
HAL Id: hal-01147804
https://hal.science/hal-01147804

Submitted on 30 Jul 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Aspectual templates in UML
Gilles Vanwormhoudt, Olivier Caron, Bernard Carré

To cite this version:
Gilles Vanwormhoudt, Olivier Caron, Bernard Carré. Aspectual templates in UML: Enhancing the
semantics of UML templates in OCL. Software and Systems Modeling, 2017, 16 (2), pp.469-497.
�10.1007/s10270-015-0463-3�. �hal-01147804�

https://hal.science/hal-01147804
https://hal.archives-ouvertes.fr

Manuscript

The final publication is available at Springer via:
http://dx.doi.org/10.1007/s10270-015-0463-3

To cite this paper:
G. Vanwormhoudt, O. Caron, and B. Carré. Aspectual
Templates in UML. Enhancing the semantics of UML
templates in OCL. Software & Systems Modeling, 16 (2)
pp. 469-497, Springer, May 2017.

http://dx.doi.org/10.1007/s10270-015-0463-3

Software and Systems Modeling manuscript No.
(will be inserted by the editor)

Aspectual Templates in UML

Enhancing the semantics of UML templates in OCL

Gilles Vanwormhoudt1,2, Olivier Caron1 and Bernard Carré1

1 CRIStAL, UMR CNRS 9189
University of Lille
France - 59655 Villeneuve d’Ascq cedex
e-mail: {Gilles.Vanwormhoudt, Olivier.Caron, Bernard.Carre}@univ-lille1.fr

2 Institut Mines-Telecom

Received: date / Revised version: date

Abstract UML Templates allow to capture reusable
models through parameterization. The construct is gen-
eral enough to be used in many ways, ranging from
the representation of generic components (such as Java
generics or C++ templates) to aspectual usage, includ-
ing pattern, aspect and view oriented modeling. We con-
centrate on this last usage and so called “Aspectual
Templates” which require that parameters must form
a model of systems in which to inject new functional-
ities. Starting from this strict constraint, we derive an
in-depth semantic enhancement of the standard. It is
formalized as a fully UML-compliant interpretation in
OCL of the template construct and its binding mecha-
nism. In particular this aspectual interpretation must be
ensured in case of partial binding (not all parameters are
valued). Partial binding of UML is a powerful technique
which allows to obtain richer templates from the com-
position of other ones. As a major result, the present
semantic enhancement is consistent with this capacity
so that partial binding of aspectual templates produces
aspectual templates. Finally, at an operational level, an
algorithm for aspectual template (partial) binding oper-
ation is formulated and consequent reusable technology
made available in EMF (Eclipse Modeling Framework)
is presented.

Key words Model Templates, UML, OCL, Metamod-
eling, Aspects, Patterns, Template Composition.

1 Introduction

After being considered only as documentation for a long
time, software models are nowadays first-class objects.
The MDA methodology (Model Driven Architecture [1])

identified the need to separate platform-independent mod-
eling choices from platform-dependent ones in order to
facilitate subsequent software generation, with respect
to “vertical” transformation chains. Then MDE (Model
Driven Engineering [25]) generalized the approach. It up-
graded the status of models, from components dedicated
to MDA steps, to full first-class software objects that are
reusable and composable. The challenge is to facilitate
the reuse of technology independent design efforts and
logics in a productive and safe manner.

Once it was clear that software models could be iso-
lated and composed, powerful techniques inspired from
the programming world were considered to increase their
reusability, such as model parameterization. The UML
technology [43] contributes a lot to this trend while try-
ing to capture common concepts and techniques, specif-
ically through its concept of “model template”. The am-
bition is to support much of MDE practices which call for
model parameterization [44]. They are of two kinds. First
kind is the representation at a model level of generic
software components, such as C++ templates or Java
generics, and then their instantiation [4, 16, 17, 20]. Sec-
ond kind is the specification of overall and reusable soft-
ware dimensions and then their application to a system
being in construction, mainly the way aspect-orientation
did [26], leading to the notion of “aspectual templates”
studied here. This is related to aspect-oriented modeling
(AOM) [11,24,27,36,38,45,47], subject or view oriented
modeling including Catalysis frameworks [9,11,20,33,46]
and pattern guided design [13,39].

UML templates allow to represent model schemas
where some of their ingredients are listed as parameters.
Its specific “binding” relationship allows to specify how
a model is related to a template through the substitu-
tion of its parameters. It is worth noting that parameters
are only (meta-typed) individuals and form an unstruc-
tured set of model elements of the template. So that

2 Gilles Vanwormhoudt, Olivier Caron and Bernard Carré

the construct is general and permissive enough to ren-
der much of model parameterization needs, as mentioned
above. But when aspectual usage is concerned, parame-
ters have to specify a plain required model of systems in
which to add the new functionalities. This superimposes
to the standard construct that parameters must form a
full well-formed model to which candidate models have
to conform.

This leads to the definition of “aspectual templates”
and the demonstration. As far as “parameters must form
a model” was recognized as the initial requirement for
aspectual interpretation of UML templates (a kind of
postulate), subsequent reinforcement of their semantics
can and must be derived, which consists in ensuring
this requirement throughout definitions and composition
mechanisms. Following the standard, the solution con-
sists of constraining its metamodel thanks to the OCL
formalism. It is worth noting that the standard being
general enough as seen above, only refining its semantics
in order to capture aspectual needs must be sufficient.
As a result, this will be done in this paper so that as-
pectual templates are full UML templates (but not vice
versa w.r.t. the openness of the standard specification to
other template interpretations).

Moreover, UML templates allow partial binding where
not all parameters are valued and must remain parame-
ters in the resulting model, so that it is itself a template.
The technique allows to obtain richer templates from
the composition of other ones in a hierarchical way and
then facilitates the constitution of “off-the shelf” model
template libraries. In case of aspectual templates, follow-
ing their proper constraint that “parameters must form
a model”, partial binding of aspectual templates must
produce aspectual ones. We will see that the present se-
mantic variation of the standard guarantees this prop-
erty and it is a proof of its consistency.

After providing background on UML templates and
their metamodel (Section 2), we present major existing
works which call for aspectual interpretation of UML
templates and identify the issues in Section 3. In Sec-
tion 4 we show how UML template semantics can be en-
hanced to render aspectual one. The obtained engineer-
ing facilities and their properties are motivated through
typical scenarios. After that (Section 5), the semantic
enhancement in OCL of the UML template metamodel
dedicated to aspectual templates is detailed. Section 6
specifically addresses the issue of partial binding between
templates and presents a composition strategy which
is compatible with the standard and previous ground-
ings. This leads to deal with aspectual templates and
their binding mechanism in a homogeneous and consis-
tent way. In Section 7 an algorithm is formulated for the
construction of a model resulting from the binding of
an aspectual template to a model, following the seman-
tics by copy informally specified in UML. This algorithm
treats complete as well as partial binding of aspectual
templates to (template) models. Following this formal-

ization, reusable technology and tooling facilities offered
in EMF (Eclipse Modeling Framework) are presented in
Section 8. Finally, before concluding with perspectives,
Section 9 discusses the generalization of the presented
results inside and outside the scope of UML.

2 Background on UML templates

In this section, a synthesized reminder on UML tem-
plates is presented in order to ground the study.

2.1 The UML template construct

In the UML standard, a template is a model which ex-
poses some of its model elements as parameters. Exam-
ples are classes or packages called class templates or
package templates respectively. To specify its parame-
ters, a template owns a signature. A template signature
is a list of formal parameters where each parameter refers
to an element of the template model. Templates have
also a specific graphical notation which consists in su-
perimposing a small dashed rectangle containing their
signature on the top right-hand corner of the correspond-
ing symbol.

Templates allow to define other models thanks to
parameter substitution, declared in a dedicated “bind-
ing relationship”. A binding relationship links a “bound
model” to a template (from which it was obtained) through
the specification of a set of template parameter substi-
tutions that associate formal parameters of the template
to actual elements of the bound model. Constraints of
the standard only impose that the type of each actual
model element must be a subtype of the corresponding
formal parameter one.

The semantics of the binding relationship is specified
in UML as follows: “The presence of a TemplateBinding
relationship implies the same semantics as if the con-
tents of the template owning the target template sig-
nature were copied into the bound element, substituting
any elements exposed as a formal template parameter by
the corresponding elements specified as actual parame-
ters in this binding.”([44], page 626). Correctness of
the binding logics was formulated by OCL constraints
in [8]. Note that the expansion of the template in the
bound element can be made explicit graphically or not.
See Figure 1 for an example of explicit expansion, other
examples in the paper will use the implicit notation to
suggest a constructive process.

Figure 1 shows two samples of UML templates and
their binding. On the left of Figure 1(a), template class
Stack is parameterized by Element of type Class and
Max of type int which are respectively substituted by
Plate and 15 in PlatesStack. The right side of Figure
1(b) is an example of a package template used here to
model the well-known Observer Pattern parameterized
by its Subject class, Observer class and the observed

Aspectual Templates in UML 3

put(e: Element)
get() : Element

capacity : int := Max
contents : Elements[*]

Stack

put(e: Plate)
get(): Plate

capacity : int : = 15
contents : Plate[*]

PlatesStack

Element : Class
Max : int

<<bind>>
<Element -> Plate,

Max -> 15>

(a)

(b)

ObserverPattern

register(o:Observer)
value: T

Subject

update(val:T)

Observerobservers

Subject, Observer : Class,
value : Property
T:Type

<<bind>>
<Subject -> Agency,
 Observer -> Client
 value -> capacity,
 T -> int>

0..*

CarHiringSystem

add(r:Car)
delete(r:Car)
register(o: Client)

name: String
address: String
capacity: int

Agency

update(val:int)

name: String
birthDay: Date
phone: String
address : String

Client
observers

0..*

transfer(s:Agency)

number: String
date: Date
constructor: String
model: String

Car

ac 0..*

T

Fig. 1 Examples of a class (a) and a package (b) templates in UML

value attribute of type T. It is used here for the design
of a “Car Hiring System” which will be used as a case
study throughout the paper. This system represents cars,
agencies and their clients and may offer “renting”, “car
search” and “stock management” functionalities among
agencies. In the figure, the Observer Pattern template
is used to install a functionality between Agency and
Client for observing car availability. This design choice
is specified by the binding relationship between CarHir-
ingSystem and the ObserverPattern template with the
following substitution: Subject to Agency, Observer to
Client, value to capacity and its type T to int. As a re-
sult of the binding, CarHiringSystem includes the model
structure of the Observer Pattern, after substitution was
made.

Finally, a bound element may have multiple bind-
ings, possibly to the same template. In that case it is
stipulated in the standard that the bound model gets
the content of each binding considered in isolation. UML
allows complete and partial binding. Partial binding oc-
curs when not all formal template parameters are substi-
tuted. For that, the UML specification only states that
the unsubstituted formal template parameters are for-
mal template parameters of the bound element ([43],
page 634), which is itself a template as a consequence.

2.2 The UML template metamodel

The “Templates package” in the UML metamodel [44]
introduces four main classes for their structural represen-
tation: TemplateSignature, TemplateableElement, Tem-

plateParameter and ParameterableElement (see Figure
2). TemplateBinding and TemplateParameterSubstitution
metaclasses are both used to bind templates (see Figure
3).

UML elements that are subclasses of TemplateableEle-
ment can be parameterized. Classifiers, in particular
classes, and Packages are templateable elements1. The
set of template parameters (TemplateParameter) of a
template (TemplateableElement) are included in a sig-
nature TemplateSignature. A TemplateParameter stands
for a formal template parameter and exposes an ele-
ment owned by the template thanks to the parametere-
dElement role. Only parameterable elements (Parame-
terableElement) can be exposed as formal template pa-
rameters of a template or specified as actual arguments
in a template binding. In particular, Classifier, Package-
ableElement, Operation or Property are parameterable.

The notion of template binding (TemplateBinding)
allows to specify the use of a template for a given model
(see Figure 3). A template binding is a directed rela-
tionship labeled by the << bind >> stereotype from
the bound element (boundElement) to the template (sig-
nature). A template binding specification owns a set of
template parameter substitutions (TemplateParameter-
Substitution). A substitution associates a formal param-
eter of the template signature to actual parameterable
elements of the bound.

Figure 4 shows an excerpt of the instantiation of this
metamodel for the example described in Figure 1(b).

1 See Section 9.1 for exhaustive lists of templateable and
parameterable elements.

4 Gilles Vanwormhoudt, Olivier Caron and Bernard Carré

Fig. 2 UML template metamodel [43]

Fig. 3 UML template binding metamodel [43]

Aspectual Templates in UML 5

: TemplateSignature ObserverPattern : TemplateableElement

Subject : ParameterableElement

: TemplateParameter

: TemplateParameterSubstitution

Agency : ParameterableElement

: TemplateBinding

CarHiringSystem : TemplateableElement

signature

ownedTemplateSignature

template

ownedElement

actual

formal

templateParameter

parameteredElement

ownedElement

parameter

templateBinding

parameterSubtitution

boundElement

templateBinding

Fig. 4 Excerpt of the object diagram for the CarHiringSys-
tem Package

It depicts the substitution between the Subject formal
template parameter and the actual Agency argument of
the bound CarHiringSystem.

Finally, the UML specification also introduces basic
constraints for checking the definition of templates and
their binding. These constraints check that:

– Elements exposed as parameters in the template sig-
nature are owned by the model being templated.

– In a substitution, the formal parameter and the cor-
responding actual argument have compatible metatypes.

– Each parameter substitution refers to a formal tem-
plate parameter of the target template signature.

– A binding specification contains at most one param-
eter substitution for each formal template parameter
of the target template signature.

These constraints which are general will be also valid for
aspectual templates.

3 Aspectual usage of UML templates in existing
works and issues

In this section we present major works which refer to
UML templates for aspectual needs and identify the is-
sues.

