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Let (C (t )) t ∈R be a cosine function in a unital Banach algebra. We give a simple proof of the fact that if lim sup t →0 C (t )-1 A < 2, then lim sup t →0 C (t )-1 A = 0.

Introduction

Recall that a cosine function taking values in a unital normed algebra A with unit element 1 A is a family C = (C (t )) t ∈R of elements of A satisfying the so-called d'Alembert equation

C (0) = 1 A ,C (s + t ) +C (s -t ) = 2C (s)C (t ) (s ∈ R, t ∈ R). (1) 
One can define in a similar way cosine sequences (C (n)) n∈Z . A cosine sequence depends only on the value of C (1), since we have, for n ≥ 1,

C (-n) = C (n) = T n (C (1)),
where T n (x) =

[n/2] k=0 C k n x n-2k (x 2 -1) k is the n t h -Tchebyshev polynomial. Strongly continuous operator valued cosine functions play an important role in the study of abstract nonlinear second order differential equations, see for example [START_REF] Travis | Cosine families and abstract nonlinear second order differential equation[END_REF]. In a paper to appear in the Journal of Evolution Equations [START_REF] Schwenninger | Zero-two laws for cosine families[END_REF], Schwenninger and Zwart showed that if a strongly continuous cosine family (C (t )) t ∈R of bounded operators on a Banach space X satisfies lim sup t →0 C (t ) -I X < 2, then the generator a of this cosine function is a bounded operator, so that lim sup C (t ) -I X =lim sup t →0 cos(t a)I X -I X = 0, and they asked whether a similar zero-two law holds for general cosine functions (C (t )) t ∈R . This question was answered positively by Chojnacki in [START_REF] Chojnacki | Around Schwenninger and Zwart's zero-two law for cosine families[END_REF]. Using a sophisticated argument based on ultrapowers, Chonajcki deduced this zero-two law from the fact that if a cosine sequence C (t ) satisfies sup t ∈R C (t ) -1 A < 2, then C (t ) = 1 A for t ∈ R. This second result, which was obtained independently by the author in [START_REF] Esterle | Bounded cosine functions close to continuous bounded scalar cosine functions[END_REF], is proved by Chojnacki in [START_REF] Chojnacki | Around Schwenninger and Zwart's zero-two law for cosine families[END_REF] by adapting methods used by Bobrowski, Chojnacki and Gregosiewicz in [START_REF] Bobrowski | On close-toscalar one-parameter cosine families[END_REF] to show that if a cosine sequence (C (t )) t ∈R satisfies sup t ∈R C (t ) -cos(at

)1 A < 8 3 3
for some a ∈ R, then C (t ) = cos(at )1 A for t ∈ R, a result also obtained independently by the author in [START_REF] Esterle | Bounded cosine functions close to continuous bounded scalar cosine functions[END_REF], which improves previous results of [START_REF] Bobrowski | Isolated points of some sets of bounded cosine families, bounded semigroups, and bounded groups on a Banach space[END_REF], [START_REF] Chojnacki | On cosine families close to scalar cosine families[END_REF] and [START_REF] Schwenninger | Less than one, implies 0[END_REF].

The purpose of this paper is to give a short direct proof of the zero-two law. The zero-two law for complex-valued cosine functions is a folklore result, which easily implies that if lim sup t →0 ρ(C (t ) -1 A ) < 2 then lim sup t → 0ρ(C (t ) -1 A ) = 0, where ρ(x) denotes the spectral radius of an element x of a Banach algebra, see section 2. Our proof of he zero-two law is then based on the fact that if

C (t )- 1 A ≤ 2, and if ρ C t 2 -1 A < 1, then we have C t 2 = 1 A - C (t ) -1 A 2 ,
where 1 A -u is defined by the usual series for u ≤ 1. It follows from this identity and from the fact that the coefficients of the Taylor series at the origin of the function t → 1 -1 -t are positive that in this situation we have

C t 2 -1 A ≤ 1 -1 - C (t ) -1 A 2 ,
and the zero-two law follows.

Notice that if we replace the constant 2 by 3 2 a "three line argument" due to Arendt [START_REF] Arendt | A 0-3/2 -Law for Cosine Functions[END_REF] shows that if lim sup t →0 C (t ) -1 A < 3 2 then lim sup t →0 C (t ) -1 A = 0. The proof presented here has some analogy with Arendt's proof, and the difficulty to estimate 1 A +C t 2 -1 is circumvented in the present paper by using the formula above.

The author wishes to thank W. Chonajcki for giving information about the reference [START_REF] Chojnacki | Around Schwenninger and Zwart's zero-two law for cosine families[END_REF]. He also thanks F. Schwenninger for valuable discussions about the content of the paper.

