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A zero-sqrt(5)/ 2 law for cosine families

Introduction

Let G be an abelian group. Recall that a G-cosine family of elements of a unital normed algebra A with unit element 1 A is a family (C (g )) g ∈G of elements of A satisfying the so-called d'Alembert equation

C 0 = 1 A ,C (g + h) +C (g -h) = 2C (g )C (h) (g ∈ G, h ∈ G).
(

A R-cosine family is called a cosine function, and a Z-cosine family is called a cosine sequence.

A cosine family C = (C (g )) g ∈G is said to be bounded if there exists M > 0 such that C (g ) ≤ M for every g ∈ G. In this case we set

C ∞ = sup g ∈G C (g ) , d i st (C 1 ,C 2 ) = C 1 -C 2 ∞ .
A cosine family is said to be scalar if C (g ) ∈ C.1 A for every g ∈ G. It is easy to see and well-known that a bounded scalar cosine sequence satisfies C (n) = cos(an) for some a ∈ R.
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Strongly continuous operator valued cosine functions are a classical tool in the study of differential equations, see for example [2], [START_REF] Batkai | Cosine families generated by second order differential operators on W 1,1 (0, 1) with generalized Wentzell boundary conditions[END_REF], [START_REF] Nagy | Cosine operator functions and the abstract Cauchy problem[END_REF], [START_REF] Travis | Cosine families and abstract nonlinear second order differential equation[END_REF], and a functional calculus approach to these objects was developped recently in [START_REF] Haase | The functional calculus approach to cosine operator functions. Recent Trends in Analysis[END_REF].

Bobrowski and Chojnacki proved in [START_REF] Bobrowski | Isolated points of some sets of bounded cosine families, bounded semigroups, and bounded groups on a Banach space[END_REF] that if a strongly continuous operator valued cosine function on a Banach space (C (t )) t ∈R satisfies sup t ≥0 C (t )c(t ) < 1/2 for some scalar bounded continuous cosine function c(t ) then C (t ) = c(t ) pour t ∈ R, and Zwart and F. Schwenninger showed in [START_REF] Schwenninger | Less than one, implies zero[END_REF] that this result remains valid under the condition sup t ≥0 C (t ) -c(t ) < 1. The proofs were based on rather involved arguments from operator theory and semigroup theory. Very recently, Bobrowski, Chojnacki and Gregosiewicz [START_REF] Bobrowski | On close-to-scalar oneparameter cosine families[END_REF] showed more precisely that if a cosine function C = C (t ) satisfies sup t ∈R C (t )-c(t ) < 8 3 3 for some scalar bounded continuous cosine function c(t ), then C (t ) = c(t ) for t ∈ R, without any continuity assumption on C , and the same result was obtained independently by the author in [START_REF] Esterle | Bounded cosine functions close to continuous scalar bounded cosine functions[END_REF]. The constant 8 3 3 is obviously optimal, since sup t ∈R |cos(at ) -cos(3at )| = 8 3 3 for every a ∈ R \ {0}. The author also proved in [START_REF] Esterle | Bounded cosine functions close to continuous scalar bounded cosine functions[END_REF] that if a cosine sequence (C (t )) t ∈R satisfies sup t ∈R C (t ) -cos(at )1 A = m < 2 for some a = 0, then the closed algebra generated by (C (t )) t ∈R is isomorphic to C k for some k ≥ 1, and that there exists a finite family p 1 , . . . , p k of pairwise orthogonal idempotents of A and a family (b 1 , . . . , b k ) of distinct elements of the finite set ∆(a, m) := {b ≥ 0 : sup t ∈R |cos(bt )cos(at )| ≤ m} such that we have

