern followed by “↓”and the type to be 

projected 

 

For example, consider the following definition: 

         Discrimination IntegerOrString between Integer, String▮ 
    Consequently, 

 (IntegerOrString[3])↓Integer▮ is equivalent to 3▮. 
 (IntegerOrString["a"]) ↓Integer▮ throws an exception because 

String is not the same as the discriminant Integer. 

 (IntegerOrString[3]) ↓?Integer▮ is equivalent to True▮. 
 The pattern x↓String matches IntegerOrString["a"] and binds x to 

"a". 

 The expression below is equivalent to 2▮: 

IntegerOrString[3]  � y↓Integer ⦂ y-1⍌ 
                                            x↓String ⦂ x ⍰▮ 

 

Symbols 

→   ↦ ▮  
   

type 
 parameter 
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The formal syntax of type discrimination is in following end note:  37. 

 

Structures 

A structure is an Actor used in pattern matching that can be defined using an 

identifier by “[”, parts separated by “,” and “]”.  

 

Discrimination can be used with structures. For example, a TrieaType is a 

discrimination of TerminalaType and TrieForkaType: 

Discrimination TrieaType between  
              TerminalaType, 
              TrieForkaType▮ 

 

where the structure Terminal  can be defined as follows: 
Structure TerminalaType[aType]▮ 

 

For example,  

 The expression Let xi ← 3｡ TerminalInteger[x]▮ is equivalent to 

TerminalInteger[3]▮ 
 The pattern TerminalInteger[x] matches TerminalInteger[3] 

and binds x to 3. 

 

The structure TrieFork can be defined as follows: 

       
   Structure TrieForkaType[left:TrieaType, right:TrieaType] 
              flip[ ]:TrieForkaType →                               // flip the branches 

                  TrieForkaType[right, left]▮ 
 

  

                                                           
i x is of type Integer 
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For example,  

 The expression  

  Let x ← 3｡  

       TrieFork[Terminal[x], Terminal[x+1]]▮38  

is equivalent to the following: 

   TrieFork[Trie[Terminal[5], Trie[Terminal[6]]▮  

 The pattern TrieForkInteger[x, y] matches  

      TrieFork[Trie[Terminal[5], Trie[Terminal[6]]▮ 

and binds x to Terminal[5] and y to Terminal[6]. 
 

Below is the definition of a procedure that computes a list that is the “fringe” 

of the terminals of a Trie.i 

Actor TrieFringeaType 

  [aTrie:TrieaType]:[aType*]  →  
     aTrie �  
       TerminalaType[x] ⦂ [x] ⍌ 
       TrieForkaType[left, right] ⦂  
                    [⩛TrieFringe∎[left], ⩛TrieFringeaType∎[right]] ⍰▮39 

 

The above procedure can be used to define TrieSameFringe? that determines 

if two lists have the same fringe [Hewitt 1972]: 

   Actor TrieSameFringe?aType 
       [left:TrieaType, right:TrieaType]:Boolean →      
                                                     //  test if two Tries have the same fringe 

           TrieFringeaType∎[left] = TrieFringeaType∎[right]▮40 

 

The formal syntax of structures is in the following end note:  41 

 

  

                                                           
i See definition of Trie above in this article. 
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Nullable 

Distinguishing a special case to indicate the absence of an Actor of a type 
is a long-time issue [Hoare 2009]. 
 
In an expression, 

 “Nullable” followed by an Expression is a non-null nullable. 
 “Null” followed by a type is the nullable that is the null of that 

type. 
 “⦾” followed by an expression for a nullable is the Actor in the 

nullable or throws an exception if an only if the nullable is null. 
 
For example, 

 Nullable 3 is of type NullableInteger  
 3▮ is equivalent to ⦾Nullable 3▮ 

 ⦾Null Integer▮ throws an exception 
 
In a pattern, 

 “⦾” followed by a pattern matches a nullable if and only if it is 
non-null and the pattern matches the Actor in the nullable. 

 “Null” followed by  a type only matches the null of the type. 
 
For example, 

 The pattern ⦾x matches Nullable 3, binding x to 3 
 

The formal syntax of nullables is in following end note:  42. 
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Processing Exceptions, i.e., Try catch� ⦂  ,  ⦂  ⍰ and Try cleanup 

It is useful to be able to catch exceptions. The following illustration returns 

the string “This is a test.”: 

      Try Throw Exception["This is a test."] catch� 
            Exception[aString] ⦂ aString ⍰▮ 
 

The following illustration performs Reset∎[ ] and then rethrows 

Exception["This is another test."]: 
        Try Throw Exception["This is another test."] cleanup Reset∎[ ]▮ 
 

The formal syntax of processing exceptions is in the following end note:  43. 
 

Runtime Requirements, i.e., Preconditions  and postcondition  

A runtime requirement throws exception an exception if does not hold.  

For example, the following expression throws an exception that the 

requirement x0 doesn't hold:  

                Let x  ← –1｡ 

                   Preconditions x0｡   // commentary for error checking  
                       SquareRoot∎[x]▮ 
 

Post conditions can be tested using a procedure. For example, the following 

expression throws an exception that postcondition failed because square root 

of 2 is not less than 1: 

        SquareRoot∎[2] postcondition [y:Float]:Boolean → y<1▮  
 

The formal syntax requirements is in the following end note:  44. 
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Multiple implementations of a type 

The interface type Complex is defined as follows: 

  Interface Complex with ⟦Real⟧  |••> Float, 
                                                ⟦Imaginary⟧  |••> Float, 
                                                ⟦Magnitude⟧  |••> Float, 
                                                ⟦Angle⟧  |••> Degrees▮ 
 
Cartesian Actors that implement Complex can be defined as follows: 
 

Structure Cartesian[myReal:Float default 0, myImaginary:Float default 0]  
   implements Complex using        
      ⟦real⟧:Float → myReal¶ 
      ⟦imaginary⟧:Float → myImaginary¶ 
      ⟦magnitude⟧:Float →  

              SquareRoot∎[myRealmyReal + myImaginarymyImaginary]¶ 
      ⟦angle⟧:Degrees →  

   Let theta ← Arcsine∎[myImaginary/∎∎⟦magnitude⟧]｡ 

             myReal>0 �  

                    True ⦂ theta⍌  
                    False ⦂ myImaginary >0 � 
                                         True ⦂180o−theta⍌45                          
                                         False ⦂180o+theta ⍰ ⍰§▮  
 

Consequently, 

 Cartesian[1, 2]∎⟦real⟧▮ is equivalent to 1▮ 
 Cartesian[3, 4]∎⟦magnitude⟧▮ is equivalent to 5.0▮ 

 

For example: 
   Actor Times 
      [u:Complex, v:Complex]:Complex  → 
         Cartesian[u∎⟦real⟧v∎⟦real⟧ – u∎⟦imaginary⟧v∎⟦imaginary⟧, 
                             u∎⟦imaginary⟧v∎⟦real⟧ + u∎⟦real⟧v∎⟦imaginary⟧]▮46 
 

   Actor Equivalent 
      [u:Complex, v:Complex]:Boolean →  
         myReal= u∎⟦real⟧= v∎⟦real⟧  u∎⟦imaginary⟧=v∎⟦imaginary⟧▮  
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Arguments with named fields, i.e.,  ⌸  and :⌸ 

Polar Actors that implement 

Complex with named arguments 

angle and magnitude can be 

defined as follows: 
 
 
 

Structure Polar[angle⌸ _:Degrees default 0o, 
                              // angle of type Degrees is a named argument of Polar with 

                              //  default 0o 
                               magnitude⌸ _:Length default 1]  
  implements Complex using 
      ⟦real⟧:Float → magnitudeSine∎[angle]¶ 
      ⟦imaginary⟧:Float → magnitudeCosine∎[angle]§▮ 

 
Consequently, 

 Polar[ ]∎⟦real⟧▮ is equivalent to 1▮ 

 

For example: 
   Actor Times 
      [Polar[angle⌸ anAngle, magnitude⌸ aMagnitude], 
       Polar[angle⌸ anotherAngle, magnitude⌸ anotherMagnitude]] 
                                                                                                          :Complex →  
          Polar[angle⌸ anAngle+anotherAngle, 
                     magnitude⌸ aMagnitudeanotherMagnitude]▮47 

 

The formal syntax of named arguments is in the following end note:  48. 

 

  

Symbols 

→  ⌸ 

⍰ ¶ § ▮ 

 

keyword  
argument 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

40 

Lists, i.e., [  ] using Spread, i.e., [   ⩛   ] 

The prefix operator "⩛" can be used to spread the elements of a list. For 

example  

 [1, ⩛[2, 3], 4] is equivalent to [1, 2, 3, 4]. 
 [[1, 2], ⩛[3, 4]] is equivalent to [[1, 2], 3, 4] 
 If y is [5, 6], then [1, 2, y, ⩛y]▮ is equivalent [1, 2, [5, 6], 5, 6]▮ 

 

The formal syntax of list expressions is in the following end note:  49. 

 

Within a list, “⩛”is used to match the pattern that follows with the list zero or 

more elements. For example: 

 [[x, 2], ⩛y] is a pattern that matches [[1, 2], 3, 4] and binds x to 1 and 

y to [3, 4] 

 if y is [3, 4] then [[1, 2], ⩛⌕y] matches [[1, 2], 3, 4] 
 [⩛x, ⩛y] is an illegal pattern because it can match ambiguously  

 

The formal syntax of patterns is in the following end note:  50. 

 

  



 

 

 

 

 

 

 

 

 

 

 

 

 

41 

As an example of the use of 

spread, the following procedure 

returns every other element of a 

list beginning with the first: 

 

 

Actor AlternateElementsaType 

    [aList:[aType*]]:[aType*] →                         
    aList �  
       [ ] ⦂ [ ] ⍌                         
       [anElement] ⦂ [anElement] ⍌ 
       [firstElement, secondElement] ⦂ [firstElement] ⍌ 
       else ⦂ 
           [firstElement, secondElement, ⩛remainingElements] ⦂  

               [firstElement, ⩛AlternateElements∎[remainingElements]] ⍰▮51 

 

Consequently, 

 AlternateElementsInteger∎[[ ]]▮ is equivalent to [ ]:[Integer*]▮ 
 AlternateElementsInteger∎[[3]]▮ is equivalent to  

[3]:[Integer*]▮ 
 AlternateElementsInteger∎[[3, 4]]▮ is equivalent to  

[3]:[Integer*]▮ 
 AlternateElementsInteger∎[[3, 4, 5]]▮ is equivalent to 

[3, 6]:[Integer*]▮ 
 

Sets, i.e., {  } using spreading, i.e., {   ⩛   } 

A set is unordered with duplicates removed.  

  

The formal syntax of sets is in the following end note:  52. 

 

Multisets, i.e., ⦃⦄ using spreading, i.e., ⦃ ⩛ ⦄ 

A set is unordered with duplicates allowed.  

 

The formal syntax of multisets is in the following end note:  53. 

 

  

Symbols 

� ⦂ ⍌ ⩛ 
   

⍰ ▮ 

spread 
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Maps, i.e., Map{ } 

A map is composed of pairs. For example Map{[3, “a”], [“x”, “b”]}▮ 
 

Pairs in maps are unordered, e.g., Map{[3, “a”], [“x”, “b”]}▮ is equivalent to 

Map{[“x”, “b”], [3, “a”]}▮.  
 

However, the expression Map{[“y”, “b”], [“y”, “a”]} throws an exception 

because a map is univalent.   

 

As another example, for the contact records of 1.1 billion people, the 

following can compute a list of pairs from age to average number of social 

contacts of US citizens sorted by increasing age making use of the 

following: 

 

    Structure ContactRecord[yearsOld ⌸ _:Age,  
                                                     numberOfContacts ⌸ _:Integer, 
                                                     citizenship ⌸ _:String]▮ 
 

[ContactRecord*]  has 

     filter[[ContactRecord]  |••> Boolean]  
           |••> {ContactRecord*}, 

      collect [[ContactRecord]  |••> [Age, Integer]]  
           |••> MapAge, {Integer*}▮ 
 
MapAge, {Integer*}  has 
       reduceRange[[{Integer*}]  |••> Float] 
           |••> MapAge, Float▮ 
 

{Number*}  has:  average[ ]  |••> Float▮ 
 
MapAge, Float has 
         sort[[Age, Age] |••> Boolean]  
            |••> [Age, Float]▮  
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The program is a follows:54 

 
Actor AgeWithAverageOfNumberOfContactsSortedByAge 

    [records:{ContactRecord*}]:SortedAge → 
       records∎filter [[aRecord:ContactRecord]  
                                       ••>  aRecord∎⟦citizenship⟧ �  
                                                  “US” ⦂ True ⍌  
                                                  else ⦂ False ⍰] 
                      ∎collect [[aRecord:ContactRecord]  
                                          ••>  [aRecord∎⟦yearsOld⟧,  
                                                   aRecord∎⟦numberOfContacts⟧] 
                      ∎reduceRange 
                           [[aSetOfNumberOfContacts:{Integer*}] 
                                ••>  aSetOfNumberOfContacts∎average[ ]] 
                      ∎sort[LessThanOrEqualAge]▮ 

 

The formal syntax of maps is in the following end note:  55. 

 

Futures, i.e., Future and ⦾ 

A future [Baker and Hewitt 1977] for an expression can be created in 

ActorScript by using “Future” preceding the expression. The operator “⦾” 

can be used to "reduce" a future by returning an Actor 

computed by the future or throwing an exception. For 

example, the following expression is equivalent to 

Factorial∎[9999]▮ 
 

 

   Let aFuturei ←Future Factorial∎[9999]｡ 

      ⦾aFuture▮     // do not proceed until Factorial∎[9999] has 
                               //  been reducedii 
 

Futures allow execution of expressions to be adaptively executed indefinitely 

into the future.56 For example, the following returns a future  

 Let aFuture ← Future Factorial∎[9999], 
        g ← ([afuture:FutureInteger]:Integer → 5)｡  
                                                     // g returns 5 regardless of its argument 

    g∎[aFuture])▮   
            // return 5 regardless of whether Factorial∎[9999] has completediii 

                                                           
i f is of type FutureInteger 

ii i.e. returned or threw an exception 

iii i.e. Factorial∎[1000] might not have returned or thrown an exception when 5 is 

returned. The future f will be garbage collected. 

Symbols  

←  ⦾ 
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reduce 
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Note that the following are all equivalent: 

 ⦾Future (4+Factorial∎[9999])▮ 
  4+⦾Future Factorial∎[9999]▮ 

 4+□Factorial∎[9999]▮ 

 □(4+Factorial∎[9999])▮ 
 

Also □Factorial∎[9999]+ □Fibonacci∎[9000]▮ is equivalent to the following: 
              Let   n ←□Factorial∎[9999],  
                         m ←□Fibonacci∎[9000]｡ 
                    n+m▮    // return Factorial∎[9999]+Fibonacci∎[9000] 
 

In the following example, Factorial∎[9999] might never be executed if 

readCharacter∎[ ] returns the character 'x': 

                Let aFuture ← Future Factorial∎[9999]｡ 
                   readCharacter∎[ ] �  
                             'x' ⦂ 1⍌                                  // readCharacter∎[ ] returned 'x' 

                             else ⦂ 1+ ⦾aFuture ⍰▮  
                                       // readCharacter∎[ ] returned something other than 'x' 

In the above, program resolution of aFuture is highlighted in yellow. 