3.1 Existing works

The UML template construct allows to capture high-
order models which represent recurrent structures. Ap-
plications of this construct are numerous and range from
the modeling of generic classes to pattern formulation
as exemplified previously but also aspect-oriented mod-
eling. Few works have exploited the template construct
for aspectual needs. In these works, so called “aspectual

templates” aim to inject new functionalities into various
base models. The capacity of such templates to expose
some of their elements as parameters is exploited to spec-
ify the model structure required for making the injection
possible.

The Theme approach [14] proposes means for aspect-
orientation with Theme/Doc in the analysis phase and
Theme/UML in the design phase. In Theme/UML, as-
pect models (called Themes) are specified using UML
template packages containing class and sequence dia-
grams. Template parameters can be classes, operations
or attributes. A relation (named “bind”) is used to ex-
press the composition of a Theme and a base model. This
relation binds the template parameters to concrete mod-
eling elements of a base model, possibly using wildcard
and multiple times.

Reddy et al. [36] describe an aspect-oriented model-
ing technique in which aspect models are expressed using
UML template packages containing class and sequence
diagrams. The approach is similar to Theme/UML but
does not directly compose an aspect model (template)
with a base model (called here “primary model”). In-
stead, a context-specific aspect model is first created by
“binding” the parameters to application-specific values.
It is this context-specific aspect model which is finally
composed with the base model. During the composition,
elements of same type and same name are merged to
form a single one into the composed model. The ap-
proach also proposes “composition directives” which are
intended to refine the default composition rules. They
can be used to solve conflicts across aspect and base
models and remove undesirable emergent properties dur-
ing composition or during analysis of the composed model.
This approach also provides directives to state the com-
position order between aspects and the primary model.

Similar to the Theme/UML approach or the com-
position technique proposed by Reddy et al., Kienzle et
al. [27] exploit UML package templates based on class
and sequence diagrams to express reusable aspect mod-
els. In this approach called RAM (Reusable Aspect Mod-
els), composing an aspect model with a base model in-
volves binding the template parameters to base model
elements, possibly with the help of pattern-matching
techniques. The resulting context-specific aspect model
is then composed with the base model. In this approach,
some aspects may depend on the structure or behav-
ior provided by other aspects. Such a dependency is ex-
pressed at the model level by declaring an instantiation
directive with the required aspect within the dependent
aspect. This directive is exploited to correctly instanti-
ate and compose the required aspect before it can be
successfully composed with a base model.

In our previous works, we also contributed to this re-
search by studying the construction of complex systems
from aspectual templates [8, 32, 33]. It appears that the
construction process requires managing complex assem-
blies of aspectual templates with various forms of ap-

6 Gilles Vanwormhoudt, Olivier Caron and Bernard Carré

plication. For instance, there are cases where multiple
aspectual templates must be applied to a same model
while other cases require to apply an aspectual template
to a model resulting from another application. More-
over, aspectual templates can be composed together in
order to produce richer ones. This raises issues about
ordering properties of applications and the equivalence
of application chains. In [33] we addressed these issues
in a consistent and systematic manner. This led us to
formalize properties which guarantee the correctness of
composition chains and their alternative ordering capac-
ities.

3.2 Issues

All the previous works made use of UML templates for
aspectual needs. However, there remains some important
issues which have received little attention or have not
been addressed :

– Granularity and consistency of template pa-
rameters: In all mentioned approaches, aspectual
templates have parameters that are generic place-
holders for entities expected from any base model
in order to make the application possible. Regard-
ing the set of parameters, existing approaches im-
pose the inclusion of parameters into the set of tem-
plate constituents and treat each parameter in iso-
lation. However, considering parameters of a model
template as a simple unstructured set is not sufficient
for aspectual needs. Indeed, aspectual templates in-
ject model elements into some model whose primary
structure must conform to the parameters. So, to en-
sure the consistency of aspectual templates, there is
a need to consider their parameters as a whole and
impose that they form a fully structured and consis-
tent required model. For example, an inconsistency
may be: a method (resp. an association) is exposed
as a parameter without its owning class (resp. some
of its end classes). The Theme and RAM approaches
consider parameter dependencies but only between
features (attributes and methods) and their owning
class. Other dependencies due to associations, type
of features and parameters of operations are not con-
sidered. More generally, none of the mentioned ap-
proaches considers the idea of parameters at a coarser
granularity, that is, as a plain parameter model.

– Correctness of aspectual template binding: Ap-
plication of an aspectual template to a model is gen-
erally achieved with a dedicated binding relationship
which specifies how parameters are substituted by ac-
tual model elements. Specifying such a relationship
can be complex when parameters and their substitu-
tions are numerous or have many relationships. To
prevent substitution errors and enable the construc-
tion of a consistent resulting model, the correctness
of this relationship should be checked automatically.

Such checking must ensure that all elements from the
source model conform to the types and structural
constraints required by the parameters. Regarding
existing works, we found that this issue is only con-
sidered in the Theme and RAM approaches but with
the restriction on the granularity of parameters as
indicated previously. In Theme, rules expressed in
OCL are given to check the conformity between pa-
rameters and their substituted elements but these
rules only concern a small set of allowed parameters.
RAM also ensures a correct binding of parameters
for classes and their features but the corresponding
rules are only described informally and implemented
in the TouchRAM tool [2], so that they are neither
really reusable nor accurately comparable.

– Aspectual templates composition: The main in-
terest of composing aspectual templates by them-
selves is to enable the construction of new and richer
ones. Resulting “off-the-shelf” aspectual templates
may in turn be composed or reused to enrich models.
While increasing reusability, this feature has not re-
ceived much attention although it raises several ques-
tions such as: what about the binding strategies be-
tween formal parameters themselves, the capacity of
partial binding and the propagation of unbound pa-
rameters from the composed template to the result-
ing one? Answering these questions is mandatory to
preserve genericity and hence reusability of model
templates. Among existing works, only the RAM ap-
proach supports template composition through de-
pendency relationships. In RAM, binding between
formal parameters and propagation of unbound pa-
rameters are supported but these capacities are only
offered for classes and their features without consid-
ering all parameters as a model. In addition, precise
formulation of rules for the propagation of parame-
ters and the consistency of the resulting template are
not provided. More generally, and to our knowledge,
the issue of composing together aspectual templates
with parameter models, completely as well as par-
tially, has not been studied.

All of these require a consistent formalization of the
standard template construct semantics and its binding
mechanism in case of aspectual interpretation. Indeed,
despite the importance of being standard-compliant for
understanding, reuse and interoperability reasons, exist-
ing works are unclear about how they interpret the stan-
dard. Works like [36] and [27] have their own modeling
of template parameters and template binding. However,
they do not give details of their meta-level definition.
Consequently it is difficult to relate them with UML con-
structs and therefore get clear definition and proper se-
mantics of aspectual templates in relation with the stan-
dard. It is the subject of the present contribution to state
this semantic interpretation of the standard with the

Aspectual Templates in UML 7

only but strong constraint that parameters must form
a model.

In the next section we present the enhancement of
the UML template construct and its binding mechanism
dedicated to their aspectual usage. This enhancement is
fully-compliant with UML. Firstly, because formalized
aspectual templates are full UML templates so that they
can take place, at least, in any MDE practices where
UML templates are needed. Secondly, because it respects
the openness of the standard to other kinds of templates
(not all UML templates have to be aspectual ones).

4 Enhancing UML templates for aspectual usage

This section presents our proposal for the definition and
application of aspectual templates in the context of UML.
First, we propose to enforce the template parameters to
form a full parameter model whose candidate applica-
tions must conform in order to use the template. This
requirement has consequences on the template applica-
tion logics itself. As a result, we propose the specializa-
tion of this logics to take full advantage of the previous
requirement in a homogeneous and consistent way. The
capabilities offered for template composition and model
assemblies are illustrated through a case study inspired
from [12, 33, 46]. Next, typical scenarios of underlying
engineering practices will be presented.

4.1 Parameters as a model

Aspectual templates have parameters that capture re-
quired elements from candidate models. Considering these
parameters in isolation is the standard but is underspec-
ified when one want to capture the full structure of a
required model.

Figure 5 illustrates the issue2. This figure shows a
package template for resource management functionali-
ties related to a stock. As expected, all the parameters
are model elements of the template core. But one can
observe that they do not form a consistent model. In-
deed, the ref property is exposed without its owning
class whereas the latter is required to enable its map-
ping with a property contained in a base class. Similarly,
the in association exposed as parameter is underspeci-
fied because one of its ends (the Resource class) is not
declared as a parameter.

Figure 6 shows the preceding template where param-
eters were completed to form a full model required by
the aspectual template. This required model specifies

2 In order to highlight parameter constituents in the tem-
plate core, class boxes and association lines are dashed and
names are bolded. Other constituents correspond to injected
elements.

StockManagement

add(r:Resource)
delete(r:Resource)

identifier: String
capacity: int

Stock

transfer(s:Stock)
ref: String

Resourcein

0..*

Stock : Class,
identifier, ref : Property,
in : Association

Fig. 5 Set of parameters

StockManagement

add(r:Resource)
delete(r:Resource)

identifier: String
capacity:int

Stock

transfer(s:Stock)
ref: String

Resourcein

0..*

identifier: String

Stock in
0..*

ref: String
Resource

Fig. 6 Parameters as a model

the structure expected from candidate models (two con-
nected classes with string-based attributes in the exam-
ple) to correctly inject the template functionality. Graph-
ically, this specificity is rendered by replacing the param-
eters list by the corresponding (parameter) model.

Other examples are provided in Figure 7 for the in-
jection of a functionality to search resources in a stock
(see Querying) and a counting functionality between two
connected classes (see Counting), of which one must have
a valuation method. These examples show particularly
that elements of the parameter model can be either prop-
erties, operations, associations or classes. The Allocation
aspectual template also included in the figure is particu-
larly interesting. It gives an example where classes of the
parameter model are unconnected, the purpose being to
install allocation management between classes represent-
ing “Client-Product problems”.

Given such kind of templates, the next section shows
their application to modeling contexts as far as they con-
form to the required parameter model.

4.2 Binding aspectual templates

Following UML, the application of aspectual templates
is supported by the bind relationship but it must be en-
hanced to take into account the “parameter as a model”
requirement. This has the following consequence : a bind
relationship used for aspectual template application is
based on the substitution of the parameter model by a
conforming sub-structure of the base model.

Consider the case study of the car hiring system and
assume one wants to offer facilities for searching a spe-
cific car or client and performing car allocation. For this
(see Figure 7), useful aspectual templates may be ap-
plied to its base model (center-left in the figure). Sub-

8 Gilles Vanwormhoudt, Olivier Caron and Bernard Carré

QueryableStockManagement

StockManagement

add(r:Resource)
delete(r:Resource)

identifier: String
capacity:int

Stock

transfer(s:Stock)
ref: String

Resource

in

0..*

identifier: String

Stock

in
0..*

ref: String

Resource

at
0..*

Querying

findAll(): Resource[]
name: String

Location

location(): Location
findByKey(key: String): Resource

key: String
Resource

at

0..*

name: String

Location

key: String

Resource

<<bind>>
< Location -> Stock,

Resource -> Resource,
name -> identifier,

key -> ref,
at -> in >

at

0..*

identifier: String

Stock

in

0..*

ref: String

Resource

CarHiringSystem

name: String
address: String

Agency

name: String
birthday: Date
phone: String
address : String

Client

client

0..*

number: String
date: Date
constructor: String
model: String

Car

ac

0..*

at

Querying

findAll(): Resource[]
name: String

Location

location(): Location
findByKey(key: String): Resource

key: String
Resource

at

0..*

name: String

Location

key: String

Resource

at

Allocation

nbAssignment() : int
free(begin:Date, end: Date) : bool

code: String
Product

cost() : float

assignDate: Date
dueDate: Date
return : Date

Allocation

0..*

code: String

Product

id: String

Client

nbAllocation(): int
id: String

Client

to
0..*

assign

Counting

value() : T

Element

total(): T

Counter

at

0..*

value() : T

Element

at
0..*

Counter

<<bind>>
< Counter -> Client,

Element -> Allocation,
value() -> cost(),

T -> float,
at -> to >

<<bind>>
< Client -> Client,

Product -> Car,
code -> number,

id -> name >

<<bind>>
< Location -> Agency,

Resource -> Client,
name -> name,
key -> name,
at -> client>

0..*

<<bind>>
< Stock -> Agency, Resource -> Car

identifier -> name, ref -> number,
in -> ac>

T

T

Fig. 7 Example of model assembly

sequent template application depicted in this figure will
be detailed in the following. Figure 8 shows the expected
result.

Compared to UML, aspectual template binding needs
specific conformance: to be valid, actual arguments must
form a model that structurally conforms to the param-
eter model of the aspectual template. This means the
following: if a parameter of the template depends on
another parameter (according to their modeling con-
straints), the same must apply to their corresponding
bound elements; if two elements are connected by a link
l1 in the parameter model, their bound elements in the
base model must be connected by a link bound to l1.
These requirements will be ensured by a set of con-
straints detailed in Section 5.2.

For example the center part in Figure 7 shows the
application of a Querying template to the base model.
Parameters (Location, Resource, name, key, at) are sub-

stituted by actual elements of the base model (resp.
Agency, Client, Agency::name, Client::name, client). One
can verify that the structure formed by the parameter
model is well-preserved by these actual arguments.