C (t ) = k j =1
cos(b j t )p j ( j ∈ R). Also Chojnacki developped in [START_REF] Chojnacki | On cosine families close to scalar cosine families[END_REF] an elementary argument to show that if (C (n)) n∈Z is a cosine sequence in a unital normed algebra A satisfying sup n≥1 C (n)c(n) < 1 for some scalar cosine sequence (c(n)) n∈Z then c(n) = C (n) for every n, which obviously implies the result of Zwart and F. Schwenninger. His approach is based on an elaborated adaptation of a very short elementary argument used by Wallen in [START_REF] Wallen | On the magnitude of x n -1 in a normed algebra[END_REF] to prove an improvement of the classical Cox-Nakamura-Yoshida-Hirschfeld-Wallen theorem [START_REF] Cox | Matrices all of whose powers lie close to the identity[END_REF], [START_REF] Hirschfeld | On semi-groups in Banach algebras close to the identity[END_REF], [START_REF] Nakamura | On a generalization of a theorem of Cox[END_REF] which shows that if an element a of a unital normed algebra A satisfies sup n≥1 a n -1 < 1, then a = 1.

Applying this result to the cosine sequences C (ng ) and c(ng ) for g ∈ G, Chonajcki observed in [START_REF] Chojnacki | On cosine families close to scalar cosine families[END_REF] that if a cosine family C (g ) satisfies sup g ∈G C (g )-c(g ) < 1 for some scalar cosine family c(g ) then C (g ) = c(g ) for every g ∈ G.

In the same direction Schwenninger and Zwart showed in [START_REF] Schwenninger | Zero-two law for cosine families[END_REF] 

that if a cosine sequence (C (n)) n∈Z in a Banach algebra A satisfies sup n≥1 C (n) -1 A < 3 2 , then C (n) = 1 A for every n.
The purpose of this paper is to obtain optimal results of this type. We prove a "zero-5 2 " law : if a cosine family (C (g )) g ∈G satisfies sup g ∈G C (g ) -c(g ) < 5 2 for some scalar cosine family (c(g )) g ∈G then C (g ) = c(g ) for every g ∈ G. Since sup n≥1 cos 2nπ
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cos 4nπ 5 = cos 2π 5 -cos π 5 = 5 2 , the constant 5 2 is optimal.

In fact for every a ∈ R there exists a largest constant k(a) such that sup n≥1 |cos(nb)cos(na)| < k(a) implies that cos(nb) = cos(na) for n ≥ 1, and we prove that if a cosine sequence (C (n)) n∈Z in a Banach algebra

A satisfies sup n≥1 |C (n) - cos(na)1 A | < k(a) then C (n) = cos(na) for n ≥ 1.
This follows from the following result, proved by the author in [START_REF] Esterle | Bounded cosine functions close to continuous scalar bounded cosine functions[END_REF].

Theorem 1.1. Let (C (n)) n∈Z be a bounded cosine sequence in a Banach algebra. If spec(C (1)
) is a singleton, then the sequence (C (n)) n∈Z is scalar, and so there exists

a ∈ R such that C (n) = cos(na) for n ≥ 1.
The second part of the paper is devoted to a discussion of the values of the constant k(a). As mentioned above, it follows from [START_REF] Schwenninger | Zero-two law for cosine families[END_REF] that k(0) = 3 2 , and it is obvious that k(a)

≤sup n≥1 |cos(na) -cos(3na)| ≤ 8 3 3 if a ∉ π 2 Z. We observe that k(a) = 8 3 3 if a
π is irrational, and we prove, using basic results about cyclotomic fields, that k(a) < 8 3 3 if a π is rational. We also show that the set Ω(m)

:= {a ∈ [0, π] | k(a) ≤ m} is finite for every m < 8 3 3
. We describe in detail the set Ω We also show that given a ∈ R and m < 2 the set Γ(a, m) of scalar cosine sequences (c(n)) n∈Z satisfying sup n∈Z |c(n) -cos(na)| ≤ m is finite. This implies that if a cosine sequence (C (n)) n∈Z satisfies sup n∈Z C (n)-cos(an)1 A ≤ m, then there exists k ≤ c ar d (Γ(a, m)) such that the closed algebra generated by (C (n)) n∈Z is isomorphic to C k , and there exists a finite family p 1 , . . . , p k of pairwise orthogonal idempotents of A and a finite family c 1 , . . . , c k of distinct elements of Γ(a, m) such that we have