 

The procedure Size below can compute the size of a FutureListString57 

concurrently with its being created: 

  Actor Size 
    [aFutureList:FutureListString]:Integer → 

      aFutureList �              
         [ ] ⦂ 0⍌     
         [first, ⩛rest] ⦂ first∎⟦length⟧ + Size∎[⦾rest] ⍰▮58  

                       // reducing a FutureList reduces only the head 
 

Below is the definition of a procedure that postpones computation of a 

FutureList that is the “fringe” of a Trie.i 

  Actor TrieFringeaType 

       [aTrie:TrieaType]:FutureListaType → 

     aTrie �  
         TerminalaType[x] ⦂ [x] ⍌ 
         ForkTrieaType[left, right] ⦂  
           [⩛TrieFringe∎[left], ⩛Postpone59 TrieFringeaType∎[right]] ⍰▮60 

 

The above procedure can be used to define SameFringe? that determines if 

two lists have the same fringe [Hewitt 1972]: 

                                                           
i See definition of Tree above in this article. 
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   Actor TrieSameFringe?aType 
      [aTrie:TrieaType, anotherTrie:TrieaType]:Boolean →      
                                                     //  test if two Tries have the same fringe 

            TrieFringeaType∎[aTrie] = TrieFringeaType∎[anotherTrie]▮ 
      // = reduces futures in the fringes 
 

The procedure below given a list of futures returns a FutureList with the same 

elements reduced: 

 

Actor FutureListOfReducedElementsaType 

 [aListOfFutures:[FutureaType*]]:FutureListaType → 
    aListOfFutures � 
       [ ] ⦂ [ ] ⍌ 

       [aFirst, ⩛aRest] ⦂   
          [⦾aFirst, 
           ⩛Future FutureListOfReducedElementsaType∎[⦾aRest]] ⍰▮61 

  
The formal syntax of futures is in the following end note:  62. 
 

Language extension, i.e., ⦅   ⦆ 

The following is an illustration of language extension that illustrates 

postponed execution:63 

Actor ⦅“Postpone”  anExpression:Expression aType⦆ 
                                                                                                       :PostponeaType 
   implements ExpressionFutureaType using  

eval[e:Environment]:FutureaType → 
        Future Actor implements aType using                                   
                         aMessage →         //  aMessage received 

                       Let postponed ←  anExpression∎eval[e]｡ 
                               postponed∎aMessage    
                                             // return result of sending aMessage to postponed 

                              become postponed§▮ 

                                           //  become the Actor postponed for  

                                           //  the next message receivedi 
 

The formal syntax of language extension is in the following end note:  64. 

                                                           
i this is allowed because postponed is of type aType 
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In-line Recursion (e.g., looping) , i.e.    ∎[   ←   ,   ←    ]  ≜  

Inline recursion (often called looping) is accomplished using an initial 

invocation with identifiers initialized using “←” followed by  

“≜” and the body.i 

 

Below is an illustration of a loop Factorial with two loop identifiers n and 

accumulation. The loop starts with n equals 9 and value equal 1. The loop is 

iterated by a call to Factorial with the loop identifiers as arguments. 

Factorial∎[n ←9, accumulation ←1]  ≜ 
     n=1 � True ⦂ accumulation ⍌  
                    False ⦂ Factorial∎[n–1, n accumulation] ⍰▮ii 

 

The above compiles as a loop because the call to Factorial in the body is a “tail 

call” [Hewitt 1970, 1976; Steele 1977]. 

 

The following expression returns a list of ten times successively calling the 

parameterless procedure Piii (of type [ ]↦ Integer): 

FirstTenSequentially∎[n ←10] ≜ 
         n=1 � True ⦂ [P∎[ ]] ⍌ 
                        False ⦂ Let x ← P∎[ ]｡ 

                                        [x, ⩛FirstTenSequentially∎[n–1]] ⍰▮65 
 

The following returns one of the results of concurrently calling the procedure 

Piv (which has no arguments and returns Integer) ten times with no 

arguments: 

 OneOfTen∎[n ←10] ≜  
         n=1  � True ⦂ P∎[ ] ⍌   

                         False ⦂ □P∎[ ] either □OneOfTen∎[n–1]] ⍰▮66 
 

The formal syntax of looping is in the following end note:  67. 

                                                           
i This construct takes the place of while, for, etc. loops used in other programming 

languages. 
ii equivalent to the following:   

  Factorial∎[n:Integer ←9, accumulation:Integer ←1]:Integer ≜ 
         n=1 � True ⦂ accumulation ⍌  

                            False ⦂ Factorial∎[n–1, n accumulation] ⍰▮ 
iii The procedure P may be indeterminate, i.e., return different results on successive 

calls. 
iv The procedure P may be indeterminate, i.e., return different results on different 

calls. 
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Strings 

Strings are Actors that can be expressed using   ““”, string arguments, and “””. 

For example,  

 “"1", "23", "4"”▮ is equivalent to "1234"▮. 

 “"1", "2", "34", “56”]▮ is equivalent to "123456"▮. 

 “ “"1", "2"”, "34"”▮ is equivalent to "1234"▮. 

 “ ”▮ is equivalent to ""▮. 
 

String patterns are delimited by ““” and “””. Within a string pattern, “⩛” is 

used to match the pattern that follows with the list zero or more characters.  

For example: 

 “x, "2", ⩛y] is a pattern that matches "1234" and binds x to "1" and 
y to "34". 

 “"1", "2", ⩛⌕y” is a pattern that only matches “1234” if y is "34". 
 “⩛x, ⩛y” is an illegal pattern because it can match ambiguously.  
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As an example of the use of spread, the following procedure reverses a 

string:68 

Actor Reverse 

    [aString:String]:String 

             aString �         

                “ ” ⦂ “ ”  ⍌ 
            “first, ⩛rest” ⦂ “⩛rest, first” ⍰▮ 

 
The formal syntax of string expressions is in the following end note:  69. 

 

General Messaging, i.e., ∎   and ⨀ 

The syntax for general messaging is to use an expression for the recipient 

followed by “∎”  and an expression for the message. 

 

For example, if anExpression is of type ExpressionInteger  then, 

       anExpression∎eval[anEnvironment]▮  
is equivalent to the following: 

       Let aMessage ← eval⨀ExpressionInteger[anEnvironment]｡ 
           anExpression∎aMessage▮ 
 

The formal syntax of general messaging is in the following end note:  70. 

 

  

Symbols 

� ⦂ ⍌ ⩛ 

⍰ ¶ § ▮ 
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Atomic Operations, i.e. Atomic  compare  update updated notUpdated 

For example, the following example implements a lockable that spins to 

lock:71 

 

Actor  SpinLock[ ]  
    locked ≔ False｡// initially unlocked 

    implements Lockablei  using    

        lock[ ]:Void →  

                Attempt∎[ ] ≜          // perform the loop Attempt as follows 
                       Atomic locked compare False update True �        

                                // attempt to atomically update locked from False to True 

                                    updated ⦂ Preconditions locked=True｡       
                                                     // commentary for error checking:  

                                                                                             // locked must have contents True 

                                                   Void⍌     // if updated return Void 

                                    notUpdated ⦂ Attempt∎[ ] ⍰¶      // if not updated, try again 

         unLock[ ]:Void →  
               Preconditions locked =True｡ // commentary for error checking:  

                                      // locked must have contents True 
                    Void afterward locked ≔ False §▮    // reset locked to False 

                                            
The formal syntax of atomic operations is in the following end note:  72. 

  

                                                           
i Interface Lockable with lock[ ]↦ Void, 
                                                  unLock[ ]↦ Void▮ 
 

Symbols 

 → � ⍌ ⦂ 
⍰ ¶ § ▮ 
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Enumerations, i.e., Enumeration of    using Qualifiers, i.e., ` 

An enumeration definition provides symbolic names for alternatives using 

“Enumeration” followed by the name of the enumeration, “of”, a list of 

distinct identifiers terminated by “▮”. 

 

For example,  

 
     Enumeration DayName of Monday, Tuesday, Wednesday, Thursday,  
                                                           Friday, Saturday, Sunday▮ 
 
From the above definition, an enumerated day is available using a qualifier, 
e.g., Monday⨀DayName. Qualifiers provide for namespaces.  
 

The formal syntax of qualifiers is in the following end note:  73. 
 
The procedure below computes the name of following day of the week given 
the name of any day of the week: 
 

UsingNamespace DayName▮                      
Actor FollowingDay 
   [aDay:DayName]:DayName Actor 
      aDay � Monday ⦂ Tuesday, 
                      Tuesday ⦂ Wednesday, 
                       Wednesday ⦂ Thursday, 
                      Thursday ⦂ Friday, 
                      Friday ⦂  Saturday, 
                      Saturday ⦂ Sunday, 
                      Sunday ⦂ Monday ⍰▮ 
 

The formal syntax of enumerations is in the following end note:  74. 
 

Native types, e.g., JavaScript, JSON, Java, and XML 

Object can be used to create JavaScript Objects.  Also, Function can be used 

to bind the reserved identifier This. For example, consider the following 

ActorScript for creating a JavaScript object aRectangle (with length 3 and 

width 4) and then computing its area 12:  

           Let  aRectanglei  ← Object {"length": 3, "width": 4]}, 
                    aFunction  ← Function [ ]→ This⟦"length"⟧ * This⟦"width"⟧｡ 

               Prep Rectangle⟦"area"⟧ ≔ aFunction｡ 
                   aRectangle⟦"area"⟧∎[ ]▮ 
 

  

                                                           
i aRectangle is of type Object`JavaScript 
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The setTimeout JavaScript object can be invoked with a callback as follows 

that logs the string "later" after a time out of 1000: 

   setTimeout⨀JavaScript∎[1000,  
                                                   Function [ ]→ 
                                                                   console⨀JavaScript∎["log"]∎["later"]]▮ 
 

JSON is a restricted version of Object that allows only Booleans, numbers, 

strings in objects and arrays.i 

 

Native types can also be used from Java. For example, if  s:String⨀Java, 
then s∎substring[3, 5]ii is the substring of s from the 3rd to the 5th characters 

inclusive. 

 

Java types can be imported using Import, e.g.: 

 

Namespace mynamespace▮ 
Import java.math.BigInteger▮ 
Import java.lang.Number▮ 
 

After the above, BigInteger∎new["123"]∎instanceof[Number]▮ is equivalent 

to True▮. 
 

The following notation is used for XML:75 

XML <“PersonName”> <“First”>“Ole-Johan” </“First”>  

                                      <“Last”> “Dahl”</“Last”> </“PersonName”> 

and could print as: 

<PersonName> <First> Ole-Johan </First>  

                          <Last> Dahl </Last> </PersonName> 

 

XML Attributes are allowed so that the expression 

XML <“Country”  “capital”=“Paris”> “France” </“Country”> 
and could print as: 

<Country capital=“Paris”> France </Country> 

 

 
                                                           
i i.e. the following JavaScript types are not included in JSON: Date, Error, Regular 

Expression, and Function. 
ii substring is a method of the String class in Java 

XML construction can be performed in the following ways using the append 
operator: 

 XML <“doc”> 1, 2,  ⩛[3] </“doc”>]▮ is equivalent to XML <“doc”>1, 2, 

3</“doc”>▮ 

 XML <“doc”>1, 2,  ⩛[3],  ⩛[4] </“doc”>]▮ is equivalent to XML <“doc”> 1, 2, 3, 

4 </“doc”>▮ 
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One-way messaging, e.g., ⊝, ↞, and ↠ 

One-way messaging is often used in hardware implementations. 

 

Each one-way named-message send consists of an expression followed by 

“↞”, a message name, and arguments delimited by “[” and “]”.  

 

The following is a interface for a 

customer that is used in 

request/response message passing for 

return type aType:76 

e-way message send 
Interface CustomeraType with 
    return [aType] ↦ ⊝, 
    throw[Exception] ↦ ⊝▮ 
For example, if aCustomer is of type CustomerInteger, then 3 can be 

returned to aCustomer using aCustomer↞return[3].  
 
The formal syntactic definition of one-way named-message sending is in the 

end note: 77 
 
Each one-way message handler implementation consists of a named-message 

declaration pattern followed by “↠” and a body for the response which must 

ultimately be “⊝” which denotes no response.  

 

The formal syntactic definition of one-way named-message implementation 

is in the following end note: 78  

Symbols 

 ↦ 
⊝ 

 

one-way  
message send 
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The following is an implementation of an arithmetic logic unit that 

implements jumpGreater and addJumpPositive one-way messages: 

 

 
 
 
 
 
 
 
 

Actor ArithmeticLogicUnitaType[ ]  
    implements ALUaType using 
        jumpGreater[x:aType, y:aType,  
                               firstGreaterAddress:Address, elseAddress:Address]↠  
                 InstructionUnit↞Execute[(x>y) �  
                                                                         True ⦂ firstGreaterAddress⍌   
                                                                         False ⦂ elseAddress ⍰]¶ 
         addJumpPositive[x:aType, y:aType, sumLocation:LocationaType,  
                                           positiveAddress:Address, elseAddress:Address]↠  

            Let z ← (x+y)｡ 

               sumLocation � 
                   aVariableLocation:VariableLocationaTypei ⦂ 

                        Prep VariableLocation∎store[z]｡                                    

                                                         // continue after acknowledgement of store 
                             (z >0) � True ⦂ InstructionUnit↞execute[positiveAddress] ⍌   
                                                False ⦂ InstructionUnit↞execute[elseAddress] ⍰⍌ 
                    aTemporaryLocation:TemporaryLocationaTypeii ⦂ 

                        aTemporaryLocation↞write[z],                                          
                                                    // continue concurrently with processing write 
                         (z >0) � True ⦂ InstructionUnit↞execute[positiveAddress] ⍌ 
                                             False ⦂ InstructionUnit↞execute[elseAddress] ⍰ ⍰§▮  

 

  

                                                           
i VariableLocationaType has store[aType]↦ Void▮ 
ii TemporaryLocationaType has write[aType] ↦ ⊝▮ 
 

Symbols 

 � ⦂ ⍌    ↞ ↠ 
⍰ ¶ § ▮ 

 
 

one-way  
message receive 
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Using multiple other implementations , i.e., ⍠ 
 

This section presents an example of using multiple other 
implementations such as the ones below: 
 

Actor Male[aLength:Meter]  
       ⟦length⟧:Meter → aLength§▮ 

 

Actor Human[aMagnitude:Year] 
       ⟦magnitude⟧:Year → aMagnitude§▮ 

 

Boy below makes use of both the Male and Human implementations: 

 
Actor Boy[aMagnitude:Meter, aLength:Year] 

                                                                                                   uses Male[aMagnitude], Human[aLength]｡ 
           //  uses implementations Male and Human79  

       ⟦magnitude⟧:Meter → (⍠Male)∎⟦length⟧¶ 
                //  using this Actor with Male interface 
       ⟦length⟧:Year →  (⍠Human)∎ ⟦magnitude⟧§▮ 

                //  using this Actor with Human interface 
 

For example, 
 Boy[Meter[3], Year[4]]∎⟦magnitude⟧▮ is equivalent to Meter[3]▮ 

 Boy[Meter[3],  Year[4]]∎ ⟦length⟧▮ is equivalent to Year[4]▮  
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Inconsistency Robust Logic Programs 

 

Logic Programs80 can logically infer computational steps. 