The preceding situation showed how an aspectual
template may apply to a base model. But aspectual tem-
plates may also be composed together in order to obtain
richer ones as promoted by the standard. This capacity
is illustrated in the upper side of Figure 7 where the
same Querying template is applied to the StockManage-
ment one for enhancing it with querying facilities. It
is worth noting that template to template application
must allow the binding of formal parameters to those
of the bound template. In the example the parameter
Location is substituted by the parameter Stock. As a
consequence, this may lead to their enrichment like any
other bound element. For example the method findAll()
of Location will be injected in the Stock parameter class

Aspectual Templates in UML 9

CarHiringSystem

add(r:Car)
delete(r:Car)
findAll():Client[]
findAll():Car[]

name: String
address: String
capacity: int

Agency

location():Agency
findByKey(key:String):Client
nbAllocation():int
total():float

name: String
birthDay: Date
phone: String
address : String

Client

client

0..*

transfer(s:Agency)
location():Agency
findByKey(key:String):Car
nbAssignment():int
free(begin:Date, end:Date): bool

number: String
date: Date
constructor: String
model: String

Car

ac
0..*

cost() : float

assignDate: Date
dueDate: Date
return : Date

Allocation

0..*

assign

to
0..*

Fig. 8 Resulting system from model assembly of Figure 7

with respect to specified substitions. Figure 9 shows the
resulting QueryableStockManagement template.

At this point, it was shown how aspectual templates
can be applied to base models or to other aspectual
templates. Composing this primitive operation in the
large leads to complex model assemblies such as the one
of Figure 7. Related ordering and consistency proper-
ties must be guaranteed and were formalized in [33]. It
must be possible to apply an aspectual template mul-
tiple times as it is the case for the preceding Querying
template. Conditions are also stated to guarantee that
alternative composition chains produce the same result.
For example, as seen above, Querying applied to Stock-
Management produces the QueryableStockManagement
template which is itself applied to the base model. An
alternative would be to apply StockManagement to the
base first then Querying with the same result. Another
example (bottom side of the figure) is composing tem-
plates first (Counting to Allocation) then applying the
resulting template to CarHiringSystem compared to se-
quencing the applications (Allocation to CarHiringSys-
tem, then Counting).

This case study shows how aspectual interpretation
of UML templates allows to define new systems from
assemblies of prefabricated model templates with flexi-
bility. From a much more user-centered point of view,
typical engineering practices and concerns are presented
in the following.

4.3 Aspectual Template Oriented Engineering in UML

Template Oriented Engineering as permitted by UML
mainly involves two user roles which may be played al-
ternatively by project contributors : designers of model
templates and application modelers. When they want to
use UML templates for aspectual needs, guaranteeing
that parameters form a model must help them in their

QueryableStockManagement

add(r:Resource)
delete(r:Resource)
findAll(): Resource[]

identifier: String
capacity:int

Stock

transfer(s:Stock)
location(): Stock
findByKey(key: String): Resource

ref: String
Resource

in

0..*

identifier: String

Stock

in
0..*

ref: String

Resource

Fig. 9 Result of template to template application

specific usage for building complex models from reusable
ones, as in the motivating case study above (Figure 7).
Figure 10 shows a typical scenario involving template
designers on the left and application modelers on the
right with respective activities around a model reposi-
tory containing templates and models that they share.

Designers of aspectual templates are mainly concerned
with “design for reuse” and the constitution of libraries
(“models off the shelf”). They have to isolate the typical
(“minimal”) model of systems (the parameter) to which
the specific reusable functionalities will apply. This is
Model Parameterization (activity (A) in Figure 10). For
example consider stock management (Figure 6), func-
tionalities for adding/deleting/transferring resources to
and from stocks may be installed in any application con-
text which have stocks of resources, leading to the shown
parameter model. Facilities must be offered to help them
in their parameterization task:

– Verification that the chosen template parameters form
a model.

– Automatic recommendation for the completion of the
parameter model from the model elements chosen to
be exposed as parameters. For example, selection of
the in association and ref property as parameters
requires the elicitation of ending and owning class
Resource as parameters also. This elicitation can be
automatically recommended to template designer of
Figure 5 for completing its parameterization choice
(Figure 6) thanks to aspectual template logics.

Application modelers are much concerned with “de-
sign by reuse” methodology (right of Figure 10). They
want to exploit model templates for their application
needs in a safe manner through template binding. Facil-
ities must be offered to help them in this binding task:

10 Gilles Vanwormhoudt, Olivier Caron and Bernard Carré

Model Repository

Model
Parameterization

(A)

Template
composition

(B)

Template
decomposition

(C)

binding

binding

retrieve

retrieve

populate

populate

populate

retrieve

retrievebinding

binding

induce

Aspectual Template Designer Application Modeler

populate

Template
induction

(D)

retrieve

bindings

populate

Fig. 10 Motivating engineering scenario

– Verification that binding is correct. That is, model
ingredients they chose from their application context
for binding to some aspectual template of the library
that they want to reuse form a model which conforms
to the required parameter model. For example take
the context of the car hiring system and the use of
the Querying aspectual template for its design (cen-
ter part of Figure 7). Binding Car in place of Client
to parameter Resource would be an error since as-
sociation at bound to client does not link Location
(bound to Agency) to Car.

– Automatic completion facilities similar to that of-
fered to model template designers must also be of-
fered but applied, this time, to the binding task.
From the selection of model elements of the appli-
cation context to be bound, it is possible to deduce
other contextual model elements needed for the com-
pletion of the parameter model required by the tem-
plate. Consider the preceding example, by selecting
class Agency and association at to be bound respec-
tively to Location and at in the model parameter,
binding of class Client to Resource can be deduced.
Of course it often happens that completion is mul-
tiway and aiding tools have to propose alternatives

to users thanks to aspectual template logics. For ex-
ample only binding Agency to Location must lead to
the proposal of alternative bindings of the at associa-
tion and the Resource class (with its key attribute of
type String) either to the association client and its
ending class Client or to the association ac and its
ending class Car, with any of their String attribute
as a parameter value.

Binding activity is iterative and compositional, al-
lowing the construction of complex systems by succes-
sive application of model templates following rich model
assemblies such as the one of Figure 7. The initial model
of the system (CarHiringSystem, center left on the fig-
ure) is bound to aspectual templates that it conforms to.
This produces enriched models of the system to which
aspectual templates may apply and so on. At each step,
preceding helping facilities apply again in order to ver-
ify the applicability of template bindings and/or help in
completing bindings from intermediate enriched version
models of the system.

Far beyond the template binding activity of appli-
cation modelers who apply step by step aspectual tem-
plates to (nested) models within their application con-
text, template binding does also concern designers of

Aspectual Templates in UML 11

aspectual templates but this time between model tem-
plates themselves in order to build richer aspectual tem-
plates from the composition of other ones. This is “As-
pectual template composition” (activity (B) of template
designers in Figure 10). Preceding verification and com-
pletion facilities must also apply here but with the speci-
ficity that (partial) parameter binding may apply to
model elements that could be parameter elements of the
bound template model.

Finally it is worth noting that, backwardly, identifi-
cation of candidate models of functionalities for parame-
terization may come either from scratch as initially (see
primary activity (A) of template designers), either:

– by decomposition of a previously identified complex
template (see “Template decomposition” activity (C)
in Figure 10) which leads to identify finer ones.

– by induction from previously designed models of sys-
tems which share common functionalities (see “Tem-
plate induction” activity (D) in Figure 10).

These latter activities of template designers combine pa-
rameterization and binding tasks and call for verification
that source models (coming from an application context
or from a complex template) are binding to the identified
template a posteriori.

All these engineering practices must be controlled
in a homogeneous and consistent manner with the pro-
vision that aspectual interpretation of UML templates
and their binding semantics are precisely and rigorously
stated in order to guide users who want to exploit UML
templates this way and help in ensuring the correctness
of computations made by automatic processes. For this
we present in the following an assertional semantics of
this interpretation of the standard in OCL. The resulting
formalization can be used in any situation where the con-
cept of aspectual templates is needed such as automatic
MDE engines and software design environments. It is the
power of such an assertional (tool-independent) formal-
ization to offer rules (OCL constraints) for the definition
and formal specification of the standard constructs en-
hanced as so and more, to exploit them for interactive
or automatic needs. For example, as seen above, thanks
to their “verification side”, rules can be used to control
editing and the correctness of built models. Thanks to
their “deductive side”, rules can be used to offer facili-
ties such as completion and data inference based on user
(partial) entries. At a practical level such facilities will
be presented in Section 8.

5 From UML templates to aspectual templates

This section presents the semantics of aspectual inter-
pretation of UML templates and their binding using the
OCL logics. As a basis, we concentrate here on “complete
binding”, “partial” one will be the subject of specific
Section 6. Constraints apply to TemplateSignature and

Counting

total():T

Counter

value():T

Elementat

0..*
T

Counting

total():T

Counter

value():T

Elementat

0..*
T

(a)

(b)

Counter

value():

value():T

Elementat

0..*
T

Fig. 11 Examples of not well-formed aspectual templates

TemplateBinding metaclasses. Subsection 5.1 presents
constraints associated to the TemplateSignature meta-
class for checking that parameters of an aspectual tem-
plate form a valid model. Subsection 5.2 is dedicated
to the correctness of aspectual template binding. For
sake of simplicity, we only consider package templates
consisting of classes with their features (properties and
operations) linked by binary associations.

5.1 Checking template parameters

The specificity of an aspectual template compared to
a general one comes from refining the semantics of the
TemplateSignature metaclass. The signature of an UML
template considers the set of parameters as individual
parameters while the aspectual template signature im-
poses that this set forms a full well-formed model. That
is the aim of the constraints formulated in this section.

Figure 11 shows some not well-formed aspectual tem-
plates which are variants of the Counting template (Fig-
ure 7) and will be used to explain constraints of this
subsection.

Let us start with features of a class. If a feature is
a parameter, its class must also be a parameter. This is
ensured by the following constraint (number 1). Counter-
examples are an operation without its owning class (Fig-
ure 11(a): value() without Element) or an attribute with-
out its owning class3.

−− [1] Owning c l a s s e s of parameter f ea ture s must
a l so be parameters :

context TemplateSignature inv :
s e l f . ownedParameter−>forAll (

param : uml : : TemplateParameter |
l e t pe : uml : : ParameterableElement = param .

parameteredElement in
pe . oclIsKindOf (uml : : Feature) implies

3 To determine if a parameterable element is
a formal template parameter, we use the stan-
dard UML query (see Templates Section in [43]):
ParameterableElement::isTemplateParameter()

12 Gilles Vanwormhoudt, Olivier Caron and Bernard Carré

l e t ownerClass : uml : : Class
= pe . oclAsType (uml : : Feature) . owner . oclAsType (uml

: : Class) in
ownerClass . isTemplateParameter ()

)

Constraint 2 deals with the consistency of associa-
tions. If an association is a parameter, its ending classes
must also be parameters. Figure 11(b) does not respect
that constraint because Counter is not a parameter.

−− [2] Ending c l a s s e s of a parameter assoc ia t ion
must a l so be parameters :

context TemplateSignature inv :
s e l f . ownedParameter−>forAll
(param : uml : : TemplateParameter |

l e t pe : uml : : ParameterableElement = param .
parameteredElement in

pe . oclIsKindOf (uml : : As soc i a t i on) implies
let asso : uml : : As soc i a t i on =
pe . oclAsType (uml : : As soc i a t i on) in
asso .memberEnd−>forAll (member | member . type .

isTemplateParameter ())
)

The two following constraints (3 and 4) check the
typing of features that are parameters4. In case of a
property, constraint 3 checks that its type is also a pa-
rameter. Constraint 4 is similar in case of an operation:
it checks that arguments and return value types are also
parameters5. For example in Figure 11(a), the type T
of operation value() is not present in the signature, con-
straint 4 is violated. The same constraint is respected in
Figure 11(b).

−− [3] The type of a parameter property must a l so
be a parameter :

context TemplateSignature inv :
s e l f . ownedParameter−>forAll (

param : uml : : TemplateParameter |
l e t pe : uml : : ParameterableElement = param .

parameteredElement in
pe . oclIsKindOf (uml : : Property) implies
pe . oclAsType (uml : : Property) . type .

isTemplateParameter ()
)

−− [4] Types invo lved in a parameter operation
must a l so be parameters :

context TemplateSignature inv :
s e l f . ownedParameter−>forAll (

param : uml : : TemplateParameter |
l e t pe : uml : : ParameterableElement = param .

parameteredElement in
pe . oclIsKindOf (uml : : Operation) implies
pe . oclAsType (uml : : Operation) . ownedParameter−>

forAll
(p : uml : : Parameter | p . type . isTemplateParameter

())
)

5.2 Checking template binding

This section presents the set of constraints related to
aspectual template complete binding, that is the confor-
mance between the formal parameter model and the ac-
tual one. Figure 12 illustrates non-conformance of three
bindings between Allocation and Counting templates.
The two following constraints allow the checking of model

4 This does not apply to primitive data types.
5 In UML, the ownedParameter role for an operation covers

in, out and return parameters.

Counting

total():T

Counter

value():T

Elementat

0..*
T

Allocation

nbAssignment() : int
free(begin:Date, end: Date) : bool

code: String
Product

cost() : float

assignDate: Date
dueDate: Date
return : Date

Allocation

0..*

nbAllocation(): int
id: String

Client to

0..*

assign

<<bind>>
< ... >

case (a)

<<bind>>
< Counter -> Client,

Element -> Allocation,
value() -> nbAssignment(),

T -> int,
at -> to >

case (b)

<<bind>>
< Counter -> Client,

Element -> Allocation,
value() -> cost(),

T -> float
at -> assign >

code: String

Product

id: String

Client

Counter at
0..* value() : T

Element

T

case (c)

<<bind>>
< Counter -> Client,

Element -> Allocation,
value() -> cost(),

T -> int
at -> to >

Fig. 12 Examples of conformance checking for actual pa-
rameters

structure. Constraint 5 focuses on the preservation of
owned/owner relationships.

Binding (a) in Figure 12 illustrates this checking. The
formal parameter value() is owned by the formal param-
eter Element. As a consequence, the actual parameter
associated to value() must be owned by Allocation which
is the substituted class of Element. As nbAssignment() is
owned by the Product class, the constraint 5 is violated.