C (n) = k j =1 c j (n)p j (n ∈ Z).
This last result does not extend to cosine families over general abelian group. Let G = (Z/3Z) N : we give an easy example of a G-cosine family (C (g )) g ∈G with values in l ∞ such that the closed subalgebra generated by (C (g )) g ∈G equals l ∞ , while sup g ∈G 1 l ∞ -C (g ) = 3

2 .

The author warmly thanks Christine Bachoc and Pierre Parent for giving him the arguments from number theory which lead to a simple proof of the fact that k(a) < 8 3 3 if a ∉ πQ.

Distance between bounded scalar cosine sequences

We introduce the following notation, to be used throughout the paper.

Definition 2.1. Let a ∈ πQ. The order of a, denoted by or d (a), is the smallest integer u ≥ 1 such that e i ua = 1.

Recall that a subset S of the unit circle T is said to be independent if z n 1 1 . . . z n k k = 1 for every finite family (z 1 , . . . , z k ) of distincts elements of S and every family (n 1 , . . . , n k ) ∈ Z k of such that z j = 0 for j ≤ j ≤ k. It follows from a classical theorem of Kronecker, see for example [START_REF] Kahane | Ensembles parfaits et séries trigonométriques[END_REF], page 21 that if S = {z 1 , . . . , z k } is a finite independent set then the sequence (z n 1 , . . . , z n k ) n≥1 is dense in T k . We deduce from Kronecker's theorem the following observation.

Proposition 2.2. Let a ∈ [0, π]. For m ≥ 0, set Γ(a, m) = b ∈ [0, π] : sup n≥1 |cos(na) -cos(nb)| ≤ m .
Then Γ(a, m) is finite for every m < 2.

Proof : Fix m ∈ [1, 2). Notice that if b ∈ R, and if the set e i a , e i b is independent, then it follows from Kronecker's theorem that the sequence e i na , e i nb n≥1 is dense in T 2 , and so sup n≥1 |cos(na) -cos(nb)| = 2, and b ∉ Γ(a, m).

Suppose that a π ∈ Q, and denote by u the order of a, so that e i ua = 1. If b π ∉ Q, then the sequence e i unb n≥1 is dense in T, and so

2 ≥ sup n≥1 |cos(na) -cos(nb)| ≥ sup n≥1 |1 -cos(nub)| = 2, which shows that b ∉ Γ(a, m).
The same argument shows that if a π ∉ Q, and if b π ∈ Q, then b ∉ Γ(a, m). So we are left with two situations 1) a π ∉ Q, and there exists p = 0, q = 0 and k ∈ Z such that bq = ap + 2kπ. 2) a π ∈ Q and b π ∈ Q. We consider the first case. Replacing b ∈ [0, π] by -b ∈ [-π, 0] if necessary we can assume that p ≥ 1 and q ≥ 1, and we can assume that we have

qb = p a + 2kπ r , with g cd (p, q) = 1, r ≥ 1, g cd (r, k) = 1 if k = 0. We have, since r a π ∉ Q, sup n≥1 |cos(na) -cos(nb)| ≥ sup n≥1 cos(nr q a) -cos(nr qb)
= sup n≥1 cos(nr q a) -cos(nr p a) = sup t ∈R cos(q t ) -cos(p t ) ,

Since g cd (p, q) = 1, we have sup t ∈R cos(q t ) -cos(p t ) = 2 if p or q is even, so we can assume that p and q are odd. Set s = q-1 2 . It follows from Bezout's identity that there exist n ≥ 1 such that e 2i npπ q = e 2i sπ q and setting t = 2nπ q , we obtain

sup t ∈R cos(q t ) -cos(p t ) ≥ 1 -cos 2sπ 2s + 1 = 1 + cos π q .
The same argument shows that we have

sup t ∈R cos(q t ) -cos(p t ) ≥ 1 + cos π p .
We obtain

p ≤ π ar ccos(m -1)
, q ≤ π ar ccos(m -1) .