Lemma 2.1. Let c = (c(t )) t ∈R be a complex-valued cosine function. Then c statisfies one of the following conditions

(i) l i msup t →0 |c(t ) -1| = +∞, (ii) l i msup t →0 |c(t ) -1| = 2, (iii) l i msup t →0 |c(t ) -1| = 0.
First assume that M := l i msup t →0 |c(t )| < +∞, and denote by S the set of all complex numbers α for which there exists a sequence (t m ) m≥1 of positive real numbers such that l i m m→+∞ t m = 0 and l i m m→+∞ c(t m ) = α. Then |α| ≤ M for every α ∈ S. Notice that if α ∈ S, and if a sequence (t m ) m∈Z satisfies the above conditions with respect to α, then

T n (α) = l i m m→+∞ T n (C (t m )) = l i m m→+∞ C (nt m ),
and so T n (α) ∈ S, and

|T n (α)| ≤ M for n ≥ 1. Now write α = cos(z) = +∞ k=0 z 2k (2k)! , and set u = Re(z), v = I m(z). We have, for n ≥ 1, T n (α) = cos(nz) = e i nu e -nv + e -i nu e nv 2 .
Since

sup n≥1 |T n (α)| ≤ M , we have v = 0, S ⊂ [-1, 1], and l i msup t →0 |c(t ) - 1| ≤ 2.
Now assume that S = {1}, and let α ∈ S \ {1}. We have α = cos(u) for some u ∈ R. We see as above that cos(nu) ∈ S for every n ≥ 1. If u/π is irrationnal, then the set {e i nu } n ≥ 1 is dense in the unit circle T, and so S = [-1, 1] since S is closed, and in this situation l i msup t →0 |c(t ) -1| = 2. Now assume that u/π is rational, and let s ≥ 2 be the smallest positive integer such that e i us = 1. Then e 2i π s = e i pu sor some positive integer p, and so cos 2π s ∈ S. Let (t m ) m≥1 be a sequence of positive reals such that l i m m→+∞ t m = 0 and l i m m→+∞ c(t m ) = cos 2π s , let q ≥ 2, and let β be a limit point of the sequence c t m s q-1 n≥1 . There exists y ∈ R such that cos(y) = β and such that s q-1 y = 2π s + 2kπ, with k ∈ Z. Then y = (1 + k s) 2π s q . Since g cd (1 + k s, s q ) = 1, there exists a positive integer r such that r y -2π s q ∈ 2πZ, so that cos 2π s q ∈ S. This implies that cos 2pπ s q ∈ S for p ≥ 1, q ≥ 1, and S is dense in [-1, 1]. Since S is closed, we obtain again S = [-1, 1], which implies that l i msup t →0 |c(t ) -1| = 2. So if neither (i) nor (ii) holds, we have S = {1}, which implies (iii).

Notice that if a cosine function C = (C (t )) t ∈R in a Banach algebra A satisfies sup |t |≤η C (t ) ≤ M < +∞ for some η > 0, then sup |t |≤L C (t ) < +∞ for every L > 0, since sup |t |≤nη C (t ) ≤ sup y ≤M T n (y) for every n ≥ 1, where T n denotes the n-th Tchebyshev polynomial. In particular if a complex-valued cosine function c = (c(t )) t ∈R satisfies (iii), then the identity

(1 -c(s -t ))(1 -c(s + t )) = (c(s) -c(t )) 2
shows as is well-known that the cosine function c is continuous on R, which implies that c(t ) = cos(t a) for some a ∈ C.

If A is commutative and unital, we will denote 1 A the unit element of A, and we will denote by A the space of all characters on A, equipped with the Gelfand topology, i.e. the compact topology induced by the weak * topology on the unit ball of the dual space of A.

Proposition 2.2. Let C = (C (t )) be a cosine function in a unital Banach algebra

A. If l i msup t →0 ρ(C (t ) -1 A ) < 2, then l i msup t →0 ρ(C (t ) -1 A ) = 0.
Proof : We may assume that unital Banach algebra A is genarated by (C (t )) t ∈R . Let χ ∈ A. Then the cosine complex-valued function (χ(C (t ))) t ∈R satisfies condition (iii) of the lemma, and so there exists a χ ∈ C such that we have

χ(C (t )) = cos(t a χ ) (t ∈ R). Set u χ = Re(a χ ), v χ = I m(a χ ). We have ρ(C (t ) -1) ≥ |1 -cos(t u χ )ch(t v χ )|.
If the family (u χ ) χ∈ A were unbounded, there would exist a sequence (t n ) n≥1 of real numbers converging to zero and a sequence (χ n ) n≥1 of characters of A such that cos(t n u χ n ) = -1, and we would have ρ(C (t n ) -1) ≥ 2 for n ≥ 1. So the family (u χ ) χ∈ A is bounded. If the family (v χ ) χ∈ A were unbounded, there would exist a sequence (t ′ n ) n≥1 of real numbers converging to zero and a sequence

(χ ′ n ) n≥1 of characters of A such that l i m n→+∞ ch(t ′ n v χ ′ n ) = +∞.
But this would imply that l i msup t →0 ρ(C (t )) = +∞. Hence the family (a χ ) χ∈ A is bounded, and we have

l i msup t →0 ρ(C (t ) -1 A ) = l i m t →0 sup χ∈ A |cos(t a χ ) -1| = 0.