−− [5] Owning r e l a t i on sh i p s between formal
parameters must be preserved in t h e i r
corresponding actua l va lues :

context TemplateBinding inv :
s e l f . parameterSubst i tut ion−>forAll (s1 , s2 |

s1 . formal . parameteredElement . owner = s2 . formal .
parameteredElement

implies s1 . ac tua l . owner = s2 . ac tua l
)

Constraint 6 relates to the preservation of associa-
tion structures. In Figure 12(b), the member ends of the
substituted association of at, that is assign, must be the
substituted classes of Element and Counter parameters :
Allocation and Product contrarily to given Allocation and
Client. So, constraint 6 is violated.

−− [6] Member ends of a formal parameter
assoc ia t ion must be su b s t i t u t e d by member ends
of i t s ac tua l va lue :

context TemplateBinding inv :
s e l f . parameterSubst i tut ion−>forAll (s1 , s2 |

l e t asso : uml : : ParameterableElement = s1 . formal .
parameteredElement in

let c l a : uml : : ParameterableElement = s2 . formal .
parameteredElement in

(asso . oclIsKindOf (uml : : As soc i a t i on) and c l a .
oclIsKindOf (uml : : Class)

and asso . oclAsType (uml : : As soc i a t i on) .memberEnd
−>col lect (type)

Aspectual Templates in UML 13

−>includes (c l a . oclAsType (uml : : Class))
implies
s1 . ac tua l . oclAsType (uml : : As soc i a t i on) .

memberEnd−>col lect (type)
−>includes (s2 . a c tua l . oclAsType (uml : : Class))

)
)

The two following constraints focus on property sub-
stitution (constraint 7) and operation substitution (con-
straint 8). For a property parameter, its type must be
substituted by the type of the substituted property.

−− [7] The sub s t i t u t e d type of a formal parameter
property must be the type of i t s ac tua l va lue :

context TemplateBinding inv :
s e l f . parameterSubst i tut ion−>
select (formal . parameteredElement . oclIsTypeOf (uml : :

Property))−>forAll (tps |
l e t prop : uml : : Property =
tps . formal . parameteredElement . oclAsType (uml : :

Property) in
let subst i tutedProp : uml : : Property = tps . ac tua l .

oclAsType (uml : : Property) in
s e l f . parameterSubst i tut ion−>exists (
formal . parameteredElement=prop . type and ac tua l=

subst i tutedProp . type)
)

And finally constraint 8 deals with operations: Vio-
lation of this constraint is illustrated with the binding
(c) in Figure 12: the return type of value() is T; as T is
substituted by int, the return type of cost() is not com-
patible: it must be float instead of int. As a result, the
value() operation can not be substituted by cost().

−− [8] The sub s t i t u t e d types of operation
parameters must be

sub s t i t u t ed by the correspond ing types o f the
ac tua l operat ion :

context TemplateBinding inv :
s e l f . parameterSubst i tut ion−>select (formal .

parameteredElement .
oclIsTypeOf (uml : : Operation))−>forAll (tps |
l e t formalOp : uml : : Operation =

tps . formal . parameteredElement . oclAsType (uml : :
Operation) in

let actualOp : uml : : Operation =
tps . a c tua l . oclAsType (uml : : Operation) in
formalOp . ownedParameter−>s ize ()=actualOp .

ownedParameter−>s ize () and
Sequence { 1 . . formalOp . ownedParameter−>s ize ()}−>

forAll (index |
l e t memberFormalOp : uml : : Parameter =
formalOp . ownedParameter−>asOrderedSet ()
−>at (index) . oclAsType (uml : : Parameter) in
let memberActualOp : uml : : Parameter =
actualOp . ownedParameter−>asOrderedSet ()
−>at (index) . oclAsType (uml : : Parameter) in
s e l f . parameterSubst i tut ion−>exists (

formal . parameteredElement=memberFormalOp .
type and

ac tua l=memberActualOp . type)
)

)

p

6 Partial binding of aspectual templates

In the previous section, we have presented basics of the
aspectual enhancement of UML templates in the general
case of “complete binding” (all parameters being substi-
tuted). In this section, we concentrate on “partial bind-
ing”. Partial binding occurs when only a subset of the

parameters are substituted so that unbound ones remain
parameters in the resulting model which is therefore a
template. This feature aims to define new templates with
richer parameter models, resulting in a more powerful
and flexible composition logics between templates. This
facility allows to hierarchically compose templates and
does increase their reusability.

In the following, we first explain partial binding in
the context of aspectual templates. This requires addi-
tional rules for ensuring the consistency of partial bind-
ing, particularly the well-formedness of the parameter
model in the resulting template. Then we present these
rules and give their OCL formulation.

6.1 Partial binding in detail

To get a glimpse of partial binding, let us consider an
aspectual template capturing the Observer pattern and
its application to the StockManagement template intro-
duced in Section 4.1. The aim of this application is to get
a new template expressing the functionality for observ-
able stock management of resources. Figure 13 shows
this application. It consists in the following substitu-
tions of the Observer template parameters: the Subject
class is bound to the Stock class, the value attribute is
bound to the capacity attribute and its type T is bound
to the int datatype. As we can notice, this application
of the Observer template is partial: Observer class and
observers association included in the parameter model
are not substituted by elements of the bound template.
In this application, none of the classes contained in the
StockManagement template is intended to play the Ob-
server functionality. Regarding this example, it is worth-
while to note that, without partial binding, it would not
be possible to compose the involved templates.

In case of partial binding, how unbound parameters
are handled in the application process needs to be de-
termined. Several strategies are possible for these pa-
rameters: simply ignore them; include them in the core
of the resulting template while dropping their status as
parameters; propagate them in the parameter model of
the resulting template. The last strategy is the one spec-
ified in UML ([43] page 634): “In case of partial bind-
ing, the unbound formal template parameters are formal
template parameters of the bound element.”. Compared
to other ones, this strategy offers two main advantages.
First, it respects the high-order status of template pa-
rameters compared to other model elements, which is to
abstract elements expected from any candidate model to
fulfill the template functionality. Other strategies break
this principle. Second, this strategy allows to obtain new
templates with enriched parameters. This strategy of the
standard is fully respected here. However, as explained
in the following, it must be made consistent with aspec-
tual templates so that parameters must form and remain
a full model during binding.

14 Gilles Vanwormhoudt, Olivier Caron and Bernard Carré

StockManagement

add(r:Resource)
delete(r:Resource)

identifier: String
capacity:int

Stock

transfer(s:Stock)
ref: String

Resource

in

0..*

identifier: String

Stock

in
0..*

ref: String

Resource

ObserverPattern

register(Observer o)
value: T

Subject

update(val:T)

Observer

observers

0..*

Subject
value: T

Observer

<<bind>>
< Subject -> Stock,

value -> capacity
T -> int>

 observers

0..*

T

T

Fig. 13 Example of unsubstituted parameters: classes and associations

Right of Figure 14 illustrates this strategy by means
of the ObservableStockManagement template resulting
from the previous partial binding (Figure 13). One can
observe the two following points. First, the unsubsti-
tuted Observer class and observers relationship have
been inserted into the template core but keeping their
parameter status so that they are injected in the parame-
ter model of ObservableStockManagement. The insertion
of these unsubstituted parameters is achieved with re-
spect to specified substitutions, causing the adaptation
of their owning elements. See for example the substitu-
tion of T by int in the update method. Second, both el-
ements are also parameters of the ObservableStockMan-
agement template, resulting in a richer parameter model.
These added parameters should be substituted in further
applications of the obtained template. More generally,
following the standard strategy, the parameter set of the
new template is determined by the union of the bound
model parameters and the source unsubstituted model
parameters. To follow aspectual template semantics, it
is essential that this augmented parameter set forms a
consistent model. The next subsection studies this issue.

The previous example of partial binding illustrates
the case of unsubstituted class and association param-
eters. Owned elements like attribute and operation pa-
rameters can also be unsubstituted, even if their owning
class parameter is bound. As an illustrative example of
this capacity, let us modify the Querying template used
in Section 4.2 a bit. The modification consists in adding
an address and a date attributes as parameters of the
Querying template so that the functionality of search-
ing a resource by date or location could be customized
with corresponding attributes from the source domain.
In addition to this modification, we also consider par-
tial binding of this template to the previously obtained
ObservableStockManagement template for providing ob-
servable stock management with a querying facility.

Figure 14 shows the modified parameter model of the
Querying template and its partial application to Observ-

ableStockManagement. The resulting QueryableObserv-
ableStockManagement template is shown in the left part
of Figure 15. In this example, address and date parame-
ters being unsubstituted, they are included in the param-
eter model of the resulting template. Indeed, these at-
tributes are still needed to fulfill the functionality added
to the resulting template for searching a resource by date
or location. Regarding the need for consistency of the re-
sulting parameter model, unsubstituted attributes and
operations parameters require that their owning class in
the bound be a parameter (see Location substituted by
Stock in Figure 14). This requirement is necessary to en-
sure that such parameters have an owning class in the
resulting parameter model.

From the successive partial applications described
previously, we finally obtain a quite rich aspectual tem-
plate. This template combines several functionalities for
observing, searching and managing resources at the same
time. This template can be capitalized as a value-added
reusable model in repositories and be further applied to
construct systems. Figure 15 illustrates the application
of this template to the CarHiringSystem so that agencies
can manage their stock of cars and clients can observe
the availabilities.

Figure 16 shows the overall resulting model. It is the
result of the partial application chain as schematized
on the left in Figure 17. It is useful to highlight that
the same result model could be obtained through al-
ternative ordering composition processes of the involved
templates such as exemplified on the right of Figure
17: first applying Querying and StockManagement (in
any order) and then ObserverPattern. This equality em-
phasizes the compatibility between partial and complete
binding, therefore the consistency of the partial bind-
ing strategy. During system design, partial and complete
binding can be mixed in an effective way thanks to order-
ing properties, some parts originating from templates de-
signed from scratch, other parts coming from templates
obtained by valuable composition of other templates.

Aspectual Templates in UML 15

ObservableStockManagement

add(r:Resource)
delete(r:Resource)
register(Observer o)

identifier: String
capacity:int

Stock

transfer(s:Stock)
ref: String

Resource

in
0..*

identifier: String

Stock

in
0..*

ref: String

Resource

observers

update(val:int)

Observer
0..*

Observer
0..*

observers

at
0..*

Querying

findAll(): Resource[]

name: String
address: String

Location

location(): Location
findByKey(key: String): Resource
findByDate(d:Date): Resource[]

key: String
date: Date

Resource

at

0..*

name: String
address: String

Location

key: String
date: Date

Resource

<<bind>>
< Location -> Stock,

Resource -> Resource,
name -> identifier,

key -> ref,
at -> in >

at
0..*

Fig. 14 Example of unsubstituted parameters: attributes

QueryableAndObservableStockManagement

capacity():int
add(r:Resource)
delete(r:Resource)
register(Observer o)
findAll(): Resource[]

identifier: String
address: String
capacity:int

Stock

transfer(s:Stock)
location(): Stock
findByKey(key: String): Resource
findByDate(d:Date): Resource[]

ref: String
date: Date

Resource

in

0..*

identifier: String
address: String

Stock

in
0..*

ref: String
date: Date

Resource

observers

update(int val)

Observer
0..*

Observer
0..*

observers

CarHringSystem

name: String
address: String

Agency

name: String
birthday: Date
phone: String
address : String

Client
client

0..*

number: String
date: Date
constructor: String
model: String

Car

ac

0..*

<<bind>>
< Stock -> Agency, Resource -> Car

Observer -> Client,
identifier -> name, ref -> number,

in -> ac, observers -> client
address -> address,

date -> date >

Fig. 15 Binding QueryingObserverStockManagement template to the base model

CarHiringSystem

capacity():int
add(r:Car)
delete(r:Car)
register(Client o)
findAll(): Car[]

name: String
address: String
capacity: int

Agency

update(val:int)

name: String
birthDay: Date
phone: String
address : String

Client
client

0..*

transfer(s:Agency)
location(): Agency
findByKey(key: String): Car
findByDate(d:Date): Car[]

number: String
date: Date
constructor: String
model: String

Car

ac
0..*

Fig. 16 Model Resulting from QueryingObserverStockMan-
agement Application

6.2 Checking partial binding

The constraints described in Section 5 for the consis-
tency of complete template binding remain valid in case

of partial one. But partial binding also calls for specific
rules to ensure its consistency. These rules are the fol-
lowing:

1. The subset of substituted parameters must form a
well-formed part of the parameter model6. Intuitively
in Figure 14, consider the key attribute parameter
and its Resource owning parameter class which are
both substituted. Substitution of this attribute im-
plies substitution of its class. Otherwise it will not
be possible to specify the class owning the substi-
tuted attribute in the bound template and as a con-
sequence the core of the resulting template will not
be well-formed. Additionally, in Figure 18(b), substi-
tution of observers association without substituting
the Observer class will yield the same kind of prob-
lem.

2. The bound model of a partial binding must be an as-
pectual template. This requirement is necessary to
ensure that unsubstituted parameters have a con-
text, that is the parameter model, in the resulting
template.