We also have

sup n≥1 |cos(na) -cos(nb)| ≥ sup n≥1 cos(nq a) -cos(nqb)
= sup n≥1 cos(nq a) -cos np a + 2nk qπ r .

Assume that k = 0, set d = g cd (r, q), r 1 = r d , q 1 = q d . Then g cd (k q 1 , r 1 ) = 1, and so there exists u ≥ 1 such that

2uk q 1 π r 1 ∈ 2π r 1 + 2πZ. This gives sup n≥1 |cos(na) -cos(nb)| ≥ sup n≥1 cos(nuq a) -cos npua + 2nπ r 1 .
If r 1 is even, set r 2 = r 1 2 . We obtain

sup n≥1 cos(nuq a) -cos npua + 2nπ r 1 ≥ sup n≥0 cos((2n + 1)r 2 uq a) -cos (2n + 1)r 2 up a) + π .
Since 2r 2 ua ∉ πQ, there exists a sequence (n j ) j ≥1 of integers such that l i m j →+∞ e i 2n j r 2 ua+i r 2 ua = 1, so that l i m j →+∞ cos((2n j + 1)r 2 uq a) -cos (2n j + 1)r 2 up a) + π = 2, and in this situation sup n≥1 |cos(na) -cos(nb)| = 2. So we can assume that r 1 is odd. Set r 2 = r -1 2 . The same calculation as above gives

sup n≥1 cos(nuq a) -cos npua + 2nπ r 1 ≥ sup n≥1 cos((n(2r 2 + 1) + r 2 )uq a) -cos (n(2r 2 + 1) + r 2 )up a + 2(n(2r 2 + 1) + r 2 ) 2r 2 + 1 π ≥ 1 + cos π 2r 2 + 1 .
Hence

r 1 = 2r 2 + 1 ≤ π ar ccos(m-1) , r = r 1 d ≤ r 1 q ≤ π ar ccos(m-1) 2 . This gives 2|k|π ≤ r |qb -p a| ≤ 2π π ar ccos(m -1) 3 , |k| ≤ π ar ccos(m -1) 3 .
We see that Γ(a, m) is finite if a π ∉ Q, and that we have

c ar d (Γ(a, m)) ≤ 2 π ar ccos(m -1) 7 .

Now consider the case where

a π ∈ Q, b π ∈ Q.
We first discuss the case where a = 0, b = 0. We have b = pπ q , where 1 ≤ p ≤ q, g cd (p, q) = 1 If p = q = 1, then b = π, and sup n≥1 |1 -cos(nπ)| = 2. So we may assume that p ≤ q -1. If p is odd, then we have

sup n≥1 |1 -cos(nb)| ≥ |1 -cos(qb)| = 1 -cos(pπ) = 2.
So we can assume that p is even, so that q is odd. Set r = q-1 2 . There exists n 0 ≥ 1 and r ∈ Z such that n 0 pr ∈ qZ, and we have

sup n∈Z |1 -cos(nb)| ≥ |1 -cos(2n 0 b)| = 1 -cos 2r π 2r + 1 = 1 + cos π q .
We obtain again q ≤ π ar ccos(m-1) , and c ar d