 

Forward Chaining 

Forward chaining is performed using ⊢ 

 

 
 

 
 

Illustration of forward chaining: 

⊢t Human[Socrates]▮ 

When ⊢t Human[x] → ⊢t Mortal[x]▮ 

 will result in asserting Mortal[Socrates] for theory t 

 

Backward Chaining 

Backward chaining is performed using ⊩ 

 

 
 

 
 

 
 

  

⦅“⊢”
Theory

 PropositionExpression ⦆ 

           Assert PropositionExpression  for Theory. 

⦅“When”  “⊢”
Theory

 aProposition:Pattern  “→” Expression ⦆ 

         When aProposition holds for Theory, evaluate Expression. 

⦅“⊩”
Theory

 aGoal:Pattern “→” Expression ⦆ 

Set aGoal for Theory and when established evaluate Expression. 

⦅“⊩”
Theory

 aGoal:Pattern ⦆:Expression 
Set aGoal for Theory and return a list of assertions that satisfy the goal. 

⦅“When”  “⊩”
Theory

 aGoal:Pattern “→” Expression ⦆  

      When there is a goal that matches aGoal for Theory, evaluate 

Expression. 
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Illustration of backward chaining: 

⊢t Human[Socrates]▮ 

When ⊩t Mortal[x] → (⊩t Human[⌕x] → ⊢t Mortal[x])▮ 
⊩t Mortal[Socrates]▮ 

will result in asserting Mortal[Socrates] for theory t. 

 

SubArguments 

This section explains how subargumentsi can be implemented in natural 

deduction. 

When ⊩s (psi ⊢t phi) →  
     Let t’ ← Extension∎[t]｡ 
          ⊢t’ psi,  
          ⊩t’ phi → ⊢s (psi ⊢t phi)▮ 
 

Note that the following hold for t’ because it is an extension of t: 

 when  ⊢t theta → ⊢t’ theta ▮ 

 when  ⊩t’ theta → ⊩t theta ▮ 
 
  

                                                           
i See appendix on Inconsistency Robust Natural Deduction. 
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Aggregation using Ground-Complete Predicates 

Logic Programs in ActorScript are a further development of Planner. For example, 

suppose there is a ground-complete predicate81 Link[aNode, anotherNode, 
aCost] that is true exactly when there is a path from aNode to anotherNode 

with aCost. 
 

When ⊩ Path[aNode, aNode, aCost]→ 
                                 // when a goal is set for a cost between aNode and itself 

     ⊢ aCost =0▮           // assert that the cost from a node to itself is 0 

 
The following goal-driven Logic Program works forward from start to 
find the cost to finish : 82 

When ⊩ Path[start, finish, aCost]→  

     ⊢ aCost =Minimum  {nextCost + remainingCost 
                                              | ⊨ Link[start, next≠start, nextCost], 
                                                     Path[next, finish, remainingCost]}▮ 
          // a cost from start to finish is the minimum of the set of the sum of the 
              // cost for the next node after start and 

                   // the cost from that node to finish 
 

 
 
 
 
 
 
The following goal-driven Logic Program works backward from finish to 
find the cost from start : 
When ⊩ Path[start, finish, aCost]→  

     ⊢ aCost  = Minimum  {remainingCost + previousCost  
                                                 | ⊨ Link[previous≠finish, finish, previousCost], 
                                                        Path[start, previous, remainingCost]}▮ 
          // the cost from start to finish is the minimum of the set of the sum of the 
              // cost for the previous node before finish and  

                  // the cost from start to that Node  

 

 
 
 
 
 
 
Note that all of the above Logic Programs work together concurrently 
providing information to each other. 

start 

finish 

next 

start 

nextCost 

finish 

previous 

previousCost 

remainingCost 

remainingCost 

finish 

finish 
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Appendix 2: Meta-circular definition of ActorScript 

It might seem that a meta-circular definition is a strange way to define a 

programming language.  However, as shown in the references, concurrent 

programming languages are not reducible to logic. Consequently, an 

augmented meta-circular definition may be one of the best alternatives 

available. 

 

The message eval  

John McCarthy is justly famous for Lisp. One of the more remarkable aspects 

of Lisp was the definition of its interpreter (called Eval) in Lisp itself. The 

exact meaning of Eval defined in terms of itself has been somewhat 

mysterious since, on the face of it, the definition is circular.83 

 

The basic idea is to send an expression an eval message with an environment 

to instead of the Lisp approach of sending the procedure Eval the expression 

and environment as arguments. 

 

Constructi is the fundamental type for ActorScript programming language 

constructs. ExpressionaType is an extension of Construct with an eval 
message that has an environment with the bindings of program identifiers 

and a message with an environment and cheese: 

           Interface ExpressionaType extends Construct with   
                                   eval[Environment]↦ aType, 
                                   perform[Environment, CheeseQ]↦ aType▮ 
 
BasicExpressionaType is an implementation that performs the functionality 

of leaving the cheese for expression being used as the continuation: 

           Actor BasicExpressionaType[ ]             
                 perform[e:Environment, c:CheeseQ] → 
                     Try Let anActor ← ⍠ExpressionaType∎eval[e]｡ 
                                Prep c∎leave[ ]｡ 
                                     anActor 
                         cleanup c∎leave[ ]§▮ 
 

The tokens ⦅ and ⦆ are used to delimit program syntax. 

 

 
                                                           
i Interface Construct▮ 

Actor ⦅anIdentifier:IdentifieraType⦆:Expression aType 

        uses BasicExpressionaType[ ]   
        partially implements ExpressionaType using 

               eval[e:Environment]→  e∎lookup[anIdentifier ]▮ 
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The interface Type 

The interface Type is defined as follows: 

      Interface TyperecipientType⊒(Message↦returnType) with 
                         extension?[Type] |••> Boolean, 
                         has?[MethodSignature] |••> Boolean, 
                         send[recipientType, Message] ↦ returnType,   
                                                                          // possible encryption of message 
                         return[returnType] ↦ Void,  
                                                                    // possible decryption of returned Actor 
                         throw[Exception] ↦ Void, 
                                                              // possible decryption of thrown exception 
                         ⟦constructor⟧ |••> Procedure, 
                         ⟦sending⟧ |••> SendingTyperecipientType, 
                         ⟦receiving⟧  |••> ReceivingTypereturnType▮ 

 
SendingType is a restriction of Type that can be used only for sending: 

Interface SendingTyperecipientType⊒(Message↦returnType) 

     restricts TyperecipientType⊒(Message↦returnType) using 

     send[recipientType, Message] ↦ returnType]▮ 

 

ReceivingType is a restriction of Type that can be used only for receiving: 

Interface ReceivingType recipientType⊒(Message↦returnType) 

     restricts TyperecipientType⊒(Message↦returnType) using 

   return[returnType] ↦ Void, 
   throw[Exception] ↦ Void▮ 

 

 
 

 
 

Actor ⦅anotherType:Type anotherType 

                            “⊒” aType:Type aType⦆:Expression Boolean 

  uses BasicExpressionaType[ ]   
  partially implements ExpressionBoolean using 
     eval[e:Environment]:Boolean → 
       (anotherType ∎eval[e])∎extension?[aType∎eval[e]]▮ 

Actor ⦅aType:Type 

                        “has?” aSignature:Signatture ⦆:Expression Boolean 

    uses BasicExpressionaType[ ]   
    partially implements ExpressionBoolean using 
       eval[e:Environment]:Boolean → 
           (aType ∎eval[e])∎has?[aSignature∎eval[e]]▮ 
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Interface CastableTypefromType, toType extends Type with 
                         up[fromType]↦ toType, 
                       down[fromType]↦ toType, 

                         down?[fromType]↦ Boolean▮ 

 
Actor SimpleCastableTypefromType, toType[ ]  
    uses FundamentalType[ ] 
    partially reimplements CastableTypefromType, toType using 
        up[anActor:fromType]:toType → Throw IllegalUpcast[ ]¶   
        down[anActor:fromType]:toType → Throw IllegalDowncast[ ]¶ 
        down?[anActor: fromType]:Boolean →  
                                                                          Throw IllegalDowncastQuery[ ]§ 
 
Interface RestrictionTypeaType  extends Type▮ 
 

 
 

 
 

Actor ⦅anExpression:Expression fromType 

                           “↑” castExpression:Type toType⦆:Up toType 

  uses BasicExpressiontoType[ ]    
  partially implements ExpressiontoType using 
      eval[e:Environment]:toType → 
           castExpression∎eval[e] � 
                aRestrictionType↓RestrictionType ⦂ 
                    aRestrictionType∎up[anExpression∎eval[e]] ⍌ 
                else  ⦂  

                     (fromType↓CastableTypefromType, toType) 
                            ∎up[anExpression∎eval[e]] ⍰▮ 

Actor ⦅anExpression:Expression fromType 

                             “↓” castExpression:Type toType⦆:Down toType 

  uses BasicExpressiontoType[ ]  
  partially implements ExpressiontoType using 
      eval[e:Environment]:toType → 
       ((castExpression∎eval[e])↓CastableTypefromType, toType) 
                                                                             ∎down[anExpression∎eval[e]]▮ 
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Type Discrimination 

 

 

  

Actor ⦅anExpression:Expression fromType 

                         “↓?” castExpression:Type toType⦆ 
                                                                                    :DownQuery Boolean 

  uses BasicExpressionfromType[ ] 
  partially implements ExpressionBoolean using 
       eval[e:Environment]:Boolean → 
           ((castExpression∎eval[e])↓CastableTypefromType, toType) 
                                                                            ∎down?[anExpression∎eval[e]]▮ 
 
 

Actor ⦅“Discrimination” aDiscriminationType “between”  
                     typeExpressions:Types  “▮”⦆:Definition 
   Actor implements Definition using  
       eval[e:Environment]:Environment →  
          e∎bind[aDiscriminationType, 

                        SimpleDiscrimination[{⩛typeExpressions∎eval[e]}]]▮ 

Actor SimpleDiscrimination[types:{Type*}] 
    [aDiscriminant:aType∊types]:InstanceDiscriminationType  →  
         SimpleInstanceDiscriminationTypeaType[aDiscriminant]   
 
Actor SimpleInstanceDiscriminationTypeaType[aDiscriminant:aType] 
     extends InstanceDiscriminationType  

     uses SimpleCastableTypeInstanceDiscriminationTypeaType,  
                                                         aType[ ]           
     partially reimplements  
                   CastableTypeInstanceDiscriminationTypeaType, 
                                                aType using           
        down[anActor:InstanceDiscriminationTypeaType]:aType →  
           anActor �   

               ⍠CastableTypeInstanceDiscriminationTypeaType, 
                                               aType⦂   
                      aDiscriminant ⍌                       

                 else ⦂ Throw IllegalDowncast[ ]¶  

        down?[anActor:InstanceDiscriminationTypeaType] 
                                                                                                             :Boolean→  
            anActor �   

                ⍠CastableTypeInstanceDiscriminationTypeaType, 
                                                aType ⦂ 
                     True ⍌                       

                  else ⦂ False ⍰§▮ 
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Type extends 

 

 

  

Actor ⦅“Actor” anExtensionType 
               “extends” typeExpression:Type aType  “▮”⦆:Definition 
   Actor implements Definition using  
       eval[e:Environment]:Environment →  
          e∎bind[anExtensionType, 
                        SimpleExtensionTypeanExtensionType, 
                                                                      typeExpression∎eval[e]]▮ 
 

Actor SimpleExtensionTypeaType, extendedFrom 

      extends ExtensionType  

       uses SimpleCastableTypeaType, extendedFrom[ ]           
     partially reimplements CastableTypeaType, 
                                                                                extendedFrom using           
         up[anInstance:aType]:extendedFrom → 
               SimpleUppedTypeaType, extendedFrom[anInstance]§▮ 
 
Actor SimpleUppedTypeaType, extendedFrom 

                                                                                                                [anInstance:aType] 
      uses SimpleCastableTypeaType, extendedFrom[ ]           
     partially reimplements CastableTypeaType, 
                                                                                extendedFrom using           
         down[anActor:CastableTypeaType,  
                                                                    extendedFrom]:aType → 
            anActor �   

                    ⍠CastableTypeaType, extendedFrom ⦂  anInstance ⍌ 

                      else ⦂ Throw  IllegalDownCast[ ] ⍰¶ 

         down?[anActor:CastableTypeaType,  
                                                                      extendedFrom]:Boolean → 
            anActor �   

                    ⍠CastableTypeaType, extendedFrom ⦂  True ⍌ 

                      else ⦂ False ⍰ §▮ 
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Nullable, e.g., ⦾ 

The type Nullable is used for nullables: 

            Interface NullableaType  
                  extends Type with reduce[ ]↦ aType▮ 
 

 
 

 
 

 
 

 
 

  

Actor ⦅“Nullable”  anExpression:Expression aType⦆ 
                                                                                      :Nullable aType  

     uses BasicExpressionNullableaType[ ]    
   partially implements ExpressionNullableaType using  
       eval[e:Environment]:NullableaType→  
          Let anActor ← anExpression∎eval[e]｡ 
              Actor implements NullableaTypeusing 
                             reduce[ ]→  anActor§▮  

Actor ⦅Null aType:Type aType⦆:NullExpression aType 

     uses BasicExpressionNullableaType[ ]    
   partially implements ExpressionNullableaType using 
       eval[e:Environment]:NullableaType →  
           Actor implements NullableaType using 
                reduce[ ]→  Throw IsNullException[ ] §▮  

Actor ⦅Null aType:Type aType⦆:NullPattern aType 
   implements PatternNullableaType using 
       match[anActor:NullableaType, e:Environment] 
                                                                      :NullableEnvironment →  
           anActor � 

                  Null aType∎eval[e] ⦂ Nullable e ⍌ 

                      else ⦂ Null Environment §▮ 

Actor ⦅“⦾”  anExpression:Expression NullableaType⦆ 
                                                                                   :Reduction aType  
   uses BasicExpressionaType[ ] 
   partially implements ExpressionaType using  
       eval[e:Environment]:aType →  
              ((anExpression∎eval[e])↓NullableaType)∎reduce[ ]§▮  



 

 

 

 

 

 

 

 

 

 

 

 

 

64 

Future, e.g., ⦾, and □ 

The type Future is used for futures: 

            Interface FutureaType  
                  extends Type with reduce[ ]↦ aType▮ 
 

 
 

 
 

 
  

Actor ⦅“Future”  anExpression:Expression aType⦆ 
                                                                                            :Future aType 

   uses BasicExpressionFutureaType[ ] 

   partially implements ExpressionFutureaType using  
       eval[e:Environment]:FutureaType →  
          Let aFuture ←  
                      Future Try anExpression∎eval[e]  
                                          catch� 
                                             anException ⦂   
                                                    Actor 
                                                       implements FutureaType  
                                                             reduce[ ]→Throw anException§⍰｡ 
              Actor implements FutureaTypeusing 
                             reduce[ ]→  ⦾aFuture §▮  

Actor ⦅“⦾”  anExpression:Expression FutureaType⦆ 
                                                                                    :Reduction aType 

   uses BasicExpressionaType[ ] 

   partially implements ExpressionaType using  
       eval[e:Environment]:aType →  
              ((anExpression∎eval[e])↓FutureaType)∎reduce[ ]§▮  

 

Actor ⦅“□”  anExpression:Expression aType⦆ 

                                                                                 :Mandatory aType 

   uses BasicExpressionaType[ ] 
   implements ExpressionaType using  
       eval[e:Environment]:aType →  
            ⦾Future anExpression∎eval[e] §▮  
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The message match 

Patterns are analogous to expressions, except that they take receive match 

messages: 