6 If all parameters are substituted, this property is implic-
itly guaranteed because they form a model by definition.

16 Gilles Vanwormhoudt, Olivier Caron and Bernard Carré

ObserverPattern S O

S O

StockManagement S R

S R

CarHiringSystem

A Cl

Cr

Querying

L R

L R

ObserverPattern S O

S O

StockManagement S R

S R

Querying

L R

L R

CarHiringSystem

A Cl

Cr

<<bind>>

<<bind>>

<<bind>>

<<bind>>

<<bind>>

<<bind>>

Fig. 17 Two composition processes of templates yielding the same result

3. Unsubstituted parameters must have their container
or their dependent elements in the parameter model
bound with elements having the status of parameter
in the bound template (see the unsubstituted date
attribute of the Resource class in Figure 14). This
requirement is necessary to ensure that the parame-
ter model augmented with unsubstituted parameters
forms a valid model. In Figure 13, the unsubstituted
observers association parameter is an example satis-
fying this requirement for its ending Subject and Ob-
server parameter classes : the first one is bound to
the Stock class parameter and the second one is un-
substituted, so that it remains a parameter. In Figure
14, one can see that the requirement is also fulfilled
since unsubstituted date and address parameter at-
tributes have their respective classes bound to class
parameters in the bound template. Otherwise, such
parameters would not have an owning class and the
resulting parameter model would not be well-formed.

In the following, we detail these rules separately and
formulate the corresponding OCL constraints. Constraints
(9-12) deal with the first rule. These constraints are
similar to those used for checking that parameters in-
cluded in a template signature (see constraints 1-4) form
a model. Here, these constraints check this property for
the substituted parameters specified by the template
binding. Constraint 9 checks for contained elements (fea-
tures without their owning class), constraint 10 for asso-
ciations (associations without their ending classes), and
constraints 11-12 for features (features without their re-
spective types).

We use Figure 18 to illustrate violation of these con-
straints. In case (a) of this figure, the class Subject which
owns the substituted attribute parameter value is not
substituted, so violates the constraint 9. Meanwhile, the

StockManagement

add(r:Resource)
delete(r:Resource)

identifier: String
capacity:int

Stock

transfer(s:Stock)
ref: String

Resourcein

0..*

identifier: String

Stock in

0..*
ref: String

Resource

ObserverPattern

register(o:Observer)
value: T

Subject observers

Subject
value: T

Observer

update(val:T)

Observer

0..*

observers
0..*

T

T

case (a)

<<bind>>
< value -> capacity >

case (b)

<<bind>>
< Subject -> Stock,

observers -> in >

<<bind>>
< ... >

Fig. 18 Examples of formal parameters checking for partial
binding

type of this attribute being parameter (T), it must also
be substituted to respect the constraint 11.

In Figure 18(b), the parameter association observers
between Subject and Observer is substituted but it has
only one substituted ending class (Subject by Stock),
leading to violation of constraint 10.

−− [9] Owning c l a s s of a su b s t i t u t e d fea ture must
a l so be su b s t i t u t e d :

context TemplateBinding inv :
s e l f . parameterSubst i tut ion−>col lect (formal .

parameteredElement)
−>includesAll (s e l f . parameterSubst i tut ion−>select (

formal . parameteredElement . oclIsKindOf (uml : :
Feature))−>col lect (

formal . parameteredElement . oclAsType (uml : : Feature
) .

f e a t u r i n gC l a s s i f i e r)

Aspectual Templates in UML 17

)

−− [10] Ending c l a s s e s of a su b s t i t u t e d
assoc ia t ion must a l so be su b s t i t u t e d :

context TemplateBinding inv :
l e t s e tpe : Set (uml : : ParameterableElement) =
s e l f . parameterSubst i tut ion−>col lect (formal .

parameteredElement)−>asSet () in
setpe−>forAll (pe : uml : : ParameterableElement |

pe . oclIsKindOf (uml : : As soc i a t i on) implies
pe . oclAsType (uml : : As soc i a t i on) .memberEnd−>forAll

(m |
setpe−>includes (m. type)

)
)

−− [11] The type of a su b s t i t u t e d property must
a l so be su b s t i t u t e d :

context TemplateBinding inv :
s e l f . parameterSubst i tut ion−>select (formal .

parameteredElement . oclIsKindOf (uml : : Property)
)

−>forAll (ps |
l e t propertyType : uml : : C l a s s i f i e r =
ps . formal . parameteredElement . oclAsType (uml : :

Property)
. type . oclAsType (uml : : C l a s s i f i e r) in
s e l f . parameterSubst i tut ion−>col lect (formal .

parameteredElement)
−>includes (propertyType . oclAsType (uml : :

ParameterableElement))
)

−− [12] Types invo lved in a sub s t i t u t e d operation
must a l so be su b s t i t u t e d :

context TemplateBinding inv :
s e l f . parameterSubst i tut ion−>forAll (ps : uml : :

TemplateParameterSubst itut ion |
ps . formal . parameteredElement . oclIsKindOf (uml : :

Operation) implies
let op : uml : : Operation =

ps . formal . parameteredElement . oclAsType (uml : :
Operation)

in op . ownedParameter−>forAll (p : uml : : Parameter
|

s e l f . parameterSubst i tut ion−>col lect (formal .
parameteredElement)

−>includes (p . type)
)

)

The second rule is ensured by the constraints 1-4. Re-
member that these constraints check that the signature
of the bound element forms a model.

Constraints (13-16) and Figure 19 focus on the last
rule. Constraint 13 checks for unsubstituted features. If
a class C is substituted and one of its features is not
then the class substituted for C must be parameter of
the bound template. Let us illustrate this with the bind-
ing of Counting to Allocation in Figure 19 where the Ele-
ment class is substituted by Allocation. As the operation
value() is not substituted and propagated as a parame-
ter, its class must also be a parameter (w.r.t constraint
1). Here, the binding violates constraint 13.

−− [13] I f a parameter c l a s s c i s s u b s t i t u t e d by a
c l a s s c ’ and one parameter f ea ture of c i s

not s u b s t i t u t e d then c ’ must be a parameter of
the bound template :

context TemplateBinding inv :
s e l f . parameterSubst i tut ion−>
select (formal . parameteredElement . oclIsKindOf (uml : :

Class))
−>forAll (ps : uml : : TemplateParameterSubst itut ion

|
s e l f . parameterSubst i tut ion−>col lect (formal)−>

includesAll (
s e l f . s i gna tu r e . ownedParameter−>

Counting

total():T

Counter

value():T

Elementat

0..*
T

Allocation

nbAssignment() : int
free(begin:Date, end: Date) : bool

code: String
Product

cost() : float

assignDate: Date
dueDate: Date
return : Date

Allocation

0..*

nbAllocation(): int
id: String

Client to

0..*

assign

code: String

Product

id: String

Client

Counter at
0..* value() : T

Element

T

<<bind>>
< Counter -> Client,

Element -> Allocation >

Fig. 19 Examples of checking for unsubstituted parameters

select (parameteredElement . owner=ps . formal .
parameteredElement)

) or ps . ac tua l . isTemplateParameter ()
)

Let us refine the study of unsubstituted features. If
the unsubstituted feature is a property and its type is
substituted, the substituted type must be parameter of
the bound template. Constraints 14 and 15 check this
rule respectively for properties and operations. For ex-
ample, consider the binding in Figure 13 with a sub-
stitution of T but not of value. Then, value would be
propagated as a parameter in the resulting template but
without its type (the result would violate constraint 3).

−− [14] I f a parameter c l a s s c i s s u b s t i t u t e d by a
c l a s s c ’ and c i s the type of a parameter

property which i s not s u b s t i t u t e d then c ’ must
be a parameter of the bound template :

context TemplateBinding inv :
s e l f . parameterSubst i tut ion−>
select (formal . parameteredElement . oclIsKindOf (uml : :

Class))
−>forAll (ps : uml : : TemplateParameterSubst itut ion

|
s e l f . parameterSubst i tut ion−>col lect (formal)−>

includesAll (
s e l f . s i gna tu r e . ownedParameter−>
select (parameteredElement . oclIsKindOf (uml : :

Property)
and
parameteredElement . oclAsType (uml : : Property) .

type=
ps . formal . parameteredElement)

) or ps . ac tua l . isTemplateParameter ()
)

−− [15] I f a parameter c l a s s c i s s u b s t i t u t e d by a
c l a s s c ’ and c i s one of a parameter type of

a parameter operation which i s not s u b s t i t u t e d
then c ’ must be a parameter of the bound

template :
context TemplateBinding inv :
s e l f . parameterSubst i tut ion−>select (formal .

parameteredElement . oclIsKindOf (uml : : Class))
−>forAll (ps : uml : : TemplateParameterSubst itut ion

|

18 Gilles Vanwormhoudt, Olivier Caron and Bernard Carré

s e l f . parameterSubst i tut ion−>col lect (formal)−>
includesAll (

s e l f . s i gna tu r e . ownedParameter−>select (
parameteredElement . oclIsTypeOf (uml : :

Operation) and
parameteredElement . oclAsType (uml : : Operation)

. ownedParameter
−>exists (type=ps . formal . parameteredElement)

)
) or ps . ac tua l . isTemplateParameter ()

)

The last constraint (constraint 16) focuses on unsub-
stituted associations. If a member end of an unsubsti-
tuted association is substituted then it must be param-
eter of the bound template. In Figure 19, constraint 16
is violated by the unsubstituted association at because
its Element member end is substituted by the Allocation
class which is not a parameter of the bound template.
This would yield a propagated but dangling association
in the resulting parameter model (constraint 2 is vio-
lated).

−− [16] I f a parameter c l a s s c i s s u b s t i t u t e d by a
c l a s s c ’ and c i s one of a member end of an

parameter assoc ia t ion of c which i s not
s u b s t i t u t e d then c ’ must a parameter of the
bound template :

context TemplateBinding inv :
s e l f . s i gna tu r e . ownedParameter−>
select (parameteredElement . oclIsTypeOf (uml : :

As soc i a t i on))−>forAll (
p : uml : : TemplateParameter |
l e t asso : uml : : As soc i a t i on =
p . parameteredElement . oclAsType (uml : : As soc i a t i on)

in
not (s e l f . parameterSubst i tut ion−>col lect (formal)

−>includes (p)) implies
s e l f . parameterSubst i tut ion−>forAll (ps |

asso .memberEnd−>forAll (propertyEnd |
propertyEnd . type=ps . formal .

parameteredElement
implies ps . ac tua l . isTemplateParameter ()

)
)

)

7 Binding algorithm

This section presents an algorithm for the construction
of a consistent model resulting from the binding of an
aspectual template to a model or another aspectual tem-
plate. It follows the semantics by copy and substitution
informally specified in UML. This algorithm supports
complete and partial binding.

The algorithm (see Algorithm 1) takes one input pa-
rameter which is a TemplateBinding specifying the tar-
get aspectual template, the bound package and a set of
substitutions. The effect of the algorithm is to modify
the bound package with additional elements of the as-
pectual template after parameter substitution.

We make the assumption that the TemplateBinding
parameter is a valid aspectual template binding with
respect to the set of rules presented in the previous sec-
tions. So, the checking of TemplateBinding is not in-
cluded in the algorithm. In particular, when partial bind-
ing, the bound template must be an aspectual one. We
also assume the following:

– The ParameterableElement metaclass owns an isTem-
plateParameter(): boolean operation which returns
true if the element is exposed as a template parame-
ter, false otherwise.

– The Package metaclass owns an addParameter(pe:-
ParameterableElement) operation which adds pe con-
tained in the package as a template parameter. This
operation creates and attaches a new TemplatePa-
rameter referencing the provided element to the Tem-
plateSignature of the package.

– The TemplateBinding metaclass owns an isSubstituted-
(pe:ParameterableElement) : boolean query operation
which returns true if pe is a formal template parame-
ter bound to an actual element in the bound package,
false otherwise.

– The TemplateBinding metaclass owns an getActual-
(pe:ParameterableElement) : ParameterableElement
query operation which returns the actual argument
corresponding to the pe formal parameter.

– Map is a conventional class for mapping keys to val-
ues. It is used here to memorize substitution of classes
done in the first step.

– A clone() operation is available on parameterable el-
ements. It creates an element of the same metatype
and copies its meta-attributes.

The algorithm is based on three steps :

1. Copy template classes into the bound pack-
age: In this step, iteration is made over the set of
classes contained in the aspectual template. If a class
is not a parameter or is an unsubstituted parame-
ter, a clone without features is created and added to
the bound package. In case of an unsubstituted tem-
plate class, a corresponding parameter is added to
the bound package signature. Finally, in preparation
to the next step, mapping is made between each tem-
plate class and its corresponding bound class which
is either one specified by the template binding or one
created previously.

2. Extend bound classes with features issued from
the template: This step consists in extending all
the bound classes mapped to template classes with
clones of their properties and operations which are
not parameters or are unsubstituted ones. The algo-
rithm iterates over the mapping set up during the
first step to determine each bound class. For each
added property and operation, the template classes
referenced by their types are replaced by the corre-
sponding mapped classes. In addition, unsubstituted
features from the aspectual template are propagated
as parameters in the bound template signature.

3. Copy template associations into the bound pack-
age: In this last step, the algorithm inserts a copy
of template associations which are not parameters or
are unsubstituted parameters into the bound pack-
age. New associations have their owned ends adapted
to take into account substituted or cloned template

Aspectual Templates in UML 19

classes. Unsubstituted associations are propagated as
parameters in the bound template signature.

The algorithm produces a resulting (template) model
which is consistent with the standard bind relationship.
As explained in Section 2.1, this implies that the content
of the bound model includes the content of the template
with any element exposed as a formal parameter substi-
tuted by the actual element specified in the binding.

8 Aspectual template technology

In the preceding sections, a formalization of aspectual
templates in OCL was stated. This formalization aims
at capturing common groundings when using UML tem-
plates for aspectual needs. Its ambition is to be indepen-
dent of (so reusable in) any particular tool, user inter-
action facility, or specific automatic process. This opens
the way to many possibilities for applying and imple-
menting aspectual templates as specified in the present
work. In this section, we present core technology that has
been made available in the Eclipse Modeling Framework
environment. Then, we present how it can be integrated
into specific CASE tools through an example.