(Γ(0, m)) ≤ π ar ccos(m-1) 2 .
Now assume that a = 0, and let u ≥ 2 be the order of a. We have 

sup n≥1 |1 -cos(nub)| = sup n≥1 |cos(nua) -cos(nub)| ≤ m,
C (n) = k j =1 cos(nb j )p j (n ∈ Z).
Proof : Since c n = P n (c 1 ), where P n denotes the n-th Tchebishev polynomial, A 1 is the closed unital subalgebra generated by c 1 and the map χ → χ(c 1 ) is a bijection from A 1 onto spec A 1 (c 1 ). Now let χ ∈ A 1 . The sequence (χ(c n )) n≥1 is a scalar cosine sequence, and we have

sup n≥1 cos(na) -χ(c n ) < 2.
It follows then from proposition 2.2 that spec A 1 (c 1 ) := λ = χ(c 1 ) : χ ∈ A 1 is finite. Hence A 1 is finite. Let χ 1 , . . . , χ m be the elements of A 1 . It follows from the standard one-variable holomorphic functional calculus, se for example [START_REF] Dales | Banach Algebras and Automatic Continuity[END_REF], that there exists for every j ≤ m an idempotent p j of A 1 such that χ j (p j ) = 1 and χ k (p j ) = 0 for k = j. Hence p j p k = 0 for j = k, and

m j =1 p j is the unit element of A 1 . Let x ∈ A 1 .
Then (p j c n ) n∈Z is a cosine sequence in the commutative unital Banach algebra p j A 1 , and spec p j A 1 (p j c 1 ) = {χ j (c 1 )}.

Since sup n≥1 p j cos(na) -p j c n ≤ 2 p j , the sequence (p j c n ) n≥1 is bounded, and it follows from theorem 2.3 that (p j c n ) n≥1 is a scalar sequence, and there exists

β j ∈ [0, π] such that p j c n = χ j (c n )p j = cos(nβ j )p j for n ∈ Z. Hence c n = m j =1 χ j (c n )p j = m j =1 cos(nβ j )p j for n ≥ 1. Since A 1 is the closed subalgebra of A generated by c 1 , we have x = m j =1 χ j (x)p j for every x ∈ A 1 , which shows that A 1 is isomorphic to C m .
Corollary 2.4. Let a ≥ 0 ∈ R, and let k(a) be the largest positive real number m such that Γ(a, m) = {a} for every m < k(a).

If (C (n)) n∈Z is a cosine sequence in a Banach algebra A such that sup n≥1 C (n) -cos(na)1 A < k(a), then C (n) = cos(na)1 A for n ∈ Z.
Theorem 2.3 does not extend to cosine families over general abelian groups, as shown by the following easy result.

Proposition 2.5. Let G := (Z/3Z) N . Then there exists a G-cosine family (C (g )) g ∈G with values in l ∞ which satisfies the two following conditions

(i) sup g ∈G 1 l ∞ -C (g ) = 3
2 , (ii) The algebra generated by the family (C (g )) g ∈G is dense in l ∞ .

Proof : Elements g of G can be written under the form g = (g m ) m≥1 , where

g m ∈ {0, 1, 2}. Set C (g ) := cos 2g m π 3 m≥1 .
Then (C (g )) g ∈G is a G-cosine family with values in l ∞ which obviously satisfies (i) since cos 2π 3 = cos 4π 3 = -1 2 . Now let φ = (φ m ) m∈Z be an idempotent of l ∞ , and let

S := {m ≥ 1 | φ m = 1}. Set g m = 1 if m ∈ S, g m = 0 if m ≥ 1, m ∉ S,
and set g = (g m ) m≥1 . We have

C (0 G ) -C (g ) = 1 l ∞ -C (g ) = 3 2 φ,
and so φ ∈ A. We can identify l ∞ to C (βN), the algebra of continuous functions on the Stone-Cȇch compactification of N, and βN is an extremely disconnected compact set, which means that the closure of every open set is open, see for example [START_REF] Arkhangel | Fundamentals of General Topology : Problems and Exercises[END_REF], chap. 6, sec. 6. Since the characteristic function of every open and closed subset of βN is an idempotent of l ∞ , the idempotents of l ∞ separate points of βN, and it follows from the Stone-Weierstrass theorem that A is dense in l ∞ , which proves (ii).