            Interface PatternaType with 
                 match [aType, Environment]↦ NullableEnvironment▮ 

 

 
 

 
 

 
  

Actor ⦅anIdentifier:Identifier aType⦆:Pattern aType  
 implements PatternaType using  

       match[anActor:aType, e:Environment]:NullableEnvironment →  
             e∎bind[anIdentifier,  to ⌸ anActor]▮ 

Actor ⦅“_”⦆:UniversalPattern aType   

  implements PatternaType using  
       match[anActor:aType, e:Environment]:NullableEnvironment → 
             Nullable e▮ 

Actor ⦅“⌕” anExpression:Expression aType⦆ 
                                                                                   :ValuePattern aType   

implements PatternaType using  
     match[anActor, e:Environment]:NullableEnvironment → 
       anActor �  
            anExpression∎eval[e] ⦂ Nullable e ⍌  
            else ⦂ Null Environment ⍰▮ 
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Message sending, e.g., ∎ 
 

 
 

 
 

 
 

  

Actor ⦅procedure:Expression  argumentsType↦returnType  

                         “∎”  “[” arguments:Arguments argumentsType “]”⦆ 
                                                                    :ProcedureSend returnType 

       uses BasicExpressionreturnType[ ]    
     partially implements ExpressionreturnType using  

           eval[e:Environment]:returnType →  
               (procedure∎eval[e])∎[⩛(expressions∎eval[e])]§▮ 

Actor ⦅recipient:Expression recipientType  

             “∎” name:MessageName  
                        “[” arguments:Arguments argumentsType “]”⦆ 
                                                         :NamedMessageSend returnType 

   uses BasicExpressionreturnType[ ]    
   partially implements ExpressionreturnType using 
      eval[e:Environment]:returnType →   
         Let aRecipient ← recipient∎eval[e]｡ 
            aRecipient 
               ∎SimpleMessage[QualifiedName[name, recipientType],  
                                                      [⩛arguments∎eval[e]]]§▮ 

Actor ⦅recipient:Expression recipientType   
                “∎” aMessage:Message messageType⦆ 
                                                                 :UnnamedMessageSend returnType 

   uses BasicExpressionreturnType[ ]    
   partially implements ExpressionreturnType using 
       eval[e:Environment]:returnType →  

          recipientType∎send[recipient∎eval[e], aMessage∎eval[e]]§▮ 
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List Expressions and Patterns 
 

 
 

 
 

 
 

  

Actor ⦅“[” first:Expression aType “,”  
                    second:Expression aType“]”⦆:Expression  [aType*] 

    uses BasicExpression[aType*][ ]    
    partially implements Expression[aType*] using 
       eval[e:Environment]:[aType*] →  
            [first∎eval[e], second∎eval[e]]:[aType*] §▮ 

Actor ⦅“[” first:Expression aType  “,”  

              “⩛” rest:Expression aType “]”⦆ :Expression [aType*] 

    uses BasicExpression[aType*][ ] 

    partially implements Expression[aType*] using  
         eval[e:Environment]:[aType*] →  

               [first∎eval[e], ⩛ rest∎eval[e]]:[aType*]§▮ 

Actor ⦅“[” first:Pattern aType  “,”   

                     “⩛” rest:Pattern [aType*] “]”⦆:Pattern [aType*] 

  implements Pattern[aType*] using 
      match[anActor:aType, e:Environment]:NullableEnvironment → 
          anActor �  
             [first, ⩛rest]:[aType*] ⦂  
                 first∎match[first, e] �  
                      Null Environment ⦂ Null Environment ⍌ 
                      ⦾aNewEnvironment ⦂  
                               rest∎match[restValue, aNewEnvironment] ⍰⍌ 
             else ⦂ Null Environment⍰§▮ 
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Exceptions 

 

 
  

 
 

Continuations using perform 

A continuations is a generalization of expression for executing in cheese, 

which receives perform messages: 

    Interface ContinuationaType extends Construct with 

                  perform[Environment, CheeseQ]↦ aType▮ 
 

 
 

  

Actor ⦅“Try” anExpression:Expression aType 

      “catch�”  exceptions:ExpressionCases Exception, aType “⍰”⦆ 
                                                                                     :TryExpression aType 

   uses BasicExpressionaType[ ] 

   partially implements ExpressionaType using    
      eval[e:Environment]:aType →   
           Try anExpression∎eval[e] catch� 
               anException:Exception ⦂  
                      CasesEval∎[anException, exceptions, e] ⍰§▮ 

Actor ⦅“Try” anExpression:Expression aType 

                          “cleanup” aCleanup:Expression aType⦆ 
                                                                                    :TryExpression aType 

   uses BasicExpressionaType[ ] 

    partially implements ExpressionaType using    
      eval[e:Environment]:aType →   
             Try anExpression∎eval[e] catch� 
                 _ ⦂  Prep aCleanup∎eval[e]｡ 

                          Rethrow⍰§▮ 

Actor ExecuteaType 
    [aConstruct:Construct,  
      e:Environment, 
      c:CheeseQ]:aType  → 
           aConstruct � aContinuation↓ContinuationaType ⦂  
                                           aContinuaton∎perform[e, c] ⍌ 
                                       anExpression↓ExpressionaType ⦂  
                                           anExpression∎eval[e] ⍰▮ 
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Atomic compare and update 

  

 
  

Actor ⦅“Atomic” location:Expression LocationanotherType,   
                      “compare”  comparison:Expression anotherType 

                     “update” update:Expression anotherType “�”    
                     “updated” “⦂”  
                            compareIdentical:ContinuationListaType “⍌”   

                      “notUpdated” “⦂”  
                            compareNotIdentical:ContinuationList aType⦆ 
                                                                                                              :Atomic aType 

     implements ContinuationaType using    
        perform[e:Environment, c:CheeseQ]:aType →  
         (location∎eval[e]) 
            ∎compareAndConditionallyUpdate[comparison∎eval[e], 
                                                                                 update∎eval[e]] � 

                True ⦂ compareIdentical∎perform[e, c] ⍌ 
                False ⦂  
                   compareNotIdentifical∎perform[e, c] ⍰▮ 
 

   Actor SimpleLocationanotherType[initialContents] 

       contents ≔ initialContents｡ 

       implements LocationanotherType using 

            compareAndConditionallyUpdate[comparison, update]:Boolean → 
                 (contents = comparison) �  
                       True ⦂ True afterward contents ≔ update⍌ 
                        False ⦂ False ⍰§▮ 
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Cases 
 

 
 

  

Actor ⦅anExpression:Expression anotherType “�”   

                               cases:ExpressionCases anotherType, aType “⍰”⦆ 
                                                                                    :CasesExpression aType 

 uses BasicExpressionaType[ ] 
   partially implements ExpressionaType using    
       eval[e:Environment]:aType →   
           CasesEval∎[anExpression∎eval[e], cases, e]§▮ 

 

Actor CasesEval 
    [anActor:anotherType,  

      cases:[ExpressionCaseanotherType, aType*], 

     e:Environment]:aType → 

  cases � 
     [ ] ⦂ Throw NoApplicableCase[ ] ⍌ 

      [first, ⩛rest] ⦂ 

        first � ⦅aPattern:Pattern anotherType “⦂”  

                              anExpression:Expression aType⦆ 
                                                                          :ExpressionCase aType ⦂ 

           aPattern∎match[anActor, e] � 
              ⦾Null ⦂ 
                    CasesEval∎[anActor, rest,  e] ⍌ 
              ⦾newEnvironment ⦂  
                    anExpression∎eval[newEnvironment] ⍰⍌  
       ⦅“else” elsePattern:Pattern anotherType“⦂” 

                     elseExpression:Expression aType⦆ 
                                                       :ExpressionElseCase aType ⦂  
           elsePattern∎match[anActor, e] � 
                ⦾Null ⦂   
                          Throw ElsePatternMustMatch[ ] ⍌ 
                ⦾newEnvironment ⦂ 
                          elseExpression∎eval[newEnvironment] ⍰⍌  
       ⦅“else” “⦂”  

                   elseExpression:Expression aType⦆ 
                                                      :ExpressionElseCase aType ⦂ 
               elseExpression∎eval[e] ⍌ 
       else ⦂ Throw NoApplicableCase[ ] ⍰⍰▮ 
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Actor ⦅anExpression:Expression anotherType “�”  

                          cases:ContinuationCases anotherType, aType “⍰”⦆ 
                                                                            :CasesContinuation aType 
 implements ContinuationaType using    
        perform[e:Environment, c:CheeseQ]:aType →  
                CasesPerform∎[anExpression∎eval[e], cases,  e, c]§▮ 
 
Actor CasesPerform 
        [anActor:anotherType,  

         cases:[ContinuationCaseaType*], 
       e:Environment,  

        c:CheeseQ]:aType → 

 cases � 

     [ ] ⦂ Throw NoApplicableCase[ ], 
[first, ⩛rest] ⦂  

     first �  ⦅aPattern:Pattern anotherType“⦂”  

                    aContinuation:Continuation aType⦆ 
                                                            :ContinuationCase aType ⦂ 
                   aPattern∎match[anActor, e] � 
                        ⦾Null ⦂  
                             CasesPerform∎[anActor, rest, e, c] ⍌ 
                        ⦾newEnvironment ⦂ 
                            aContinuation∎perform[newEnvironment, c] ⍰⍌ 

              ⦅“else”   

                       elsePattern:Pattern anotherType “⦂”  

                                   elseContinuation:Continuation aType⦆ 
                                                      :ContinuationElseCase aType  ⦂  
                               elsePattern∎match[anActor, e] � 
                                    ⦾Null ⦂   
                                          Throw ElsePatternMustMatch[ ] ⍌ 
                                    ⦾newEnvironment ⦂ 
                                           elseContinuation∎eval[newEnvironment] ⍰⍌  
              ⦅“else” “⦂” 

                               elseContinuation:Continuation aType⦆ 
                                                       :ContinuationElseCase aType ⦂  
                    elseContinuation∎perform[e, c] ⍌ 
                else ⦂ Throw NoApplicableCase[ ] ⍰⍰▮ 
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Holes in the cheese 

 
 

 
 

 
 

 
 

  

Actor ⦅anExpression:Expression aType   

                          “afterward” someAssignments:Assignments “｡”⦆ 
                                                                                        :Afterward aType 
    implements ContinuationaType using    
    perform[e:Environment, c:CheeseQ]:aType →  
         Let anActor ← anExpression∎eval[e]｡ 
             Prep someAssignments∎carryOut[e, c] 

 

                       c∎leave[ ]｡ 
                        anActor§▮ 

Actor ⦅aVariable:Variable aType 
                       “≔” anExpression:Expression aType⦆:Assignment  
  implements Assignment using    

      carryOut[e:Environment]:Void →  

              e∎assign[aVariable, to ⌸ anEpression∎eval[e]]§▮ 

Actor ⦅“Hole” anExpression:Expression aType⦆:Hole aType 
    implements ContinuationaType using 
      perform[e:Environment, c:CheeseQ]:aType → 
         Let frozenEnvironment ← e∎freeze[ ]｡ 
              // create frozen environment so that subsequent assignments 

             // subsequent assignments do not affect evaluating anExpression 
              Prep  c∎leave[ ]｡ 
                  anExpression∎eval[frozenEnvironment§▮ 

Actor ⦅“Prep” aPreparations:Preparations “｡”  
              anExpression:Expression aType⦆:Prep aType 

   implements ContinuationaType using 
     perform[e:Environment, c:CheeseQ]:aType →  
         Let frozenEnvironment ← e∎freeze[ ]｡ 
             // create frozen environment so that  

                  // preparation does not affect evaluating anExpression 
              Prep aPreparation∎carryOut[e, c] 
 

                          c∎leave[ ]｡ 

                    anExpression∎eval[frozenEnvironment] §▮ 
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Actor ⦅“Hole” anExpression:Expression anotherType 

                            “afterward” 
                       anAfterward:AfterwardContinuation aType “⍰”⦆ 
                                                                                                            :Hole aType 

implements ContinuationaType using    
  perform[e:Environment, c:CheeseQ]:aType → 
    Let frozenEnvironment ← e∎freeze[ ]｡ 
   Prep c∎leave[ ]｡ 

             Try Let anActor ← anExpression∎eval[frozenEnvironment]｡ 
                         Prep c∎enter[ ] 
 

                                    anAfterward∎perform[e, c]] 
 

                                     c∎leave[ ]｡ 
                               anActor 
                   catch�  
                  _ ⦂ 
                          Prep c∎enter[ ] 
 

                                     anAfterward∎perform[e, c] 
 

                                     c∎leave[ ]｡ 
                                  Rethrow⍰§▮ 

⦅“Hole” anExpression:Expression anotherType 

         “returned�”  
                returnedCases:ContinuationCases anotherType, aType “⍰” 

          “threw�”  
               threwCases:ContinuationCases anotherType, aType “⍰”⦆ 

                                                                                :HoleanotherType, aType 

implements ContinuationaType using  
   perform[e:Environment, c:CheeseQ]:aType → 
      Let frozenEnvironment ← e∎freeze[ ]｡ 

           Prep c∎leave[ ]｡ 

              Try Let anActor ← anExpression∎eval[frozenEnvironment]｡ 

                              Prep c∎enter[ ]｡ 

                         CasesPerform∎[anActor, returnedCases, e, c] 
                  cleanup 

                    Prep c∎enter[ ]｡ 

                       CasesPerform∎[anException, threwCases, e, c]⍰§▮ 



 

 

 

 

 

 

 

 

 

 

 

 

 

74 

 
 

 
  

Actor ⦅“Enqueue” anExpression:QueueExpression  “”⦆:Enqueue    

 implements Continuation using 
    perform[e:Environment, c:CheeseQ]→ 

            anExpression∎eval[e]∎enqueueAndLeave[ ] §▮ 

Actor ⦅“Enqueue” anExpression:QueueExpression  “” 

            aContinuation:Continuation aType⦆:Enqueue aType 
  implements ContinuationaType using 
     perform[e:Environment, c:CheeseQ]:aType → 

           Let anInternalQ ← anExpression∎eval[e]｡ 

               Prep anInternalQ∎enqueueAndLeave[ ]｡ 

                       aContinuation∎perform[e, c] §▮ 
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Type Discrimination, i.e., Discrimination, ↓ 

  

 

 
  

Actor ⦅“↓↓” discriminant:Pattern aType⦆⦆ 
                                                                               :Pattern aDiscrimination 
   implements PatternaDiscrimination using  
      match[anActor:aDiscrimination, e:Environment] 
                                                                               :NullableEnvironment →  
           anActor↓?aType �  
             True ⦂ apattern∎match[anActor↓aType, e] ⍌ 

               False ⦂ Null Environment ⍰▮ 

Actor ⦅“Discrimination” aDiscrimination “between”  
                 typeExpressions:Expressions Type “▮”⦆:Definition 
   implements Definition using  
       eval[e:Environment]:Void →  
          Let types ← typeExpressions∎eval[e]｡ 
                  Actor aDiscrimination 
                       [aType:Type] →  
                          aType∊types � 

                                 True ⦂ DiscriminationInstance∎[x, aType] ⍌ 
                                 False ⦂ Throw NotADisciminant[ ] ⍰▮ 
 

 Actor DiscriminationInstance[x:aType, aType:Type] 
    partially reimplements CastableTypeDiscriminationInstance, 
                                                                               aType  using 

         down[anotherType]:aType →  
            anotherType �   

                    aType ⦂  x ⍌ 

                       else ⦂ Throw WrongDisciminant[ ] ⍰ 
         down?[anotherType]:Boolean →  
            anotherType �   

                    aType ⦂  True ⍌ 

                      else ⦂ False⍰▮ 
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A Simple Implementation of Actor 

The implementation below does not implement queues, holes, and relaying. 
  