8.1 Core functionalities

Following the plugin-based style promoted by Eclipse,
we have developed new plugins that offer core function-
alities dedicated to aspectual templates7. These plugins,
which rely on official EMF, UML and OCL plugins for
their implementation, are the following:

– A UML profile plugin that allows to optionally apply
the aspectual interpretation and its constraints. This
profile is compliant with the official UML plugin pro-
vided by Eclipse. As a result, the stereotypes can be
applied to any UML model using either the program-
ming interface or any profile-compliant UML CASE
tool. The profile consists of three dedicated stereo-
types (Figure 20) which provide contexts for apply-
ing the specific OCL constraints. These stereotypes
are :
– AspectualTemplate and AspectualTemplateSigna-

ture related to package templates and their sig-
nature;

– AspectualTemplateBinding which enhances the bind-
ing rules.

Figure 20 shows the extension using the standard
profile notation (see Profiles Section in [43]). It uses
the standard “extension” association between a stereo-
type definition and the extended metaclass. The stereo-
types must be applied conjointly to be consistent.

7 The core functionalities and the CASE tool are
available at http://www.cristal.univ-lille.fr/caramel/

aspectualtemplates

Algorithm 1: apply(binding : TemplateBinding)
Data: template, base : Package,map : Map < Class, Class >
begin

map←− {};
template←− binding.signature.template;
base←− binding.boundElement;
// Step 1: Copy template classes
for tcl ∈ template.classes do

if ¬tcl.isTemplateParameter() ∨
¬binding.isSubstituted(tcl) then

bcl←− tcl.clone();
base.classes←− base.classes + bcl;
if tcl.isTemplateParameter() then

base.addParameter(bcl);
end

else
bcl←− binding.getActual(tcl);

end
map←− map+ < tcl, bcl >;

end
// Step 2: Extend bound classes
for tcl ∈ map.keys() do

bcl←− map.get(tcl);
// Properties
for tprop ∈ tcl.ownedAttribute do

if ¬tprop.isTemplateParameter() ∨
¬binding.isSubstituted(tprop) then

bprop←− tprop.clone();
bprop.type←− map.get(tprop.type);
bcl.ownedAttribute←−
bcl.ownedAttribute + bprop;

if tprop.isTemplateParameter() then
base.addParameter(bprop);

end

end

end
// Operations
for top ∈ tcl.ownedOperation do

if ¬top.isTemplateParameter() ∨
¬binding.isSubstituted(top) then

bop←− top.clone();
bop.type←− map.get(bop.type);
bcl.ownedOperation←−
bcl.ownedOperation + bop;

for tparam ∈ top.ownedParameter do
bparam←− tparam.clone();
bparam.type←−
map.get(tparam.type);

bop.ownedParameter ←−
bop.ownedParameter + bparam;

end
if top.isTemplateParameter() then

base.addParameter(bop);
end

end

end

end
// Step 3: Copy template associations
for tassoc ∈ template.associations do

if ¬tassoc.isTemplateParameter() ∨
¬binding.isSubstituted(tassoc) then

bassoc←− tassoc.clone();
base.associations←−
base.associations + bassoc;

for tend ∈ tassoc.memberdEnd do
bend←− tend.clone();
bend.type←− map.get(tend.type);
bassoc.memberEnd←−
bassoc.memberEnd + bend;

end
if tassoc.isTemplateParameter() then

base.addParameter(bassoc);
end

end

end

end

http://www.cristal.univ-lille.fr/caramel/aspectualtemplates
http://www.cristal.univ-lille.fr/caramel/aspectualtemplates

20 Gilles Vanwormhoudt, Olivier Caron and Bernard Carré

uml metamodel (Class Diagram Part)

<<profile>> AspectualTemplateProfile

<<reference>>

1
Package

<<Stereotype>>
AspectualTemplate AspectualTemplateSignature

...

OCL Constraint
...

OCL Constraint
...

<<Stereotype>>
AspectualTemplateBinding

OCL Constraint

<<metaclass>> ownedTemplateSignature

0..1

<<metaclass>>
TemplateSignature TemplateBinding

signature <<metaclass>>

<<Stereotype>>

boundElement 1

template

Fig. 20 UML Profile for aspectual templates

– An engine plugin that checks all specified OCL con-
straints. Constraints are parsed and executed using
the Java API provided by the official OCL plugin.
This plugin also implements the binding algorithm
presented in Section 7. The algorithm implementa-
tion exploits the API provided by the UML plugin
to represent and manipulate UML models in Java.

– An helper plugin that offers general facilities for query-
ing, modifying or completing aspectual template sig-
natures and bindings in relation with the “parame-
ters as a model” requirement. Among the provided
facilities, one allows to determine the missing param-
eters in aspectual template signatures and bindings.
Another facility is the automatic completion of signa-
tures and bindings to guarantee that their formal pa-
rameters form a model. Inference of parameter sub-
stitution for aspectual template bindings is also of-
fered (see next subsection for a detailed explanation
of this powerful functionality). This plugin can be
helpful to develop new modeling tasks targeting as-
pectual templates and also to provide user assistance
during aspectual template specification and binding
like the automatic fixing of errors detected by OCL
constraints.

All the preceding core functionalities are available
to other plugins and can be easily integrated into UML
tools which are compliant with the Eclipse architecture
and its EMF framework. Kinds of tools that can profit
from such plugins are for example UML model veri-
fiers, transformation and construction engines as well as
model editors as illustrated in the subsection 8.3.

8.2 Binding inference

Binding inference is the process of finding automatically
valid parameter substitutions for an aspectual template
binding specification. This feature is currently provided
by the helper plugin. To provide this feature, we use a
well-known algorithm for subgraph isomorphism detec-
tion proposed by Ullman in [42]. This algorithm, which

is based on the principle of backtracking in combina-
tion with a forward-checking technique, enables to find
all the mappings between two graphs that respect some
iso-structural conditions.

In the current work, this algorithm has been adapted
to find all the valid substitutions between the model pa-
rameter and the bound model with regard to the struc-
tural constraints imposed by aspectual template seman-
tics. The adapted algorithm starts with a single mapping
of a parameter to a compatible element and then gradu-
ally extends this mapping with additional ones such that
the set of determined mappings always denotes a valid
binding. If, at some point, the set of computed map-
pings does not represent a valid binding, then the process
backtracks. That is, a previously mapped parameter is
reassigned to another candidate element from the bound
model and the conditions for the binding correctness are
again tested. At each level of the execution, the forward-
checking procedure is used to test whether there exists at
least one mapping for each future parameter onto some
element such that the conditions for valid binding hold
true. This allows to avoid computation steps in the in-
termediate level before discovering that a parameter can
not be correctly mapped.

Binding inference works in case of partial binding.
The algorithm handles this case by limiting the enu-
meration of possible mappings to the subset of formal
parameters. Furthermore, the binding inference also op-
erates if substitutions exist for some parameters at the
initial stage. In that case, the algorithm takes the given
substitutions as being fixed mapping and systematically
includes them in all resulting valid bindings (see the fol-
lowing for an example).

The capacities of the algorithm are illustrated in Fig-
ure 21 for the complete application of StockManagement
aspectual template to the Car Hiring System model (see
Figure 7). In this example, the binding only specifies
the substitution of Stock by Agency. Other parameters
are not substituted (their actuals are noted undefined in
the figure). From this binding, the algorithm produces a
set of twenty possible bindings shown in the right part

Aspectual Templates in UML 21

of the figure. These bindings are the only possible ones
with respect to the structural constraint imposed by the
parameter model with the given substitution. As we can
observe, the algorithm inferred that candidate elements
conforming to the structure formed by Stock substituted
by Agency, Resource and the in association are the sub-
set formed by Agency, Client, client or the one formed
by Agency, Car and ac. Other substitutions found by
the algorithm correspond to the substitution of the ref
parameter of Resource and the identifier parameter of
Stock by one of the type-compatible attributes owned
by the candidate classes found for their substitution: for
instance, number, constructor and model attributes for
the ref parameters when Resource is substituted by Car.
These results show the enumerative nature of the algo-
rithm to find all valid substitutions.

At the user level, binding inference can be exploited
to assist the modeler with the task of substituting pa-
rameters as seen in Subsection 4.3. For example, the
modeler can perform inference to discover all the valid
bindings and select the most convenient ones with re-
gard to his modeling problem. From these bindings, it
is also possible to compute their intersection and group
them according to their common substitutions in order
to reduce the set of bindings proposed to the modeler.
Another way of using this facility is the completion of
a binding with additional inferred substitutions. For ex-
ample, a modeler can specify the binding of an attribute
parameter to an existing one in the bound model and
rely on the inference mechanism to determine the substi-
tution of its class parameter by the corresponding class.
A last interesting usage of binding inference is the filter-
ing of elements that can be candidates for a particular
substitution. All the user facilities relying on binding in-
ference are included into the case tool presented in the
next section.

8.3 Integration to CASE tools

These plugins are reusable in any engineering EMF com-
pliant environment and we use them in our proper envi-
ronment. Figure 22 presents a snapshot of a CASE tool
aimed to assist the construction of UML systems with
aspectual templates. It was used to experiment the case
study presented in the paper using aspectual template li-
braries such as GOF patterns. This CASE tool includes
both a tree-based editor (left side of the figure) and a
graphical visualizer of UML models (right side of the
figure).

The editor is a specialization of the UML editor pro-
vided by Eclipse. Compared to the latter, it adds the
capacities to specify new UML aspectual templates, im-
port and bind existing aspectual templates into UML
models and process their application. Along these mod-
eling tasks, the aspectual templates and their bindings
can be checked at any time using the editor. In addition,

the editor includes completion and filtering facilities to
avoid or fix errors detected by the set of OCL constraints.
These editing facilities rely on the helper plugin. The vi-
sualizer provides a graphical view of the model currently
edited by the editor or selected in the workspace. This
view can help the designer to find interesting aspectual
templates before their import or to understand complex
aspectual template assemblies and their results.

9 Generalization of the results

In this section, generalization of the results is discussed.
We begin by studying the generalization inside UML
which is the main topic of the paper. We will see how far
aspectual interpretation is applicable to other templates.
Then, we further investigate generalization beyond the
scope of UML, that is to other forms of model templates.

9.1 Inside UML

All along the paper, we focused on aspectual templates
for class models. For this kind of aspectual templates, we
formulated a set of constraints that take into account the
parameterable elements of class diagrams. While being
specific of class models, it can be observed that most
of the constraints are related to general dependencies
between elements contained in a model such as com-
ponent/composite dependencies, type dependencies and
no-dangling link dependencies. Given that UML pro-
vides many other templateable elements than package
template and many other parameterables than the ones
contained in a class model, two main questions arise.
First, how does the notion of aspectual template ex-
tend to other templateable elements ? Second, if there
are other candidate templateables, how do the presented
constraints serve as guidelines to interpret them as as-
pectual ?

It is worth noting that the current UML specification
provides limited information about permitted templates.
It only contains examples and explanations for class tem-
plates, collaboration templates and package templates
based on classes. Other permitted templates are not de-
scribed in the specification making the task of answer-
ing the previous questions not immediate. To help in
this study, we proceeded by a systematic introspection
of the standard as offered by the UML plugin provided
by Eclipse thanks to EMFScript, a reflective scripting
language that eases the querying of models and meta-
models [41]. This introspection was done by collecting
all direct and indirect subclasses of TemplateableElement
and ParameterableElement, then visiting all constituents
of templateables to check if they are parameterable ones.

Figure 23 shows the complete sets of parameterable
and templateable elements in UML specification. As ex-
pected, only a subset of UML elements are parameter-
able. Concerning templateable elements, they are fewer

22 Gilles Vanwormhoudt, Olivier Caron and Bernard Carré

CarHiringSystem

name: String
address: String

Agency

name: String
birthDay: Date
phone: String
address : String

Client
client

0..*

number: String
date: Date
constructor: String
model: String

Car

ac
0..*

StockManagement

add(r:Resource)
delete(r:Resource)

identifier: String
capacity:int

Stock

transfer(s:Stock)
ref: String

Resourcein

0..*

identifier: String

Stock in
0..*

ref: String
Resource

<<bind>>
< Stock -> Agency

identifier -> undefined
Resource -> undefined

ref -> undefined
in -> undefined >

Results of binding inference

Stock-->Agency, identifier-->name, Ressource-->Car, ref-->number, in-->ac
Stock-->Agency, identifier-->name, Ressource-->Car, ref-->constructor, in-->ac
Stock-->Agency, identifier-->name, Ressource-->Car, ref-->model, in-->ac
Stock-->Agency, identifier-->address, Ressource-->Car, ref-->number, in-->ac
Stock-->Agency, identifier-->address, Ressource-->Car, ref-->constructor, in-->ac
Stock-->Agency, identifier-->address, Ressource-->Car, ref-->model, in-->ac
Stock-->Agency, identifier-->name, Ressource-->Car, ref-->number, in-->ac
Stock-->Agency, identifier-->name, Ressource-->Car, ref-->constructor, in-->ac
Stock-->Agency, identifier-->name, Ressource-->Car, ref-->model, in-->ac
Stock-->Agency, identifier-->address, Ressource-->Car, ref-->number, in-->ac
Stock-->Agency, identifier-->address, Ressource-->Car, ref-->constructor, in-->ac
Stock-->Agency, identifier-->address, Ressource-->Car, ref-->model, in-->ac
Stock-->Agency, identifier-->name, Ressource-->Client, ref-->name, in-->client
Stock-->Agency, identifier-->name, Ressource-->Client, ref-->birthday, in-->client
Stock-->Agency, identifier-->name, Ressource-->Client, ref-->phone, in-->client
Stock-->Agency, identifier-->name, Ressource-->Client, ref-->address, in-->client
Stock-->Agency, identifier-->address, Ressource-->Client, ref-->name, in-->client
Stock-->Agency, identifier-->address, Ressource-->Client, ref-->birthday, in-->client
Stock-->Agency, identifier-->address, Ressource-->Client, ref-->phone, in-->client
Stock-->Agency, identifier-->address, Ressource-->Client, ref-->address, in-->client

Fig. 21 Binding inference example

than parameterable elements but an important point
can be observed comparing them. Although Template-
ableElement is not a subclass of ParameterableElement
in the metamodel, all templateable elements are also pa-
rameterable elements. Concretely, this means that they
can play both roles depending on the modeling situation
(see for instance Class or Component both as template
or parameter). In Figure 23, this is shown by includ-
ing all the templates in the intersection with the set of
parameterables. As we can see, there is currently no tem-
plateable which is not parameterable.