The values of the constant k(a)

It was shown in [START_REF] Schwenninger | Zero-two law for cosine families[END_REF] that k(0) = 3 2 . We also have the following result. Now assume that a π is rational. If the order of a is equal to 1, then k(a) = 1.5, and we will see later that this is also true if the order of a equals 2 or 4. for some n ≤ 1 and some positive integer k ≥ n such that g cd (k, n) = 1.

Let Q(β) be the smallest subfield of C containing Q ∪ β. Since 3β 2 + 2β + 3 = 0, the degree of Q(β) over Q is equal to 2. On the other hand the Galois group G al (Q(β)/Q) is isomorphic to (Z/nZ) × , the group of invertible elements of Z/nZ, and we have, see [21], theorem 2.5

H (n) = d e g (Q(β)/Q) = 2,
where H (n) = c ar d ((Z/nZ) × ) denotes the number of integers p ∈ {1, . . . , n} such that g cd (p, n) = 1.

Let P (n) be the set of prime divisors of n. It is weil-known that we have, writing n = Π p∈P (n) p α p , see for example [21], exercise 1.1,

H (n) = Π p∈P (n) p α p -1 (p -1).
It follows immediately from this identity that the only possibilities to get H (n) = 2 are n = 3, n = 4, and n = 6. Since β 3 = 1, β 4 = 1, and β 6 = 1, we see that β π is irrational, and so k(a) < 8 3 3 if a π is rational.

We know that if a π is rational, and if b π is irrational, then sup n≥1 |cos(na)cos(nb)| = 2. We discuss now the case where a π and b π are both rational, with b ∉ ±a + 2πZ. Proof : (i) Assume that 7a ≤ b ≤ π 2 , let p be the largest integer such that pb < 3π 4 , and set q = p + 1. We have 3π 4 ≤ qb ≤ 5π 4 , 0 ≤ q a ≤ 5π 28 , and we obtain Lemma 3.3. Let p, q be two positive integers such that p < q. (i) If q = 3p, then there exists u p,q ≥ 1 such that, if or d (a) ≥ u p,q we have sup n≥1 |cos(np a) -cos(nq a)| > 8

Lemma 3.2. Let a, b ∈ (0, π]. (i) If 7a ≤ b ≤ π 2 , or if π 2 ≤ b ≤ 5π 6 ,
sup n≥1 |cos (na) -cos (nb)| ≥ cos q a -
3 .

(ii) If q = 3p, then for every m < 8 if q = 3p, see for example [START_REF] Esterle | Bounded cosine functions close to continuous scalar bounded cosine functions[END_REF]. Now let µ < λ, and let η < δ be two real numbers such that

|cos(p x) -cos(q x)| > µ for η ≤ x ≤ δ. Since {e i an } n≥1 = {e 2ni π u } 1≤n≤u , we see that sup n≥1 |cos(np a) -cos(nq a)| > µ if 2π
u < δη, and the lemma follows.

Lemma 3.4. Assume that a π and b π are rational, let u ≥ 1 be the order of a and let v be the order of b.

(i

) If u = v, u = 3v, v = 3u then sup n≥1 |cos(na) -cos(nb)| ≥ 1 + cos π 5 > 1.8 > 8 (ii) If u = v, and if b ∉ ±a + 2πZ, then there exists w ∈ Z such that 2 ≤ w ≤ u 2 and g cd (u, w ) = 1 satisfying sup n≥1 cos(na) -cos(nb)| = sup n≥1 cos 2nπ u -cos 2nw π u . ( 2 
)
Conversely if a ∈ πQ has order u, then for every integer w such that g cd (w, u) = 1, there exists b ∈ πQ of order u satisfying (2).

(iii) If v = 3u, then there exists an integer w such that 1 ≤ w ≤ u 2 and g cd (u, w ) = 1 satisfying

sup n≥1 cos(na) -cos(nb)| = sup n≥1 cos 2nπ 3u -cos 2nw π u . ( 3 
)
Conversely if a ∈ πQ has order u, then for every integer w such that g cd (w, u) = 1 there exists b ∈ πQ of order 3u satisfying [START_REF] Batkai | Cosine families generated by second order differential operators on W 1,1 (0, 1) with generalized Wentzell boundary conditions[END_REF].