 
 

 
 

Actor ⦅“Actor” declarations:ActorDeclarations   

                        “implements” IdentifieraType   

                “using” handlers:Handlers anInterface “§”⦆:Definition 
    implements ExpressionanInterface  using 
       eval[e:Environment]→   
           InitializedaType∎[anInterface∎eval[e],  
                                                   handlers, 
                                 declarations∎initialize[e],  
                                                   CheeseQ[ ]]§▮ 

Actor InitializedaType 
   [anInterface:aType, 
     handlers:[Handler*], 
     e:Environment,  
     c:CheeseQ]:aType → 
      Actor implements anInterface using 
              receivedMessage →   // receivedMessage received for anInterface 

                   Prep c∎enter[ ]｡ 

                      Let aReturned ←  
                             Try Select∎[receivedMessage, handlers, e, c]  
                                   cleanup c∎leave[ ]｡ 
                                                                   // leave cheese and rethrow exception 

                         Prep c∎leave[ ]｡ 

                             aReturned§▮ 



 

 

 

 

 

 

 

 

 

 

 

 

 

77 

 
  

Actor Select 
   [receivedMessage:Message,  
     handlers:[Handler*], 
     e:Environment,   
     c:CheeseQ]:aType → 
       handlers � 
         [ ] ⦂ Throw MessageRejected[ ] ⍌ 
         [⦅aMessageDeclaration:MessageDeclaration aType  “→”  
                 body:Continuation aType⦆ 
                                                              :ContinuationHandleraType⍌ 
          ⩛restHandlers] ⦂  
               aMessageDeclaration∎match[receivedMessage, e] � 
                    Null Environment ⦂  
                          Select∎[receivedMessage, restHandlers, e, c] ⍌      
                                                 //  process next handler 
                    ⦾newEnvironment ⦂  
                         ExecuteaType∎[body, newEnvironment, c] ⍰⍰▮ 
                               //   execute body with augmentation of e  
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An implementation of cheese that never holds a lock 

The following is an implementation of cheese that does not hold a lock: 
 Actor CheeseQ [ ]  
                    invariants aTail=Null Activity ⇨ previousToTail=Null Activity｡ 

aHeadHint ≔ Null Activity,                 // aHeadHint:NullableActivity84 

aTail ≔ Null Activity｡                       // aTail:NullableActivity85 

enter[ ]:Void nonexclusive in myActivity →86 
       Preconditions myActivity∎⟦previous⟧= Null Activity,  
                                   myActivity∎⟦nextHint⟧= Null Activity｡ 

                                                                                       // commentary for error checking 

           attempt∎[ ]:Void ≜ 

               Prep myActivity∎⟦previous ≔ aTail⟧｡  // set provisional tail of queue 
 

                    Atomic aTail compare aTail update myActivity � 
                             updated ⦂   // inserted myActivity in cheese queue with previous 
                                   myActivity∎⟦previous⟧ � 
                                                    Null Activity ⦂ Void⍌ // successfully entered cheese 

                                                    else ⦂ Suspend ⍰⍌ // current activity is suspended 

                             notUpdated ⦂  attempt∎[ ] ⍰¶             // make another attempt 
leave[ ]:Void nonexclusive in myActivity →   
                                                            // leave message received running myActivity 
       Preconditions aTail≠Null Activity｡87 // commentary for error checking 

          Let ahead ← ⍠SubCheeseQ∎⟦head⟧｡ 

                Preconditions ahead=myActivity         // commentary for error checking 
                   Atomic aTail compare ahead update Null Activity� 
 

                           updated ⦂                   // last activity has left this cheese queue 
                                Void afterward aHeadHint ≔ Null Activity⍌    
                            notUpdated ⦂           // another activity is in this cheese queue 
                                     MakeRunnable ⦾ahead∎⟦nextHint⟧ 
                                            afterward aHeadHint ≔ ahead∎⟦nextHint⟧⍰§ 
   internal SubCheeseQ using                                               // internal interface  
        ⟦head⟧:Activity nonexclusive →   
          Preconditions aTail≠Null Activity｡// commentary for error checking       
            findHead∎[backIterator:Activity ← 
                                     aHeadHint � 
                                         Null Activity ⦂ ⦾aTail ⍌  

                                         ⦾anActivity ⦂ anActivity ⍰]:Activity ≜ 
               backIterator∎⟦previous⟧ � 
                  Null Activity ⦂       // backIterator  is head of this cheese queue 

                      Prep aHeadHint ≔ Nullable backIterator｡  

                          backIterator⍌ 
                  ⦾previousBackIterator ⦂ 
                                              //  backIterator  is not the head of this cheese queue 

                     Prep previousBackIterator∎⟦nextHint ≔ Nullable backIterator⟧｡ 

                                                             // set nextHint of previous to backIterator 
                         findHead∎[previousBackIterator] ⍰§▮ 
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The algorithm used in the implementation of  CheeseQ above is due to Blaine 

Garst [private communication] cf. [Ladan-Mozes and Shavit 2004].  

 

There is a state diagram for the implementation below: 

 

As a consequence of the definition of CheeseQ: 
     Implementation CheeseQ has  enter[ ] ↦ Void 

                                                   leave[ ] ↦ Void▮ 
 

The implementation CheeseQ uses activities to implement its queue 
where  
  Implementation Activity has  

⟦previous⟧ ↦ NullableActivity      
         //  if null then head of queue else, pointer to backwards list to head 

⟦previous ≔ NullableActivity⟧ ↦ NullableActivity 
         //  returns self so that updates can be chained      

    ⟦nextHint⟧ ↦ NullableActivity 
            // if non-null then pointer to next activity to get cheese after this one 

⟦nextHint ≔ NullableActivity⟧ ↦ NullableActivity▮ 
         //  returns self so that updates can be chained      

 
Implementation type InternalQ is defined on the next page 

where: 
      Implementation InternalQ has  

enqueueAndLeave[ ] ↦ Void,  
enqueueAndDequeue[InternalQ] ↦ Activity 
dequeue[ ] ↦ Activity  
empty?[ ] ↦ Boolean▮   

0  in thisCheeseQ            

aTail = NullTask
aHeadHint = NullTask  

1 in thisCheeseQ 

aTail != NullTask 
aHeadHint = aTail  

> 1 in thisCheeseQ 

aTail != NullTask
aHeadHint != aTail 

enter[ ] 
leave[ ] 

enter[ ] 

leave[ ] 

enter[ ] 

1 left

> 1 left
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Actor InternalQ[c:CheeseQ]  
   aQueue ← SimpleFIFOActivity[ ] ｡ 
   enqueueAndLeave[ ]:Void  in myActivity →      

                           // enqueueAndLeave message received in myActivity  

                 Prep  aQueue∎add[myActivity] 
 

                            c∎leave[ ]｡         // myActivity is the head of aCheeseQ   

                    Suspend¶   
                         // myActivity is suspended and when resumed returns Void ¶    
    enqueueAndDequeue[anInternalQ:InternalQ]:Activity in myActivity →       

       Preconditions anInternalQ∎empty?[ ]｡ 
                              // commentary for error checking      

                  Prep aQueue∎add[myActivity] 
 

                             ∎∎dequeue[ ]｡ 
                       Suspend¶ 
    dequeue[ ]:Activity  in myActivity →  
            Preconditions  ∎∎empty?[ ]｡       // commentary for error checking 

                   Prep c∎leave[ ]｡    

                                                                        // myActivity is the head of aCheeseQ 
   

                      MakeRunnable aQueue∎remove[ ]¶ 
                                                                // make runnable the removed activity     
    empty?[ ]:Boolean  → aQueue∎empty?[ ]§▮  

 

where 
     Interface FIFOaType has 

         add[anActivity:aType]  ↦ Void,  
         remove[anActivity:aType]  ↦ aType, 

     empty?[ ] ↦ Boolean▮ 
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Appendix 3.  ActorScript Symbols with IDE ASCII, and Unicode codes 

 
Symbol IDE 

ASCIIi 

Read as Category Matching 

Delimiters 
Unicode 

(hex) 

▮ ;; end  top level 

terminator 

 25AE 

: : of specified type infix   
⍠ [:] this Actor with 

interface (aspect) 

prefix  2360 

⦾ \O88 reduce 

(nullables, futures) 

prefix  29BE 

↓ \v/ down infix  2193 

↓? \v/? down query infix   

↓↓ \v/\v/ match downed prefix   

↑ (^) up infix  2191 

⨀ (.) qualified by infix  22A1 
∎ . is sent  infix   
∎∎ .. send  to this 

Actor 

prefix  2025 

□ 
||| necessarily 

concurrent 

prefix  29B7 

↦ |-> message type 

returns type89 

infix  21A6 

|••> |..> cacheable ↦     

→ --> message received90 infix ¶ 2192 

← <-- be91 infix  2190 

� ? cases separator ⍰ FFFD 
⍌ [\/] alternative case separator � and ⍰ 29B6 
⍰ [?] end cases terminator � and catch� 2370 

¶ \p another 

message handler 

separator for 

handlers 
→ 00B6 

§ \s end handlers terminator implements and 
extension 

00A7 

⦂ (:) case separator for 

case 

 2982 

 \_/ before separator Let binding,  
preparation, and 

Enqueue 

2BC3 

｡ \. end terminator preparations, 
Preconditions, 

extends, and ⦂ 

FF61 

≜ =/\= to be infix  225C 

≔ := is assigned infix  2254 

⌕ \o92 matches value 

of93 

prefix  2315 

= = same as? infix   

≠ != Different from?  infix  2260 

                                                           
i These are only examples. They can be redefined using keyboard macros according 

to personal preference. 
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⌸ [=] keyword or field infix  2338 
:⌸  :[=] assignable field infix   
 <| begin type 

parameters 

left delimiter  
(Unicode hex: 

0077) 

0076 

⩛ \|/ spread94 prefix  2A5B 

{ { begin set left delimiter }  

[ [ begin list left delimiter ]  

⦃ {| begin multi-set left delimiter ⦄ 2983 

⟦ [| formatted 

message 

left delimiter ⟧ 27E6 

“ 
\" Left string 

structure 

left delimiter ” 
201C 

( ( begin grouping left delimiter )  

⦅ (| begin syntax left delimiter ⦆ 2985 

⊝ (-) nothing95 expression  229D 

↞  one-way send infix  219E 

↠  one-way receive infix ¶ 21A0 

⊔ |_| join infix  2294 

⊑  constrained by infix  2291 

⊒  extends infix  2292 

⇒  logical 

implication 

infix  21E8 

⇔  logical 

equivalence 

infix  21D4 

 /\ logical 

conjunction 

infix  00D9 

 \/ logical 

disjunction 

infix  00DA 

 -| logical negation prefix  00D8 

⊢ |- assert prefix and 

infix 

 22A2 

⊩ ||- goal prefix and 

infix 

 22A9 

// // begin 1-line 

comment 

prefix EndOfLine  

/* /* begin comment prefix */  
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Index 

––, 21 
�, 8, 71, 81 
� ... ⍰, 70 
⦅, 82 
⟦, 43, 50, 78, 82 

, 12, 33, 81, 82 
⦃, 41, 82 
(, 82, See Expressions 
*, 46 
｡, 81 
/*, 82 
//, 82 
:, 15 
:, 81 
:⌸, 82 
[, 6, 9, 33, 46, 82 

list, 67 
_, 65 
{, 82 
|••>, 81 
++, 21 
⊝, 52, 82 
⦾, 36, 43, 44, 63, 64, 78, 81 
=, 49, 51, 78, 81 
≠, 57, 78, 81 
∎, 6, 48, 66, 81 
∎∎, 18, 38, 80, 81 
⩛, 35, 40, 41, 44, 45, 47, 66, 82 

expression, 67 
pattern, 67 

≔, 11, 72, 78, 80, 81 
≜, 46, 49, 78, 81 
⊑, 82 
⊒, 33, 59 
⊔, 82 
⊢, 55, 57, 82 
⊩, 55, 57, 82 
⨀, 13, 48, 50, 51, 81 
⌕, 56, 81 
⌸, 39, 82 
⍌, 81 
⍠, 54, 58, 78, 80, 81 
⍰, 8, 81 
□, 12, 18, 64, 81 
▮, 5, 81, See Expressions 
↑, 60, 81 
→, 11, 21, 22, 81 
↠, 52, 82 
↦, 9, 81 

⇨, 82 
↓, 15, 33, 60, 81 
↓?, 15, 60, 81 
↓↓, 15, 75, 81 
←, 6, 46, 81, See Binding locals, See 

definition 
↞, 52, 82 
⇔, 82 
§, 11, 81 
¶, 11, 81 
⦂, 8, 81 
Activity, 79 
Actor, 11, 13, 18, 21, 54, 76 

CheeseQ, 78 
dequeue, 80 
enqueueAndDequeue, 80 
enqueueAndLeave, 80 
InternalQ, 80 
Swiss cheese, 16 

Actor Model 
Message passing, 2 
types, 2 

afterward, 11, 18, 49 
Agha, G., 23 
ASCII, 81 
Athas, W., 23 
Atkinson, R., 23 
Atomic, 49, 78 
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End Notes 

1 Quotation by the author from late 1960s. 
2 to use a reserved word as an identifier it could prefixed, e.g., _actor 
3 The delimiters ⦅ and ⦆ are used to delimit program syntax with the character 

“ and the character ” to delimit tokens. For example, ⦅3  “+”  4⦆ is an 

expression that can be evaluated to 7. A special font is used for syntactic 

categories.   

    For example,  

                ⦅x:Numerical  “+”  y:Numerical ⦆:Numerical ▮ 

        Numerical ⊑Expression ▮  

Also, 

⦅Numerical  “-” Numerical ⦆:Numerical ▮  

⦅“-” Numerical ⦆:Numerical ▮ 

⦅Numerical  “” Numerical ⦆:Numerical ▮  

⦅Numerical  “” Numerical ⦆:Numerical ▮ 

⦅“Remainder” Numerical  “” Numerical ⦆:remainder:Numerical ▮ 

⦅“QuotientRemainder” Numerical    “” Numerical ⦆ 
                                                                            :[Numerical,  Numerical ]▮ 

⦅“True” ⊔ “False” ⦆:Expression Boolean▮  

⦅Expression Boolean   “” Expression Boolean⦆ 
                                                                                 :Expression  Boolean▮  

⦅Expression  “” Expression ⦆:Expression Boolean▮  

⦅ “” Expression Boolean⦆:Expression Boolean▮  

⦅ “Throw” Expression ⦆:Expression ▮  
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4 See explanation of syntactic categories above.  A word must begin with an 

alphabetic character and may be followed by one or more numbers and 

alphabetic characters. 