The identification of parameterable and templateable
elements gives a useful knowledge regarding the previ-
ous questions. But, for determining if templates can be
aspectualized, it is mandatory to know which parameter-
able elements are involved into which template. For each
template, this can be done by determining their parame-
terable constituents using containment relationships. Ta-
ble 1 presents the main kinds of model with their root
templateable concept and the main corresponding pa-
rameterable constituents. From this table we see for in-
stance that a collaboration model (expressed by a col-
laboration template) can be parameterized by its roles
and their types. It is also shown that a use case model
can have its constituents (possibly use cases, actors as
well as associations between them) as parameters. In ad-
dition to the parameterable elements, Table 1 gives the
set of elements that are essential for the content of each
model kind but are not parameterable in the correspond-
ing template. This allows to observe that some template-
ables offer limited parameterization capacities. It is the
case here for Interaction, Activity and StateMachine.

From the isolation of parameterable elements, it be-
comes possible to determine if a particular template can
be aspectualized. To have this property, a template must
have parameters that form a well-structured model. Ta-
ble 1 shows the result of evaluating this requirement
in the “Aspectualizable” column. It appears that only
a few templateables have the property. In addition to
class model studied in this work, it is also the case for
instance, component, use case and deployment models.
For each of the corresponding templateables, their set of
parameterable constituents is sufficient to form models
of their kind. For instance, in a use case template, ac-
tors and use cases which are linked by associations are
all parameterable elements. Considered together as pa-
rameter they form a consistent use case model (even if
Include and Extend relationship are not parameterable).
Similarly, components that are parameterable in a com-
ponent model can be linked via parameterable Ports and
Dependency relationships to form a component param-
eter model. Similar observations can be made for tem-
plates dedicated to instance and deployment models.

Remaining templateables are not aspectualizable be-
cause their set of parameterables is not sufficient to form
models. This is the case of Collaboration, Interaction,
Activity and StateMachine templates. For example, in a
collaboration template, a role depends on its type and
both can be parameters. But connectors between roles
which are essential constituents of collaboration are not.
This prevents to expose a collaboration model as a pa-
rameter and therefore to aspectualize them.

As a conclusion, preceding analysis allows to retain
class, instance, use-case, component and deployment mod-

Aspectual Templates in UML 23

Fig. 22 Using aspectual templates in Eclipse

ParameterableElement

ModelElement

Templateable Classifier

 Abstraction Dependency Expression Property Deployment Manifestation
InterfaceRealization Realization Port Constraint Parameter ExtensionEnd EnumerationLiteral
InstanceSpecification Usage GeneralizationSet Substitution OpaqueExpression Variable
InteractionConstraint AnyReceiveEvent CallEvent ChangeEvent ComponentRealization
Duration DurationConstraint IntervalConstraint Interval DurationInterval DurationObservation
InformationFlow InstanceValue LiteralBoolean LiteralInteger LiteralNull LiteralReal
LiteralString LiteralUnlimitedNatural SignalEvent TimeConstraint TimeInterval
TimeExpression TimeEvent TimeObservation

Other model elements ...

Templateable Package
Package Profile Model

Other templateables

StringExpression Operation

Templateable BehavioredClassifier

Extension Association DeploymentSpecification
Artifact Interface Signal DataType Enumeration
PrimitiveType CommunicationPath InformationItem

Stereotype Class ProtocolStateMachine
StateMachine Collaboration UseCase Activity
Interaction Actor AssociationClass Component
Device Node ExecutionEnvironment
FunctionBehavior OpaqueBehavior

TemplateableElement

∅

Fig. 23 Parameterable and Templateable elements

24 Gilles Vanwormhoudt, Olivier Caron and Bernard Carré

Model kind Templateable
root concept

Parameterable constituents Non-parameterable constituents Aspectualizable

Class model Package Package, Class, Association, Prop-
erty, Operation, Parameter

Generalization Y

Instance
model

Package InstanceSpecification, Instance-
Value, Type

Slot Y

Use-case
model

Package UseCase, Actor, Association Include, Extend Y

Collaboration
model

Collaboration Property (Role), Type Connector, CollaborationUse N

Component
model

Package Component, Port, Property, De-
pendency, Type

Connector Y

Interaction
model

Interaction Operation, Port Lifeline, Message, MessageOccur-
renceSpecification, BehaviourEx-
ecutionSpecification

N

Activity
model

Activity Operation, Port ActivityPartition, ActivityEdge,
ActivityNode, Action

N

State machine
model

StateMachine Operation, Port Region, State, Transition N

Deployment
model

Node Node, Device, Execution Envi-
ronment, DeploymentSpecification,
Artifact, Communication Path, De-
ployment, Manifestation, Property,
Operation

Y

Table 1 Classification of Templateable Models

els for aspectualization. For example, consider aspectu-
alization of a component model in Figure 24. In this ex-
ample, the aspectual template aims to install a registry
of services between two components8. The model param-
eter of this template captures the requirement that these
components must be connected through ports having the
same interface. Additionally, Figure 24 shows the bind-
ing of this template to components which are parts of
a management system for hotel rooms. Similar capaci-
ties can be obtained for other aspectualizable templates.
Concerning deployment models, the work described in [3]
presents the specification of reusable deployment pat-
terns as predefined UML templates. It gives some ex-
amples of templates parameterized with artifacts which
could be easily extended for being aspectual.

For the previous aspectualizable templates, enhanc-
ing their aspectual semantics can be achieved by spec-
ifying OCL constraints in a way similar to the present
work. Similarly to the aspectual template studied here,
the constraints for these templates must be defined to
handle the specific structure of involved parameters, no-
tably their mutual dependencies which can be related to
the ones handled in this paper because they address sim-
ilar concerns. To give an example, consider the depen-
dency between a port and the owning component when
they are parameters in a component model template. It
appears that such a dependency is analogous to the one
existing between an attribute parameter and its owning

8 Such registry of services can be found into component
platforms like OSGI in order to facilitate a loose-coupling
between components.

class. So constraints defined in the paper are inspiring
and may serve as guidelines to define with precision the
aspectual interpretation of these templates.

More generally, the fact that parameters across mul-
tiple templates have similar dependencies to address brings
the factorization of aspectual template constraints into
question. At present time, it is not clear whether the def-
inition of general constraints for several aspectual tem-
plates is possible. To answer this question, further inves-
tigations on the basis of our work are necessary. It seems
interesting in particular to study how to exploit the
standard class hierarchy of template parameters (Clas-
sifierTemplateParameter, ConnectableTemplateParame-
ter and OperationTemplateParameter) for achieving this
generalization.

9.2 Beyond UML

The previous section highlighted that the concepts for
supporting UML templates as specified in Figures 2 and
3 appears general enough to be applied to different kinds
of model. Indeed, these concepts provide together a com-
plete and generic framework for defining and structuring
UML-like template constructs without being necessarily
tied to UML concepts. As so, these concepts constitute
a “metamodeling pattern” for any template language.
Completed with the principles, rules and guidelines pre-
sented here for obtaining their aspectual version, this
pattern opens the way to the integration of aspectual
templates into a wide range of modeling languages. For
a particular modeling language, applying the pattern

Aspectual Templates in UML 25

Hotel Room
Management

Service Registry Pattern

ServiceClient CSInterface ServiceSupplier

ServiceRegistry

Service Client
CSInterface

Service Supplier

ServiceRegistrationServiceReference

DeskManagementBooking

Checking

Payment Accountancy

SetRoomRates

<<bind>>
< ServiceClient -> DeskManagement,

ServiceSupplier -> Accountancy
scPort -> payReq, ssPort -> payProv,

CSInterface -> Payment

scPort ssPort

scPort ssPort

payReq payProv

Fig. 24 Aspectual Template of Components

consists in determining the concepts that need to be
templateable and their parameterable constituents, then
augmenting them with the provided template structure
and corresponding derived constraints. Technically, this
operation can be done in the metamodel of the language
by using inheritance from general template concepts like
in UML and [22]. Another way for doing this more mod-
ularly is by using aspect-orientation techniques at the
metalevel as proposed in [34, 35]. We experimented the
application of this pattern to obtain aspectual templates
of interaction models similar to simplified sequence di-
agrams9. They were applied in [40] to capture reusable
interaction models from the field of convergent telecom
applications and construct interaction models of systems
in this domain.

Besides its application to specific modeling languages,
the notion of aspectual template can also be applied at
the metamodeling level. Two works have explored a sim-
ilar notion of template with the purpose of capturing
common patterns or cross-cutting aspects of modeling
language definition to design metamodels modularly. [11]
presents an aspect-oriented design of a subset of UML
by means of package templates. In this work, package
templates are similar to Catalysis model frameworks [20]
which are parameterized packages. Parameterization is
done through string substitution of names. The result of
a template instantiation is then merged with elements of
a base model according to their names. At the metalevel,
such package templates are used by the authors to spec-
ify metalevel patterns such as generalization or names-

9 Remind that they are not aspectualizable inside the strict
standard.

pace features and then construct the UML metamodel
from the instantiation and merging of these templates.

[18] also applies templates at the metalevel in order
to provide an extensible way of defining metamodels in
the context of the MetaDepth metamodeling framework.
Here, a metamodel template aims to define a generic be-
havior that can be added to some metamodel to support
operations on their models in a particular context like
simulation or transformation. The behavior is defined
generically by such templates thanks to a “concept” con-
struct which is a separate model expressing both the pa-
rameters and a set of structural requirements on these
parameters. In some way, this “concept” construct is re-
lated to the notion of model as parameter deeply stud-
ied in present work as it also aims to provide a higher
level of granularity for the template parameters. How-
ever, despite this similarity, a “concept” differs funda-
mentally from model parameter of aspectual templates
because it is not part of the template body. More gen-
erally, the need for specifying structural requirements of
parameterized models is related to model typing. Im-
portant works, inspired from the programming world
on groups of types [5, 7, 21], were made on the pos-
sibility of model substitutability through model (sub-
)typing [23, 37]. Though, they focus on the problem of
model conformance w.r.t. (sub-)metamodels. Aspectual
templates and their binding presented here are mainly
concerned with the conformance of candidate models
to template parameter models within the same meta-
modeling space through the question of model inclusion.
To investigate this issue, existing works on (meta-)model
inclusion and its variants [10,23,29] are of interest.

26 Gilles Vanwormhoudt, Olivier Caron and Bernard Carré

As far as metalevel is concerned, the present con-
tribution only focused on UML but the classical use of
class-based models for metamodel definitions (MOF or
EMF) suggests that aspectual templates presented here
for UML class diagrams can also be applied at the met-
alevel. Such an application could enable the construc-
tion of metamodels from aspectual templates with the
benefits of having a much more powerful and rigorous
approach compared to [11,18] mentioned previously. In-
deed, they do not provide composition of templates and
do not formalize at all the semantic rules for specifying
and binding them. Concerning the integration of aspec-
tual templates at the metalevel, that is in the metameta-
model, it could be done for instance in a way comparable
to the work of [15] which proposes an extension of the
Ecore model10 with UML template constructs in order
to get semantic variability in metamodels.

A last area where the results of this work are of in-
terest is Aspect-Oriented Modeling (AOM) which aims
to provide model-based aspects typically made of point-
cuts and advices. Pointcuts are abstract model elements
defining where to affect a base model and the advices
are corresponding elements defining how to extend those
identified by the pointcuts. In most of the AOM ap-
proaches, pointcuts and advices are expressed by two re-
lated models with corresponding elements and the model
of pointcuts is a subset of the model of advices [28,30,45,
47]. However, the relationship between these two models
is most of the time assumed implicitly or loosely defined.
This has the consequence that the consistency between
the two models is not handled or is only ensured par-
tially. There are several ways to alleviate this problem
but the notion of parameterized models like present tem-
plates can be a convenient approach in order to get a rig-
orous definition of the relationship between pointcut and
advice models forming an aspect and a way to guaranty
their consistency. The idea of relying on parameterized
models for a full AOM approach has been explored by
the first author in the Smart Adapter approach [31] with
the difference that the pointcut part expressed as param-
eter of the aspect model contains roles which are distinct
elements from those of the advice part.

More generally, the goal of moving UML standard
towards a complete AOM solution with templates as
building blocks is quite interesting but challenging as
the standard template formalism has some main limi-
tations: substitution without quantifiers, no wildcards,
only addition of elements, no modification, no exclusion.
Features of AOM not supported by UML (such as quan-
tification over candidate elements offered by pointcuts or
non-monotonic adaptations provided by advices) would
imply a deep change in the way standard templates are
designed, interpreted and used. The integration of these

10 Note that Ecore has parameterized types but the offered
capacities are very close to the generic part of the Java type
system.

features raises many questions and calls for a more gen-
eral study on the capacities of model templates for full
AOM.

10 Conclusion

After providing background on the general UML tem-
plate concept, we concentrated on its specific interpreta-
tion for aspectual needs. So called “aspectual templates”
and their binding mechanism were defined by enhancing
the semantics of standard UML templates in OCL in a
fully compatible way: aspectual templates are UML tem-
plates. This semantic enhancement constitutes a useful
building block for MDE approaches which use UML tem-
plates with the requirement that their parameters must
form a model, such as pattern, view or aspect oriented
ones.