The zero-two law for cosine functions

Set α n = 1 n! 1 2 1 2 -1 . . . 1 2 -n + 1 for n ≥ 1,
with the convention α 0 = 0, and for |z| < 1, set

1 -z = +∞ n=0 (-1) n α n z n , so that 1 -z 2 = 1 -z, and 1 -t is the positive square root of 1 -t for t ∈ (-1, 1). Also Re 1 -z > 0 for |z| < 1.
We have, for t ∈ [0, 1),

+∞ n=1 (-1) n-1 α n t n = 1 -1 -t .
Since (-1) n-1 α n ≥ 0 for n ≥ 1, the series +∞ n=1 |α n | = +∞ n=1 (-1) n-1 α n is convergent, and we have

+∞ n=1 |α n |t n = 1 -1 -t (0 ≤ t ≤ 1).
Now let A be a commutative unital Banach algebra, and let x ∈ A such that x ≤ 1. Set

1 A -x = +∞ n=0 (-1) n α n x n . Then 1 A -x 2 = 1 A -
x, and we have

1 A -1 A -x = +∞ n=1 (-1) n α n x n ≤ +∞ n=1 |α n | x n = 1 -1 -x (2) 
Notice also that if A is commutative, then we have

Re χ 1 A -x = Re 1 -χ(x) ≥ 0 (χ ∈ A). ( 3 
)
We obtain the following formula Lemma 3.1. Let (C (t )) t ∈R be a cosine function in a unital Banach algebra A. Assume that C (t ) -1 A ≤ 2 and that ρ( C t 2 -1 < 1. Then we have

C t 2 = 1 A - 1 A -C (t ) 2 .
Proof : The abstract version of the formula si n

2 u 2 = 1-cos(u) 2 gives 1 A -C t 2 2 = 1 A -C (t ) 2 ,C t 2 2 = 1 A - 1 A -C (t ) 2 =   1 A - 1 A -C (t ) 2   2 ,   C t 2 -1 A - 1 A -C (t ) 2     C t 2 + 1 A - 1 A -C (t ) 2   = 0. We may assume that A is commutative. Let χ ∈ A. Since ρ C t 2 -1 A < 1, we have Re χ C t 2 > 0. Since Re χ 1 A -1 A -C (t ) 2 ≥ 0, C t 2 + 1 A -1 A -C (t ) 2 is invertible in A, and C t 2 -1 A -1 A -C (t ) 2 = 0. Theorem 3.2. Let (C (t )) t ∈R be a cosine sequence in a Banach algebra. If l i msup t →0 C (t )- 1 A < 2, then l i msup t →0 C (t ) -1 A = 0.
Proof : It follows from proposition 2.2 and lemma 3.1 that there exists η > 0 such that we have, for |t | ≤ η,

C (t ) -1 A < 2,C t 2 = 1 A - 1 A -C (t ) 2 .
Using (1), we obtain, for |t | ≤ η,

C t 2 -1 A ≤ 1 -1 - C (t ) -1 A 2 . Set l = l i msup t →0 C (t ) -1 A . We obtain l ≤ 1 -1 - l 2 ≤ 1,
and so l = 0. Notice that the proof above gives a little bit more than the zero-two law : if 1 -C (t ) ≤ 2 and ρ 1 -C t 2 < 1 for |t | ≤ η, then we have, for n ≥ 1,

sup |t |≤2 -n η C (t ) -1 A ≤ u n ,
where the sequence u n satisfies u 0 = 2, u n+1 = 1 -1 -u n 2 for n ≥ 1, and l i m n→+∞ u n = 0, which gives an explicit control on the convergence to 0 of C (t )-1 A as t → 0.

Notice also that the fact that the coefficients of the Taylor expansion at the origin of the function t → 1-1 -t are positive was used in [START_REF] Esterle | Quasimultipliers, representations of H ∞ , and the closed ideal problem for commutative Banach algebras[END_REF] to show that x 2x ≥ 1/4 for every quasinilpotent element x of a Banach algebra such that |x| ≥ 1/2. Similar argument were used in [START_REF] Esterle | Distance entre éléments d'un semi-groupe dans une algèbre de Banach[END_REF] to show that if a semigroup (T (t )) t >0 in a Banach algebra A satisfies lim sup t →0 + T (t ) -T ((n + 1)t ) < n (n+1) 1+ 1 n for some n ≥ 1, then there exists an idempotent J of A such that lim t →0 T (t ) -J = 0, so that lim sup t →0 + T (t ) -T ((n + 1)t ) = 0.

The zero-two law for the spectral radiusThe zero-two law for scalar cosine functions pertains to folklore, but we could not find a reference in the litterature for the following certainly well-known lemma, which is a variant of proposition

3.1 of[START_REF] Esterle | Bounded cosine functions close to continuous bounded scalar cosine functions[END_REF].