    Identifier ⊑Word ⊑Expression ▮ 

// an Identifier is a Word,  which is a subcategory of Expression 

      ⦅⦅Expression ⊔ Definition ⊔ Judgment ⦆⦆ “▮”⦆:Top▮ 

5  ⦅Type  ←Expression Type⦆:Definition ▮ 

     ⦅messageType:Type  ⦅ “↦”⊔ “|••>”⦆ returnType:Type ⦆:Type ▮ 

      ⦅“[” Types “]”⦆:Type ▮ 

      ⦅  ⊔ MoreTypes ⦆:Types ▮ 

   ⦅Type  ⊔ ⦅Type  “,”MoreTypes ⦆⦆:MoreTypes ▮ 

6 ⦅IdentifieraType 
 
“←” Expressions aType⦆:Definition ▮ 

⦅⦅Expression aType ⦅ ⊔ “｡”⦆⦆ 

  ⊔ ⦅Expression   ⦅“,”  ⊔ “”⦆ MoreExpressions aType⦆⦆ 

                                                                                         :Expressions aType▮ 

⦅⦅ExpressionaType “｡”⦆ 

     ⊔ ⦅Expression   ⦅“,”  ⊔ “”⦆ MoreExpressionsaType⦆⦆ 

                                                                                       :MoreExpressions aType▮ 

7 ⦅“Actor” ProcedureName   
       “[” ArgumentDeclarations  “]” ⦅ “:” Type returnType⦆ → 

            Expression returnType⦆:Definition ▮ 

ProcedureName ⊑Expression ▮ 

⦅ ⊔  MoreDeclarations ⦆:ArgumentDeclarations ▮ 

⦅SimpleDeclaration ⦅  ⊔  ⦅“,” MoreKeywordDeclarations ⦆⦆ 

   ⊔  ⦅SimpleDeclaration  “,” MoreDeclarations ⦆⦆ 

                                                                                                     :MoreDeclarations ▮ 

     // Comma is used to separate declarations. 

⦅⦅Identifier  

        ⊔ ⦅Identifier  “:” Type ⦆⦆ 

        ⦅ ⊔ “default” Expression ⦆⦆:SimpleDeclaration ▮ 
⦅KeywordArgumentDeclaration   

       ⊔  ⦅KeywordDeclaration   “,”MoreKeywordDeclarations ⦆⦆ 

                                                                                 :MoreKeywordDeclarations ▮ 

⦅Keyword  “⌸”SimpleDeclaration ⦆⦆:KeywordDeclaration ▮ 

Keyword ⊑Word ▮ 

8 The symbol ∎ is fancy typography for an ordinary period when it is used to 

denote message sending. 

9  ⦅Recipient:Expression  “∎”  “[” Arguments  “]” ⦆:ProcedureSend  ▮     

     ProcedureSend   ⊑Expression ▮ 

             // Recipient  is sent a message with Arguments  

⦅ ⊔  MoreArguments ⦆:Arguments ▮ 
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   ⦅⦅Expression  ⦅  ⊔  ⦅“,” MoreKeywordArguments ⦆⦆⦆  

           ⊔ ⦅Expression  “,” MoreArguments ⦆⦆:MoreArguments ▮ 
⦅KeywordArgument   

      ⊔ ⦅KeywordArgument   

                  “,” MoreKeywordArguments ⦆⦆:MoreKeywordArguments ▮ 

⦅Keyword  “⌸” Expression ⦆:KeywordArgument ▮ 
⦅IdentifierProcedure  
   “[”ArgumentDeclarations  “]” “:” returntype:Type aType⦆ → 
           Expressions aType “▮”⦆:Definition Procedure▮ 

10 ⍰ takes care of the infamous "dangling else" problem [Abrahams 1966]. 

11 ⦅test:ExpressionpatternType    “�”  

            ExpressionCases patternType, aType  “⍰”⦆:Expression aType▮ 

⦅ExpressionCase patternType, aType  

    ⊔  MoreExpressionCases  patternType, aType⦆ 

                                                        :ExpressionCases patternType, aType▮ 
⦅ExpressionCase patternType, aType  ⊔   

       ⦅ExpressionCase patternType, aType 

                                                            “⍌” MoreExpressionCases patternType, aType⦆  

                ⊔  ExpressionElseCases  patternType, aType⦆ 
                                               :MoreExpressionCases patternType, aType▮ 

⦅ ⊔ ExpressionElseCase patternType, aType  

  ⊔  ⦅ExpressionElseCase patternType, aType  

       “⍌” MoreExpressionElseCases  patternType, aType⦆⦆ 

                                                      :ExpressionElseCases  patternType, aType▮ 
⦅ExpressionElseCase patternType, aType   

  ⊔  ⦅ExpressionElseCase patternType, aType  

        “⍌” MoreExpressionElseCases patternType, aType ⦆⦆ 

                                             :MoreExpressionElseCases  patternType, aType▮ 

⦅ ⦅“else”  “⦂” Expressions aType⦆  

   ⊔  ⦅“else” Pattern patternType “⦂” Expressions aType⦆⦆ 

                                                           :ExpressionElseCase patternType, aType▮ 
   // The else case is executed only if the patterns before  

            //   the else case do not match the value of test. 
⦅Pattern patternType “⦂” Expressions aType⦆ 

                                                                                              :ExpressionCase aType▮ 

12 ⦅“Let” MoreLetBindings  “｡” 

            result:Expressions aType⦆:Expression aType▮ 
        // Bindings are independent of each other 

⦅LetBinding ⊔ ⦅LetBinding   “,” MoreBindings  ⦆⦆:MoreLetBindings ▮ 
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⦅LetBinding  

           ⊔ ⦅LetBinding  ⦅“,” ⊔ “”⦆ MoreDependentLetBindings  ⦆⦆ 

                                                                               :MoreDependentLetBindings ▮ 

        // Each binding before a “” is completed before its successors 

⦅Pattern  “←” Expression ⦆:LetBinding ▮  

13 ⦅recipient:Expression  

           “∎” MessageName  “[” Arguments  “]”⦆:NamedMessageSend   ▮ 

   NamedMessageSend   ⊑Expression ▮ 

             // Recipient is sent message MessageName  with Arguments   

MessageName ⊑Word ▮ 

     ⦅“Interface”  Identifier   “with” 
                    MessageHandlerSignatures “▮”⦆:InterfaceDefinition  ▮ 

    InterfaceDefinition  ⊑Definition ▮ 

     ⦅  ⊔ MoreMessageHandlerSignatures ⦆⦆ 

                                                                               :MessageHandlerSignatures ▮ 
     ⦅MessageHandlerSignature   

            ⦅  ⊔ MoreMessageHandlerSignatures ⦆⦆ 
                                                                        :MoreMessageHandlerSignatures ▮ 

     ⦅MessageName “[” ArgumentTypes “]”  ⦅ “↦”⊔ “|••>”⦆ 
            returnType:Type  ⦆:MessageHandlerSignature   ▮ 

   MessageHandlerSignature   ⊑Expression ▮ 

14 Dijkstra[1968] famously blamed the use of the goto as a cause and symptom 

of poorly structure programs. However, assignments are the source of much 

more serious problems. 

15 Continuations in ActorScript are related to continuations introduced in 

[Reynolds 1972] in that they represent a continuation of a computation.  The 

difference is that a continuation of Reynolds is a procedure that takes as an 

argument the result of the preceding computation.  Consequently, a 

continuation of Reynolds is closer to a customer in the Actor Model of 

computation. 
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16 ⦅“Actor”  ConstructorDeclaration  ActorBody ⦆:Expression ▮ 
      //  The above expression creates an Actor with  

                   // declarations for variables and message handlers 

          ⦅ ⊔ ⦅ “uses” ConstructorList ⦆⦆⦆⦆ 

          ⦅ ⊔ “management” Expression Management⦆  
        NamedDeclaration 

      MessageHandlers   

    InterfaceImplementations⦆:ActorBody ▮ 

⦅Identifier“” ParametersDeclarations “” 
        ⦅ ⊔ ⦅“[” ArgumentDeclarations “]”⦆⦆⦆ 
                                                                                  :ConstructorDeclaration ▮ 

⦅Constructor ⦅ ⊔ “｡”⦆ 

       ⦅ ⊔ ⦅Constructor “,” MoreConstructors “｡”⦆⦆:ConstructurList ▮ 

⦅Constructor 

        ⊔ ⦅Constructor “,” MoreConstructors ⦆⦆:MoreConstructors ▮ 

⦅ActorQueues NamesDeclarations ⦆:NamedDeclaration ▮ 

⦅ ⊔ ⦅MoreNameDeclarations  “｡”⦆⦆:NamesDeclarations ▮ 

⦅NameDeclaration   

        ⊔ ⦅NameDeclaration   

                “,” MoreNamesDeclarations ⦆⦆:MoreNameDeclarations ▮ 

⦅Identifier  

     ⦅ ⊔ ⦅“:” Type aType⦆⦆ 
            “←” Expression  aType⦆:IdentifierDeclaration ▮ 
IdentifierDeclaration ⊑NameDeclaration ▮ 

⦅Variable ⦅ ⊔ ⦅“:”Type aType⦆⦆  

         “≔” Expression  aType InstanceVariableAQualifications ⦆ 
                                                                                      :VariableDeclaration ▮ 

VariableDeclaration ⊑NameDeclaration ▮ 

Variable ⊑Word ▮ 

InstanceIVariableQualifications ⊑ InstanceQualifications ▮ 

⦅ ⊔ InstanceVariableQualification 
       ⊔ ⦅ InstanceVariableQualification  

                 InstanceIVariableQualifications ⦆ 

                                                                     :InstanceIVariableQualifications ▮ 

 “nonpersistent”⊑InstanceVariableQualification  ▮ 

               //  A nonpersistent variable must be Nullable,      
                                //   and can be nulled out before a message is received  

⦅ “queues” QueueNames  “｡”⦆ :ActorQueues ▮ 

⦅QueueName  ⊔ ⦅QueueName  “,” QueueNames ⦆⦆:QueueNames ▮ 

QueueName  ⊑Word ▮ 

QueueName  ⊑Expression Queue▮ 

⦅“Void”⦆:Expression ▮ 
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   ⦅InterfaceImplementation 

      ⦅   ⊔  MoreInterfaceImplementations ⦆⦆ 

                                                                        :InterfaceImplementations ▮ 

    ⦅“also” InterfaceImplementation 

      ⦅  ⊔  MoreInterfaceImplementations ⦆⦆ 

                                                                :MoreInterfaceImplementations ▮ 
      ⦅⦅ ⊔ “partially”⦆ 
            ⦅“implements” ⊔ “reimplements”⦆  

                                     ⦅ ⊔ “exportable”⦆ Type  “using” 
             ⦅MessageHandlers “§”⦆⊔  UniversalMessageHandler ⦆ 
                                                               :InterfaceImplementation aType▮ 

     ⦅MessagePattern  

            ⦅ ⊔ ⦅“:” Type ⦆⦆ 

                ⦅ ⊔ ⦅“sponsor” IdentifierSponsor⦆⦆ 

         “→” ExpressionsContinuationaType ⦆ 
                                                           :UniversalMessageHandler aType▮ 

⦅  ⊔ MoreMessageHandlers ⦆:MessageHandlers ▮ 

⦅MessageHandler   

        ⊔ ⦅MessageHandler  “§” MoreMessageHandlers ⦆⦆ 
                                                                                   :MoreMessageHandlers ▮ 
        //  The message handler separator is ¶. 
⦅MessageName  “[” ArgumentDeclarations  “]”  
          ⦅ ⊔ ⦅ “:” returnType:Type aType⦆ 

           ⦅ ⊔ ⦅“sponsor” Identifier Sponsor⦆⦆ 

        “→” ExpressionsContinuationaType⦆:MessageHandler ▮ 
 

             //  For a message with MessageName with arguments,  

                   // the response is Continuation 

⦅Expression aType   

    “afterward” VariableAssignments ⦆:Continuation aType▮ 

       //  Return Expression  and afterward perform 

                  //  MoreVariableAssignments  

⦅VariableAssignment  
      ⊔ ⦅VariableAssignment   
               “,”  MoreVariableAssignments “｡”⦆⦆:VariableAssignments ▮ 

⦅VariableAssignment  
      ⊔ ⦅VariableAssignment   
               “,”  MoreVariableAssignments ⦆⦆ 
                                                                                    :MoreVariableAssignments ▮ 

⦅Variable  “≔” Expression aType⦆:VariableAssignment aType▮ 
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17 ⦅“Prep” MoreAntecedents “｡” 

           Continuation aType “｡”⦆:Preparation aType▮ 

   ⦅Antecedent ⊔ ⦅ Antecedent  ⦅“,” ⊔ “”⦆ MoreAntecedents ⦆⦆ 

                                                                                                          :MoreAntecedents ▮ 

   Expression ⊑Antecedent ▮ 

   StructureAssignment ⊑Antecedent ▮ 

  ArrayAssignment ⊑Antecedent ▮ 

18 For example, consider the following: 

    Actor NeedTwo[ ]  
         queues waiting｡ 

         hasOne ≔ False｡ 
       go[ ]:Void → hasOne � True ⦂ Void permit waiting ⍌ 

                                                        False ⦂ Prep hasOne ≔ True｡ 
                                                                         enqueue waiting  
                                                                            Void⍰§▮ 

The following expression must return Void because of mandatory 

concurrency: 

     Let aNeedTwo ← NeedTwo [ ]｡ 

         Prep □aNeedTwo∎ go[ ]｡ 
             aNeedTwo∎ go[ ]▮ 

However following expression might never return  because of optional 

concurrency: 

     Let aNeedTwo ← NeedTwo [ ]｡ 

    Prep aNeedTwo∎ go[ ]｡ 
           aNeedTwo∎go[ ]▮ 

19 ⦅“□” anExpression:Expression aType 

          ⦅ ⊔ ⦅“sponsor” Expression Sponsor▮⦆⦆:Expression aType▮ 

// Execute anExpression concurrently and respond with the outcome. 
// In every case, anExpression must complete before execution leaves 

      //   the lexical scope in which it appears. 
20 cf. [Crahen 2002, Amborn 2004, Miller, et. al. 2011] 
21 The ability to extend implementation is important because it helps to avoid 

code duplication. 
22 note the absence of “∎”  in the implementation subexpression 
23 equivalent to the following: 

myBalance⨀SimpleAccount ≔  
         myBalance⨀SimpleAccount – anAmount 

24 ignoring exceptions in this way is not a good practice 
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25 ⦅“Enqueue” QueueExpression  “”                      

         Continuation aType⦆:Continuation aType▮ 
      /* 

1. Enqueue activity in QueueExpression 

2. Leave the cheese 

3. When the cheese is re-entered perform Continuation . */ 

    ⦅“Prep” Preparation “｡” 

        “enqueue” QueueExpression  “”                      

                 Continuation aType⦆:Continuation aType▮ 
      /* 

1. Perform Preparation 

2. Enqueue activity in QueueExpression 

3. Leave the cheese 

4. When the cheese is re-entered perform Continuation . */ 

  Cases can be continuations: 

⦅test:Expression  “�”  

      ContinuationCases patternType, aType “⍰”⦆ 
                                                                                    :Continuation aType▮ 
⦅ContinuationCase patternType, aType  

    ⊔  ⦅ContinuationCase patternType, aType  

                “⍌” MoreContinuationCases patternType, aType⦆⦆ 
                 ContinuationElseCases ⦆ 

                                                     :ContinuationCasespatternType, aType ▮ 
⦅ContinuationCase patternType, aType  

  ⊔  ⦅ContinuationCase patternType, aType   

       “⍌” MoreContinuationCases patternType, aType⦆⦆ 

                                          :MoreContinuationCases patternType, aType▮ 
⦅PatternpatternType “⦂”  

           ExpressionsContinuationpatternType, aType⦆ 

                                                         :ContinuationCase patternType, aType▮ 

⦅ ⊔   

   MoreContinuationElseCases patternType, aType⦆ 
                                              :ContinuationElseCases patternType, aType▮ 

⦅ContinuationElseCase patternType, aType  

   ⊔  ⦅ContinuationElseCase patternType, aType   

            “⍌” MoreContinuationElseCases patternType, aType⦆⦆ 
                                   :MoreContinuationElseCases patternType, aType▮ 

⦅⦅“else”  “⦂” ExpressionsContinuationaType⦆   

      ⊔  ⦅“else”  Pattern patternType   “⦂”  

                       ExpressionsContinuation patternType, aType⦆⦆ 

                                                :ContinuationElseCase patternType, aType▮ 
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⦅⦅Continuation  ⦅ ⊔ “｡”⦆⦆ 

       ⊔ ⦅Expression ⦅“,” ⊔ “”⦆ MoreExpressionsContinuation ⦆⦆ 

                                                                                       :ExpressionsContinuation ▮ 

⦅⦅Continuation “｡”⦆  

     ⊔ ⦅Expression “,”MoreExpressionsContinuation⦆⦆ 

                                                                           : MoreExpressionsContinuation ▮ 

26 Equivalent to the following: 
Actor Fringe 

    [aTree:Tree]:[String*]  →  
     aTree �  
       Leaf[aString] ⦂ [aString]:[String*]  ⍌ 
       Fork[aLeft, aRight] ⦂  

                [⩛Fringe∎[aLeft],  ⩛Fringe∎[aRight]]:[String*]   ⍰▮ 
27 Equivalent to the following: 
           Fringe∎[Fork [Leaf["The"]↑Tree, Leaf["boy"]↑Tree]↑Tree] 
28 Swiss cheese was called “serializers” in the literature. 
29⦅“∎∎” Message aType⦆:Expression aType▮ 
    // Delegate message to this Actor. 