As a major result, due notably to partial binding, the
interpretation of the standard allows aspectual template
composition in a homogeneous and consistent way: hier-
archical construction of richer aspectual templates from
the composition of other ones, their capitalization, and
finally their usage within modeling assemblies in order
to obtain systems.

The paper only retains main ingredients of the gen-
eral template notion specified in UML, others may be
taken into account. We can cite the notion of default
value for unbound parameters or the capacity to define
a new template by extending an existing one thanks to
the concept of RedefinableTemplateSignature. How these
additional ingredients relate with the aspectual interpre-
tation of templates and may complement this usage is a
valuable issue.

For sake of simplicity, this paper only considers basic
structural class models. Though, the presented guide-
lines may extend to other modeling constructs, such as
cardinalities of associations, meta-attributes of model el-
ements or inheritance links. This will lead to investigate
a richer conformance relationship with specific substitu-
tion capabilities in template application. In our previous
work on refinement of class models [6], we already stud-
ied similar issues and provided solutions specifically for
cardinalities and inheritance links. Other works on the
merging of class diagrams like [12, 19] would also be a
helpful basis to study this issue. More generally, it was
shown that works could be made to generalize the re-
sults inside and outside UML on the basis of the present
work.

Along this paper, we showed how it is possible to
build systems as well as “off-the-shelf” rich aspectual
templates from the application of multiple ones. This
leads to the notion of “model assembly” whose expected
properties have been already stated in [33]. Beside aspec-
tual template application, such assemblies may also in-
clude other reusing relationships such as standard “merge”
and “extends”. Beyond model assembling, we saw that

Aspectual Templates in UML 27

aspectual templates authorize specific model engineering
practices such as template extraction, induction, compo-
sition and decomposition. All these operators are under
study to be integrated in our engineering environment
centered on model repository.

Finally, while the precise formalization of aspectual
templates in UML using its proper meta-modeling tech-
niques is of value, it was shown that its generalization
outside the standard remains a challenge. Much more
theoretical investigation is needed, specially on model
typing and model inclusion which is a major issue in
MDE [23, 29, 37]. As far as model typing is concerned,
intuition leads to the idea that the signature of an as-
pectual template determines a “model type” to which
candidate models must conform. We are currently work-
ing on this topic by exploiting our previous work on
model inclusion and the notion of submodel [10]. All
these works should contribute to better theoretical un-
derstanding and generalization of aspectual templates
for the quest of model reuse.

References

1. MDA. Home Page. http://www.omg.org/mda.

2. W. A. Abed, V. Bonnet, M. Schöttle, O. Alam, and
J. Kienzle. Touchram: A multitouch-enabled tool for
aspect-oriented software design. In Proceedings of the
5th International Conference on Software Language En-
gineering (SLE’12), volume LNCS 7745. Springer, 2012.

3. A. Bergmayr, J. Troya, P. Neubauer, M. Wimmer, and
G. Kappel. UML-based Cloud Application Modeling
with Libraries, Profiles and Templates. In Proceedings
of CloudMDE Workshop at MODELS’2014, 2014.

4. J. Bigot and Ch. Pérez. Increasing Reuse in Component
Models through Genericity. In Proceedings of the 11th
International Conference on Software Reuse, ICSR ’09,
volume 5791 of LNCS, pages 21–30. Springer, 2009.

5. Kim B. Bruce, Angela Schuett, Robert van Gent, and
Adrian Fiech. Polytoil: A type-safe polymorphic object-
oriented language. ACM Trans. Program. Lang. Syst.,
25(2):225–290, March 2003.

6. O. Caron, B. Carré, and L. Debrauwer. Contextualiza-
tion of OODB Schemas in CROME. In Proceedings of
the 11th International Conference on Database and Ex-
pert Systems Applications DEXA 2000, volume 1873 of
LNCS, pages 135–149. Springer, 2000.

7. O. Caron, B. Carré, A. Muller, and G.Vanwormhoudt.
Programmation par objets structurée en contextes. Re-
vue L’OBJET, Hermes-Lavoisier, 13(2-3):11–42, 2007.

8. O. Caron, B. Carré, A. Muller, and G. Vanwormhoudt.
An OCL Formulation of UML 2 Template Binding. In
Proceedings of 7th International Conference on The Uni-
fied Modeling Language. Model Languages and Applica-
tions (UML 2004), volume 3273 of LNCS, pages 27–40.
Springer, October 2004.

9. O. Caron, B. Carré, A. Muller, and G. Vanwormhoudt. A
Coding Framework for Functional Adaptation of Coarse-
Grained Components in Extensible EJB Servers. In 47th
International Conference Objects, Models, Components,

Patterns (Tools’09), number 33 in LNBIP, pages 215–
230. Springer, 2009.

10. B. Carré, G. Vanwormhoudt, and O. Caron. From sub-
sets of model elements to submodels, a characterization
of submodels and their properties. Software and Systems
Modeling, DOI:10.1007/s10270-013-0340-x, April 2013.

11. T. Clark, A. Evans, and K. Stuart. Aspect-oriented
Metamodelling. The Computer Journal, 46(5):566–577,
2003.

12. S. Clarke. Extending standard UML with Model Compo-
sition Semantics. In Science of Computer Programming,
volume 44, pages 71–100. Elsevier Science, 2002.

13. S. Clarke and R. J. Walker. Composition patterns: An
approach to designing reusable aspects. In Proceedings of
the 23rd International Conference on Software Engineer-
ing, ICSE 2001,, pages 5–14. IEEE Computer Society,
2001.

14. S. Clarke and R. J. Walker. Generic Aspect-Oriented De-
sign with Theme/UML. In Aspect-oriented software de-
velopment, pages 425–458. Addison-Wesley Professional,
2004.

15. A. Cuccuru, C. Mraidha, F. Terrier, and G. Sébastien.
Templatable Metamodels for Semantic Variation Points.
In Proceedings of Model Driven Architecture- Founda-
tions and Applications, volume LNCS 4530. Springer
Berlin, 2007.

16. A. Cuccuru, A. Radermacher, S. Gérard, and F. Ter-
rier. Constraining Type Parameters of UML 2 Templates
with Substitutable Classifiers. In Proceedings of 13th
International Conference on Model Driven Engineering
Languages and Systems (MoDELS’09), volume 5795 of
LNCS. Springer, 2009.

17. J. de Lara and E. Guerra. Generic Meta-modelling with
Concepts, Templates and Mixin Layers. In Proceedings of
the 13th International Conference on Model Driven Engi-
neering Languages and Systems, MODELS 2010, volume
LNCS 6394. Springer, 2010.

18. J. de Lara and E. Guerra. From types to type require-
ments: genericity for model-driven engineering. Software
and Systems Modeling, 12(3):453–474, 2013.

19. J. Dingel, Z. Diskin, and A. Zito. Understanding and
improving UML package merge. Software and System
Modeling, 7(4):443–467, 2008.

20. D. D’Souza and A. Wills. Objects, Components
and Frameworks With UML: The Catalysis Approach.
Addison-Wesley, 1999.

21. E. Ernst. Family polymorphism. In Proceedings of 15th
European Conference on Object-Oriented Programming -
ECOOP 2001, volume LNCS 2072. Springer, 2001.

22. I. Garrigos, M. Wimmer, and J-N. Mazon. Weaving
aspect-orientation into web modeling languages. In Cur-
rent Trends in Web Engineering, volume 8295 of LNCS.
Springer, 2013.

23. C. Guy, B. Combemale, S. Derrien, J. Steel, and J.M.
Jézéquel. On Model Subtyping. In Proccedings of 8th
European Conference on Modelling Foundations and Ap-
plications (ECMFA 2012), volume 7349 of LNCS, pages
400–415. Springer, 2012.

24. J.M. Jézéquel. Model driven design and aspect weaving.
Software and System Modeling, 7(2):209–218, 2008.

25. S. Kent. Model Driven Engineering. In Proceedings of
the 3rd International Conference on Integrated Formal

28 Gilles Vanwormhoudt, Olivier Caron and Bernard Carré

Methods, volume 2335 of LNCS, pages 286–298. Springer,
May 2002.

26. G. Kiczales, J. Lamping, A. Menhdhekar, C. Maeda,
C. Lopes, J-M. Loingtier, and J. Irwin. Aspect-Oriented
Programming. In Proceedings of the 11th European Con-
ference on Object-Oriented Programming (ECOOP’97),
volume 1241, pages 220–242. Springer, 1997.

27. J. Kienzle, W. Al Abed, F. Fleurey, J-M. Jézéquel, and
J. Klein. Aspect-Oriented Design with Reusable Aspect
Models. In Transactions on Aspect-Oriented Software
Development VII - A Common Case Study for Aspect-
Oriented Modeling, volume 6210 of LNCS, pages 272–
320. Springer, 2010.

28. J. Klein, L. Hélouët, and J. M. Jézéquel. Semantic-based
Weaving of Scenarios. In Proceedings of the 5th Interna-
tional Conference on Aspect-Oriented Software Develop-
ment (AOSD’06), pages 27–38. ACM Press New York,
NY, USA, 2006.

29. T. Kühne. On model compatibility with referees and
contexts. Software and System Modeling, 12(3):475–488,
2013.

30. Ph. Lahire, B. Morin, G. Vanwormhoudt, A. Gaig-
nard, O. Barais, and J. M. Jézéquel. Introducing Vari-
ability into Aspect-Oriented Modeling Approaches. In
Proceedings of 10th International Conference on Model
Driven Engineering Languages and Systems (MoD-
ELS’07), LNCS, pages 498–513. Springer, October 2007.

31. B. Morin, G. Vanwormhoudt, Ph. Lahire, A. Gaignard,
O. Barais, and J-M. Jézéquel. Managing variability com-
plexity in aspect-oriented modeling. In Proceedings of
the 11th Internation Conference on Model Driven Engi-
neering Languages and Systems (MoDELS 2008), volume
LNCS 5301, pages 797–812. Springer, 2008.

32. A. Muller. Reusing functional aspects : from composition
to parameterization. In Aspect-Oriented Modeling Work-
shop - AOM 2004, Lisbon - Portugal, October 2004.

33. A. Muller, O. Caron, B. Carré, and G. Vanwormhoudt.
On Some Properties of Parameterized Model Applica-
tion. In Proceedings of 1st European Conference on
Model Driven Architecture - Foundations and Applica-
tions (ECMDA-FA’05), volume 3748 of LNCS, pages
130–144. Springer, November 2005.

34. P. Muller, F. Fleurey, and JM. Jézéquel. Weaving Exe-
cutability into Object-Oriented Meta-Languages. In Pro-
ceedings of 8th International Conference on The Unified
Modeling Language. Model Languages and Applications
(UML 2005), LNCS 3713, Jamaica, 2005. Springer.

35. G. Perrouin, G. Vanwormhoudt, B. Morin, Ph. Lahire,
O. Barais, and JM. Jézéquel. Weaving variability into
domain metamodels. Software and Systems Modeling,
11(3):361–383, 2012.

36. Y. R. Reddy, S. Ghosh, R. B. France, G. Straw, J. M.
Bieman, N. McEachen, E. Song, and G. Georg. Directives
for Composing Aspect-Oriented Design Class Models. In
Transaction on Aspect-Oriented Software Development I,
volume 3880, pages 75–105. Springer, 2006.

37. J. Steel and J-M. Jézéquel. On model typing. Software
and System Modeling, 6(4):401–413, 2007.

38. G. Straw, G. Georg, E. Song, S. Ghosh, R. France, and
J.M. Bieman. Model composition directives. In Pro-
ceedings of UML 2004 - The Unified Modeling Language.
Modelling Languages and Applications, volume 3273 of
LNCS, pages 84–97. Springer, 2004.

39. G. Sunyé, A. Le Guennec, and J-M. Jézéquel. Design
Patterns Application in UML. In E. Bertino, editor, Pro-
ceedings of 14th European Conference on Object-Oriented
Programming (ECOOP’2001), volume 1850 of LNCS,
pages 44–62. Springer, 2000.

40. S. Thiello. Model Templates for Roles Interaction, Mas-
ter thesis. Technical report, University of Lille, 2010.

41. Ch. Tombelle and G. Vanwormhoudt. Dynamic and
Generic Manipulation of Models: From Introspection to
Scripting. In Proceedings of the 9th International Confer-
ence on Model Driven Engineering Languages and Sys-
tems (MoDELS 2006), volume 4199 of LNCS, Italy, oc-
tober 2006.

42. J. R. Ullmann. An algorithm for subgraph isomorphism.
Journal of the ACM, 23(1):31–42, 1976.

43. UML 2.4.1 Superstructure Specification, 2011.
http://www.omg.org/spec/UML/2.4.1/.

44. Auxiliary Constructs Templates, chapter 17. UML 2.4.1
Superstructure Specification, 2011.

45. J. Whittle, K. Praveen, A. Jayaraman, M. Elkhodary,
A. Moreira, and J. Araújo. MATA: A Unified Approach
for Composing UML Aspect Models Based on Graph
Transformation. In Transactions on Aspect-Oriented
Software Development VI, Special Issue on Aspects and
Model-Driven Engineering, volume 5560 of LNCS, pages
191–237. Springer, 2009.

46. A. Wills. Frameworks and component-based develop-
ment. In Proceedings of the International Conference on
Object-Oriented Information Systems (OOIS’96), pages
413–430. Springer London, 1997.

47. M. Wimmer, A. Schauerhuber, G. Kappel, W. Rets-
chitzegger, W. Schwinger, and E. Kapsammer. A Sur-
vey on UML-based Aspect-oriented Design Modeling. In
ACM Computing Surveys, volume 43, pages 28:1–28:33.
ACM, October 2011.

	Introduction
	Background on UML templates
	Aspectual usage of UML templates in existing works and issues
	Enhancing UML templates for aspectual usage
	From UML templates to aspectual templates
	Partial binding of aspectual templates
	Binding algorithm
	Aspectual template technology
	Generalization of the results
	Conclusion