⦅“Prep” Preparation “｡” 

       “hole” Expression aType⦆:Continuation aType▮ 
     /* 

1. Carry out Preparation 

2. Leave the cheese 

3. The result is the result of evaluating Expression  */ 

30 ReadersWriterConstraintMonitor defined below monitors a resource and 

throws an exception if it detects that ReadersWriter constraint is violated, 

e.g., for a resource r using the above scheduler: 

                                    ReadingPriority[ReadersWriterConstraintMonitor[r]].    

    Actor  ReadersWriterConstraintMonitor[theResource:ReadersWriter] 
    writing ≔ False,  
    numberReading ≔ 0, 
implements ReadersWriter using 
       read[aQuery:Query]:QueryAnswer 

               Preconditions writing｡    // commentary for error checking 

              Prep numberReading++｡ 
                 hole  theResource∎read[aQuery] 
                       afterward numberReading––¶ 
         write[anUpdate:Update]:Void →     
             Preconditions numberReading=0, writing｡ 

                 Prep writing ≔ True｡ 
                     hole  theResource∎write[anUpdate] 
                        afterward writing ≔ False §▮ 
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31 A downside of this policy is that readers may not get the most recent 

information. 
32 A downside of this policy is that writing and reading may be delayed 

because of lack of concurrency among readers. 

33 ⦅“Prep” Preparation ｡ 

        “enqueue” QueueExpression 

                       ⦅  ⊔  “backout” Expressions ⦆                   

            Continuation aType⦆⦆⦆:Continuation aType▮ 
     /* 

1. Perform Preparation 

2. Enqueue activity in QueueExpression. 

3. Leave the cheese 
4. If an exception is generated by the activity while in the queue, 

then reenter the cheese, perform Expressions, and leave the 

cheese. 
5. If no exception is generated by the activity while in the queue, 

then when allowed to continue, re-enter the cheese to perform 

Continuation .  */   

    Cases can be continuations: 

    ⦅test:ExpressionpatternType    “�”  

            ContinuationCases patternType, aType  “⍰”⦆ 
                                                                                      :Continuation aType▮ 

⦅ContinuationCase patternType, aType  

    ⊔  MoreContinuationCases  patternType, aType⦆ 
                                             :ContinuationCases patternType, aType▮ 

    ⦅ContinuationCase patternType, aType  ⊔   
       ⦅ContinuationCase patternType, aType 

                                   “⍌” MoreContinuationCases patternType, aType⦆  

                ⊔  ContinuationElseCases  patternType, aType⦆ 

                                        :MoreContinuationCases patternType, aType▮ 
⦅ ⊔ ContinuationElseCase patternType, aType  

  ⊔  ⦅ContinuationElseCase patternType, aType  

       “⍌” MoreContinuationElseCases  patternType, aType⦆⦆ 
                                                 :ContinuationElseCases  patternType, aType▮ 

⦅ContinuationElseCase patternType, aType   

  ⊔  ⦅ContinuationElseCase patternType, aType  

        “⍌” MoreContinuationElseCases patternType, aType ⦆⦆ 
                                     :MoreContinuationElseCases  patternType, aType▮ 

⦅⦅“else”  “⦂” ContinuationList aType⦆  

   ⊔  ⦅“else” Pattern patternType 

                                    “⦂”ExpressionsContinuation aType⦆⦆ 

                                                :ContinuationElseCase patternType, aType▮ 
   // The else case is executed only if the patterns before  

            //   the else case do not match the value of test. 
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⦅Pattern patternType “⦂” ExpressionsContinuationaType⦆ 

                                                         :ContinuationCase patternType, aType▮ 

The following are allowed in the cheese for a response to message affecting 

the next message: 

⦅Expression aType   

   ⦅  ⊔  ⦅ “permit” aQueue:Expression ⦆⦆  
  ⦅  ⊔  ⦅“afterward” Afterward ⦆⦆⦆:Continuation aType▮ 

/* If there are activities in aQueue, then the one of them gets the 

cheese next and also perform Afterward, then leave the cheese 

and return the value of Expression . /* 

VariableAssignments :Afterward ▮ 

⦅“Permit” aQueue:Expression FIFO 

           ⦅  ⊔  ⦅“also” VariableAssignments⦆⦆⦆:Afterward ▮ 
The following can be used temporarily leave the cheese: 

⦅“Hole” Expression aType⦆:Continuation aType▮ 
    /* 

1. Leave the cheese 

2. The response is the result of evaluating Expression  */ 

⦅“Prep” Preparation “｡” 

      hole Expression aType 

      ⦅   ⊔  ⦅ “afterward” Afterward ⦆:Continuation aType▮ 
      /* 

1. Carry out Preparation 

2. Leave the cheese 

3. Evaluate Expression  

4. When a response is received, reacquire the cheese, 

carry out Afterward  and the result is the result of 

evaluating Expression   */ 

⦅“Prep” Preparation “｡” 

     hole Expression anotherType 

         ⦅ ⊔  ⦅ “returned�”  

                    normal:ContinuationCases anotherType, aType “⍰”⦆⦆ 

       ⦅ ⊔  ⦅ “threw�”  

                        exceptional:ContinuationCases anotherType, aType 

                            “⍰”⦆⦆ :Continuation aType▮ 

     /* 

1. Carry out Preparation 

2. Leave the cheese 

3. Evaluate Expression  

4. When a response is received, reacquire the cheese 

 If Expression  returns, continue using the returned 

Actor with normal. 
 If Expression  throws an exception, continue using the 

exception with exceptional.  */ 
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34 -- is postfix decrement 
35 Preconditions present for error checking 
36 ⦅IdentifierType   

           “” ParametersDeclarations “”   
                          Expressions  ⦆:ParameterizedDefinition  ▮ 
   ParameterizedDefinition  ⊑Definition ▮ 
           //  Parameterize definition with ParametersDeclarations ▮  

⦅  ⊔  MoreParameterDeclarations ⦆:ParametersDeclarations ▮ 

⦅ParameterDeclaration  

    ⊔ ⦅ParameterDeclaration   

               “,” MoreParameterDeclarations ⦆⦆ 
                                                                           :MoreParameterDeclarations ▮ 

⦅IdentifierType ⦅  ⊔ Qualifier ⦆⦆:ParameterDeclaration ▮ 

⦅  ⊔ ⦅“extends” Type  ⦆⦆:TypeQualifier ▮ 

⦅IdentifierType “” Parameters “”⦆:TypeExpression   ▮ 

⦅IdentifierType    

           ⊔ ⦅ ⊔ ⦅IdentifierType  “,” Parameters  ⦆⦆:Parameters ▮ 

37 ⦅“Discrimination” IdentifierType   

            MoreTypeDescriminations “▮“ ⦆:Definition ▮ 

⦅IdentifierType 

     ⊔  ⦅IdentifierType “,”MoreTypeDescriminations ⦆⦆ 

                                                                                   :MoreTypeDescriminations ▮ 

      ⦅Expression DiscriminationType “↓” Type aType⦆ 

                                                                                                         :Expression aType▮ 
        // Discriminate to have the type Type aType if possible.  

                 // Otherwise, an exception is thrown. 

       ⦅Expression aDiscriminationType “↓?” Type aType⦆ 

                                                                                                     :Expression Boolean▮ 
        // If Expression discriminates to have the type Type aType,  

                 // then True, else False. 

       ⦅Pattern DiscriminationType “↓” Type aType⦆ 

                                                                                                         :Pattern aType▮ 
        // If matching Actor is a discrimination that can be discriminated  
                 // then Pattern  must match the discriminate. 

        ⦅“↓↓” Type aType⦆:Pattern aType▮  
        // Matching Actor must be discrimination that can be 

                    // discriminated as aType 
38  Equivalent to the following: 

        Let x ← 3｡  

             TrieForkInteger[TerminalInteger[x]↑TrieInteger, 
                                                  TerminalInteger[x+1]↑TrieInteger]▮ 
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39 Equivalent to the following: 

    Actor TrieFringeaType 

        [aTrie:TrieaType]:[aType*]  →  
       aTrie �  
          ↓↓TerminalaType[x] ⦂ [x]:[aType*]  ⍌ 
          ↓↓TrieForkaType[left, right] ⦂  
                    [⩛TrieFringe∎[left], 
                      ⩛TrieFringeaType∎[right]]:[aType*] ⍰▮ 

40 Equivalent to the following: 

         Actor TrieSameFringe?aType 
              [left:TrieaType, right:TrieaType]:Boolean →      
                 TrieFringe∎[left] = TrieFringe∎[right]▮ 
41 ⦅IdentifieraType  “[” Arguments “]”⦆:Expression aType▮ 

     ⦅IdentifieraType  “[” Patterns “]”⦆:Pattern aType▮ 

42 ⦅“Nullable” Expression aType⦆:Expression NullableaType▮ 

      ⦅“⦾” Expression NullableaType⦆:Expression aType▮ 
        // reduce Expression if not null. 

                 // Otherwise, an exception is thrown. 

       ⦅“⦾” Pattern aType⦆:Pattern NullableaType▮ 
        // If matching Actor is a non-null nullable 
                 // then Pattern  must match the Actor in the nullable. 
43 ⦅“Try”  anExpression:Expression aType   

                “catch�”  ExpressionCases Exception, aType “⍰”⦆ 

                                                                                                            :Expression aType▮ 
     /* 

 If anExpression throws an exception that matches the pattern 

of a case, then the value of TryExpression  is the value 

computed by ExpressionCases  

 If anExpression doesn’t throw an exception, then then the 

value of TryExpression  is the value computed by 

anExpression.  /* 
    ⦅“Try”  anExpression:Expression aType 

            “catch�” ContinuationCases Exception, aType“⍰”⦆ 

                                                                                                :Continuation aType▮ 
   /* 

 If anExpression throws an exception that matches the pattern of 

a case, then the response of TryContinuation  is the 

response computed by the expression of the case. 

 If aContinuation doesn’t throw an exception, then then the 

response of TryExpression  is the response computed by 

anExpression. */ 
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     ⦅“Try”  anExpression:Expression aType  

            “cleanup” cleanup:Expression aType⦆:Expression aType▮ 
       */ 

 If anExpression throws an exception, then the value of 

TryExpression  is the value computed by cleanup. 

 If anExpression doesn’t throw an exception, then then the 

value of TryExpression  is the value computed by 

anExpression. */ 
44 ⦅“Preconditions”  test:Expressions Boolean “｡”   

                Expressions aType⦆:Expression aType▮ 
         // Each of expressions in test  must evaluate to True or  

          //   an exception is thrown 

     ⦅“Preconditions” Expressions Boolean“｡”   

                   ExpressionsContinuation aType⦆:Continuation aType▮ 
         // Each of expressions in  Expressions  must evaluate to True or  

          //   an exception is thrown 

     ⦅value:Expression aType  

      “postcondition” pre:Expression [aType]↦Boolean⦆ 

                                                                                                            :Expression aType▮ 

            // The expression pre must evaluate to True when sent value  
                //  or an exception is thrown 

45 o is a reserved postfix operator for degrees of angle 
46 Equivalent to the following: 
     Actor Times 
         [u:Complex, v:Complex]:Complex →  
             Cartesian[u∎⟦real⟧v∎⟦real⟧ – u∎⟦imaginary⟧v∎⟦imaginary⟧, 
                                 u∎⟦imaginary⟧v∎⟦real⟧  
                                    + u∎⟦real⟧v∎⟦imaginary⟧]↑Complex▮ 
47 Equivalent to the following: 
       Actor Times 
           [Polar[angle⌸ anAngle, magnitude⌸ aMagnitude], 
            Polar[angle⌸ anotherAngle, 
                                         magnitude⌸ anotherMagnitude]]:Complex →  
              Polar[angle⌸ anAngle+anotherAngle, 

                            magnitude⌸ aMagnitudeanotherMagnitude]↑Complex▮ 
48 ⦅“Structure” IdentifierType “[” FieldDeclarations  “]”  
         ⦅ ⊔ ⦅ “uses” ConstructorList ⦆⦆ 

      NamedDeclaration 

      MessageHandlers   

         MoreInterfaceImplementations ⦆:Definition ▮ 
                  // Structure definition with StructureImplementation 

     ⦅anExpression:ExpressionanotherType “↓” Type aType⦆ 

                                                                                                    :Expression aType▮  
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     ⦅anExpression:Expression anotherType  

          “↓?” Type aType⦆:Expression Boolean▮  

    // If anExpression is an extension of aType, then True else False 

     ⦅aPattern:Pattern anotherType  

           “↓” Type anotherType⦆:Pattern aType▮  

        // Matching Actor must be an extension of aType which 

                // matches aPattern   

     ⦅“↓↓” Type ExtensionanotherType⦆:Pattern aType▮  
        // Matching Actor must be an extension of aType 

⦅  ⊔  MoreFieldDeclarations ⦆:FieldDeclarations ▮ 

⦅⦅SimpleFieldDeclaration   

                                                            ⦅  ⊔  ⦅ “,”  MoreNamedFieldDeclarations ⦆⦆⦆ 

                ⊔  ⦅SimpleFieldDeclaration   

                            “,” MoreFieldDeclarations ⦆⦆:MoreFieldDeclarations ▮ 

⦅⦅Identifier  

     ⊔ ⦅Identifier  “:” TypeExpression ⦆⦆  

          ⦅ ⊔ “default” Expression ⦆⦆:SimpleFieldDeclaration ▮ 
⦅NamedFieldDeclaration   

     ⊔  ⦅NamedFieldDeclaration   

               “,” MoreNamedFieldDeclarations ⦆⦆ 

                                                                           :MoreNamedFieldDeclarations ▮ 
⦅FieldName   

          ⦅“⌸” ⊔ “:⌸”⦆ SimpleFieldDeclaration ⦆⦆ 

                                                                                        :NamedFieldDeclaration ▮ 

FieldName ⊑QualifiedName ▮ 

     // “:⌸” is used for assignable fields. 

    ⦅⦅ ⊔ Identifier ⦆ ActorBody ⦆:StructureImplementation ▮ 

   ⦅Expression  “⟦” FieldName “⟧” ⦆:FieldSelector▮ 
        // FieldName  of Expression  which must be a structure 
   FieldSelector  ⊑Expression ▮  

  ⦅StructureName  “[” FieldExpressions  “]” ⦆:StructureExpression ▮ 

StructureExpression ⊑Expression ▮ 

⦅  ⊔  MoreFieldExpressions ⦆:FieldExpressions ▮ 

⦅⦅SimpleFieldExpression ⦅  ⊔  ⦅“,” MoreNamedFieldExpressions ⦆⦆⦆ 

        ⊔  ⦅SimpleFieldExpression  

                 “,” MoreFieldExpressions ⦆⦆:MoreFieldExpressions ▮ 

⦅NamedFieldExpression   

       ⊔  ⦅ NamedFieldExpression   

                         “,” MoreNamedFieldExpressions ⦆⦆ 

                                                                               :MoreNamedFieldExpressions ▮ 
⦅FieldName   

           ⦅“⌸” ⊔ “:⌸”⦆ SimpleFieldExprression ⦆⦆ 

                                                                                              :NamedFieldExpression ▮ 
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    ⦅StructureName  “[” FieldPatterns  “]” ⦆:StructurePattern ▮ 

StructurePattern ⊑Pattern ▮ 

⦅  ⊔  MoreFieldPatterns ⦆:FieldPatterns ▮ 

⦅⦅SimpleFieldPattern ⦅  ⊔  ⦅“,” MoreNamedFieldPatterns ⦆⦆⦆  

      ⊔  ⦅ SimpleFieldPattern  “,” MoreFieldPatterns ⦆⦆ 
                                                                                                         :MoreFieldPatterns ▮ 

⦅NamedFieldPattern  

  ⊔  ⦅ NamedFieldPattern  

                “,” MoreNamedFieldPatterns ⦆⦆ 

                                                                                     :MoreNamedFieldPatterns ▮ 

⦅FieldName  ⦅“⌸” ⊔ “:⌸”⦆ SimpleFieldExprression ⦆⦆ 

                                                                                                  :NamedFieldPattern ▮ 
49 ⦅“[” ComponentExpressioonsaType “]”⦆ 
                                                                                           :Expression [aType*]▮ 

// An ordered list with elements ComponentExpressions 

⦅  ⊔  MoreComponentExpressioons aType⦆ 

                                                                   :ComponentExpressioons aType▮ 

⦅⦅⦅ ⊔ “⩛”⦆ Expression aType⦆  

       ⊔ ⦅⦅  ⊔ “⩛”⦆ Expression aType   

                  “,” MoreComponentExpressioons aType⦆⦆ 

                                                       :MoreComponentExpressioons aType ▮ 

       ⦅“[” TypeExpressions aType“]”⦆:TypeExpression aType▮ 

⦅  ⊔  MoreTypeExpressions aType⦆:TypeExpressions aType▮  

⦅TypeExpression  aType   

        ⊔ ⦅TypeExpression  aType  “,” MoreTypeExpressions aType⦆⦆ 

                                                                            :MoreTypeExpressions aType▮ 
50 ⦅“_”⦆:UnderscorePattern ▮ 

    UnderscorePattern ⊑Pattern ▮ 

    Identifier ⊑Pattern ▮ 

⦅Pattern  “thatIs” Expression ⦆:ThatIs ▮ 

ThatIs ⊑Pattern ▮ 

⦅“⌕” Expression aType⦆:Pattern aType▮ 

⦅“[” ComponentPatterns  aType “]”⦆:Pattern [aType*]▮ 
   // A pattern that matches a list whose elements match 

      // ComponentPatterns   

⦅  ⊔  MoreComponentPatterns aType⦆ 

                                                                            :ComponentPatterns aType▮ 

⦅Pattern  aType 

     ⊔ ⦅ “⩛”Pattern aType  ⦆  

     ⊔ ⦅Pattern  aType “,” MoreComponentPatterns aType⦆⦆ 

                                                                   :MoreComponentPatterns aType▮ 
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51 Equivalent to the following: 

   Actor AlternateElementsaType 

       [aList:[aType*]]:[aType*] →                         
      aList �  
        [ ]:[aType*]  ⦂ [ ]:[aType*]  ⍌                         
        [anElement]:[aType*]  ⦂ [anElement]:[aType*]  ⍌ 
        [firstElement, secondElement]:[aType*]  ⦂  
                [firstElement]:[aType*]  ⍌ 
        else ⦂ 
          [firstElement, secondElement, ⩛remainingElements]:[aType*] ⦂  
               [firstElement, 

                 ⩛AlternateElements∎[remainingElements]]:[aType*]  ⍰▮ 
52 ⦅“{” ComponentExpressioons  “}”⦆:Expression  {aType*}▮ 

// A set of Actors without duplicates 

    ⦅“{” ComponentPatterns  “}”⦆:Pattern {aType*}▮ 

53 ⦅“⦃” ComponentExpressioons “⦄”⦆:Expression ⦃aType*⦄▮ 
// A multiset of the Actors with possible duplicates 

   ⦅“⦃” ComponentPatterns “⦄”⦆:Pattern ⦃aType*⦄▮ 

54 Optimization of this program is facilitated because: 

 The records are cacheable because their type is {ContactRecord*} 

 All of the operators are cacheable 

 The operators are annotated as cacheable using “|••>” 
55 ⦅“Map” “{” ComponentExpressioons  “}” ⦆:Expression Map▮ 

56 It is possible to define a procedure that will produce a “bottomless” future.  

For example, Actor f  [ ]:FutureaType → Future f∎[ ]▮ 

57 An Actor of FutureListaType is either  

1. the empty list of type FutureListaType or  

2. a list whose first element is of aType and whose rest is of 

FutureFutureListaType. 
58 Equivalent to the following: 

   Actor Size 
      [aFutureList:FutureListString]:Integer → 

          aFutureList �              
              [ ]:FutureListString ⦂ 0⍌ 
 

                  [first, ⩛rest]:FutureListString ⦂  
                         first∎⟦length⟧+Size∎[⦾rest]⍰▮ 
59 ⦅Postpone Expression aType⦆:Expression FutureaType▮ 
    //  postpone execution of the expression until the value is needed. 
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60 Equivalent to the following: 

   Actor TrieFringeaType 

         [aTrie:TrieaType]:FutureListaType  →  
       aTrie �  
           ↓↓TerminalaType[x] ⦂ [x]:[aType*]   ⍌ 
           ↓↓ForkTrieaType[left, right] ⦂  
               [⩛TrieFringe∎[left]],  
                ⩛Postpone TrieFringeaType∎[right]]:[aType*]⍰▮ 

61 Equivalent to the following: 

   Actor FutureListOfReducedElementsaType 

    [aListOfFutures:[FutureaType*]]:FutureListaType →      
        aListOfFutures � 
            [ ]:[FutureaType*] ⦂ [ ]:FutureListaType  ⍌ 

            [aFirst, ⩛aRest]:[FutureaType*]  ⦂   
               [⦾aFirst, 

                 ⩛Future FutureListOfReduceddElementsaType∎[⦾aRest]] 
                                                                                        :FutureListaType ⍰▮ 

62 ⦅“Future” aValue:Expression aType 

            ⦅ ⊔ ⦅“sponsor” Expression Sponsor⦆⦆⦆ 
                                                                                       :Expression FutureaType▮ 

        //  A future for aValue. 

⦅“⦾” Expression FutureaType⦆:Expression aType▮ 

    // Reduce a future 
63 A Postpone expression does not begin execution of Expression1 until a request is 

received as in the following example: 

              Actor IntegersBeginningWith 
                  [n:Integer]:FutureListInteger →   
                       [n, ⩛Postpone IntegersBeginningWith∎[n+1]]▮  

Note: A Postpone expression can limit performance by preventing 
concurrency 

64 ⦅ “⦅” MoreGrammers  “⦆” ⦆:Grammar ▮ 

  ⦅ “⦅”Grammar “⊔”Grammar “⦆” ⦆:Grammar ▮ 

    ⦅ReservedWord ⦅ ⊔ StartsWithIdentifier ⦆⦆:StartsWithReserved ▮ 

StartsWithReserved ⊑MoreGrammers ▮ 

  ⦅Identifier ⦅ ⊔ StartsWithReserved ⦆⦆⦆:StartsWithIdentifier ▮ 

StartsWithIdentifier ⊑MoreGrammers ▮ 

⦅“\ “” Word  “\””⦆ :ReservedWord ▮ 

    // The use of \ escapes the next character in a string so 

           //  that “\“” has just one character that is “. 

  ⦅Grammar “:” GrammarIdentifier “▮”⦆:Judgment ▮ 

    ⦅IdentifierGrammar “⊑”IdentifierGrammar “▮”⦆: Judgment ▮ 
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65 Equivalent to the following: 

FirstTenSequentially∎[n ←10]:[Integer*]  ≜ 
         n=1 � True ⦂ [P∎[ ]]:[Integer*] ⍌ 
                        False ⦂ Let x ← P∎[ ]｡ 

                                        [x, ⩛FirstTenSequentially∎[n–1]]:[Integer*]  ⍰▮ 
66 Equivalent to the following: 

    OneOfTen∎[n:Integer ←10]:Integer  ≜ 
         n=1  � True ⦂ P∎[ ] ⍌   

                         False ⦂ □P∎[ ] either □OneOfTen∎[n–1]] ⍰▮ 
67 ⦅LoopName:Identifier  “∎”  “[” Initializers  “]”  
            ⦅ ⊔  ⦅ “:” ReturnType:aType ⦆⦆  

               “≜” Expression aType ⦆:Expressions aType▮ 

⦅  ⊔ MoreInitializers  ⦆:Initializers ▮ 

⦅Initializer ⊔  ⦅Initializer “,” MoreInitializers  ⦆⦆ 
                                                                                              :MoreInitializers ▮ 

⦅Identifier ⦅ ⊔ ⦅“:” TypeExpression ⦆⦆ “←” Expression ⦆:Initializer ▮ 

68 The implementation below requires careful optimization. 

69 ⦅“String”  “[” ComponentExpressioons  “]”⦆:Expression String▮ 

     ⦅“String”  “[” ComponentPatterns  “]”⦆:Pattern String▮ 

70 ⦅recipient:Expression recipientType  

           “∎” message:MessageExpression recipientType⦆:Expression ▮ 

// Send recipient the message 

71 The implementation below can be highly inefficient. 

72 ⦅“Atomic” aLocation:Expression anotherType 

          “compare”  comparison:Expression anotherType 

               “update” update:Expression anotherType “�”   

               “updated”  “⦂”  
                     compareIdentical:ExpressionsContinuation aType “⍌” 

       “notUpdated” “⦂”  

             compareNotIdenticial:ExpressionsContinuation aType “⍰”⦆ 
                                                                                  :Continuation aType▮ 

/* Atomically compare the contents of aLocation with the value of 

comparison. If identical, update the contents of aLocation with the 

value of update and execute compareIdentical.  

73 ⦅Identifier  “`”Qualifier ⦆:QualifiedName ▮ 

      QualifiedName ⊑Expression ▮ 
       Identifier ⊑QualifiedName ▮ 

    ⦅Identifier ⊔ ⦅Identifier  “`”Qualifier ⦆⦆:Qualifier ▮ 

74 ⦅“Enumeration” IdentifieraType  

         MoreEnumerationNames “｡” ⦆:Definition ▮ 
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    ⦅EnumerationName   

                ⊔ ⦅EnumerationName   

                        “,” MoreEnumerationNames ⦆⦆:MoreEnumerationNames ▮ 
      EnumerationName ⊑Word ▮ 

75 Declarations provide version number, encoding, schemas, etc. 

76 If a customer is sent more than one response (i.e., return or throw message) 

then it will throw an exception to the sender of the response. 

77 ⦅recipient:Expression   

                 “↞”  MessageName  “[” Arguments  “]”⦆:Expression Void▮ 

 /* recipient is sent one-way message with MessageName  and 

Arguments . Note that Expression ⊝cannot be used to produce 

a value. */      

78 ⦅MessageName “[” ArgumentDeclarations “]”   

                          ⦅ ⊔ ⦅“sponsor” IdentifierSponsor⦆⦆⦆⦆ 
         “↠”ExpressionsContinuation⊝⦆:MessageHandler ▮ 

/* one-way message handler implementation with 
ArgumentDeclarations  that has a  one-way continuation 

that returns nothing */ 

⦅“⊝”    ⦅  ⊔  ⦅ “permit” aQueue:Expression ⦆⦆  

   ⦅  ⊔  ⦅“ afterward” Afterward ⦆⦆⦆:Continuation “⊝”▮ 

79 note the absence of “∎”  in the implementation subexpressions 
80 [Church 1932; McCarthy 1963; Hewitt 1969, 1971, 2010; Milner 1972, 

Hayes 1973; Kowalski 1973]. Note that this definition of Logic Programs 

does not  follow the proposal in [Kowalski 1973, 2011] that Logic Programs 

be restricted only to clause-syntax programs. 

81 A ground-complete predicate is one for which all instances in which the 

predicate holds are explicitly manifest, i.e., instances can be generated using 

patterns. See [Ross and Sagiv 1992, Eisner and Filardo 2011]. 
82 Execution can proceed differently depending on how sets fit into computer 

storage units. 
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83 /* Consider a dialect of Lisp which has a simple conditional expression 

of the following form: 

      ⦅“(” “if ”  test:Expression  then:Expression  else:Expression “)” ⦆ 

which returns the value of then if test evaluates to True and otherwise 

returns the value of else. 

         The definition of Eval in terms of itself might include something like 

the following [McCarthy, Abrahams, Edwards, Hart, and Levin 1962]: 

    Define (Eval expression environment) 
                                             //  Eval of expression using environment defined to be  
       (if  (Numberp expression)                          //  if expression is a number then 
            expression                                                               //  return  expression else 
            (if  ((Equal (First expression) (Quote  if)) 
                                                                                  //  if First of expression is “if” then 

                (if  (Eval (First (Rest expression) environment)      
                                                          //  if Eval of First of  Rest of  expression is True then 
                    (Eval (First (Rest (Rest expression)) environment)               
                                                  //  return Eval of First of Rest of Rest of expression else 
                    (Eval (First (Rest (Rest (Rest expression)) environment)) 
                                        //  return Eval of First of Rest of Rest of Rest of expression 
            …)) 

The above definition of Eval is notable in that the definition makes use 

of the conditional expressions using if expressions in defining how to 

evaluate an  if expression! */ 
84  If non-null points to head with current holder of cheese 
85 If non-null, pointer to backwards list ending with head that holds cheese 
86 // enter message received running myActivity 
87 /* this cheese queue is not empty because myActivity is at the head of 

     the queue */  
88 Not to be confused with \0 which is the null character or with \o which is 

⌕. 
89 Used in type specifications for interfaces. 
90 Used in message handlers. 
91 Used to bind identifiers in Let. 

92 Not to be confused with \0 which is the null character or with \O which 

is ⦾. 
93 Used in patterns. 
94 Used in structures. 
95 Used in one-way message passing. 

 

 

 