(iv) If u = 3v, then there exists an integer w such that 1 ≤ w ≤ u 6 and g cd u

3 , w = 1 satisfying sup n≥1 cos(na) -cos(nb)| = sup n≥1 cos 2nπ u -cos 6nw π u . ( 4 
)
Conversely if the order u of a ∈ πQ is divisible by 3, then for every integer w such that g cd u 3 , w = 1 there exists b ∈ πQ of order u 3 satisfying (4).

Proof : (i) Assume that u = v, say, u < v, and let w = 1 be the order of ub, which is a divisor of v. We have ub = 2πα w , with g cd (α, w ) = 1, and there exists γ ≥ 1 such that αγ -1 ∈ w Z. We obtain

sup n≥1 |cos(na)-cos(nb)| ≥ sup n≥1 |cos(nuγa)-cos(nuγb)| = sup 1≤n≤w 1-cos 2nπ w .
If w is even, then sup n≥1 |cos(na) -cos(nb)| = 2. If w is odd, set s = w-1 2 . We obtain

sup n≥1 |cos(na) -cos(nb)| ≥ 1 -cos 2sπ w = 1 + cos π w .
If w ≥ 5, we obtain 

sup n≥1 |cos(na) -cos(nb)| ≥ 1 + cos π 5 > 1.8 > 8 
sup n≥1 |cos(na) -cos(nb)| = |cos (3d a) -cos (3d b)| ≥ |cos(3pπ) -cos(2qπ)| = 2. If r = 1 then u = d and v = 3d = u. We thus see that if v > u and v = 3u, then sup n≥1 |cos(na) -cos(nb)| ≥ 1 + cos π 5 > 1.8 > 3 3
, which proves (i). (ii) Assume that u = v, and that b ∉ ±a + 2πZ. There exists α, β ∈ {1, . . . , u -1}, with α = β, α = uβ such that a ∈ ± 2απ u + 2πZ and b ∈ ± 2βπ u + 2πZ, and g cd (α, u) = g cd (β, u) = 1. It follows from Bezout's identity that there exists γ ∈ Z such that αγ-1 ∈ uZ. If βγ±1 ∈ uZ then we would have αβγ±α ∈ αuZ ⊂ uZ, and β ± α ∈ uZ, which is impossible. Hence γβw ∈ uZ for some w ∈ {2, . . . , u -2}, g cd (w, u) = 1 since g cd (γ, u) = g cd (β, u) = 1, and we have

sup n≥1 |cos(na) -cos(nb)| ≥ sup n≥1 | cos(nγa) -cos(nγb)| = sup n≥1 cos 2nπ u -cos 2nw π u ≥ sup n≥1 cos 2nαπ u -cos 2nαw π u = sup n≥1 cos 2nαπ u -cos 2nβπ u = sup n≥1 |cos(na) -cos(nb)|.
By replacing w by uw if necessary, we can assume that 2 ≤ w ≤ u 2 . Now let w ∈ Z such that g cd (u, w ) = 1. We have a = 2απ u , with g cd (α, u) = 1. The same argument as above shows that we have

sup n≥1 cos 2nπ u -cos 2nw π u = sup n≥1 cos(na) -cos(nb)|,
with b = 2wαπ u , which has order u. (iii) Now assume that v = 3u. There exists α ∈ {1, . . . , u -1} and β ∈ {1, . . . , 3u -1} such that a ∈ ± 2απ u + 2πZ and b ∈ ± 2βπ 3u + 2πZ, and g cd (α, u) = g cd (β, 3u) = 1. Let γ ∈ Z such that βγ-1 ∈ 3uZ. Then g cd (γ, 3u) = 1, and a fortiori g cd (γ, u) = 1. There exists w ∈ Z such that αγ ∈ ±w + uZ, and we see as above that we have

sup n≥1 |cos(na) -cos(nb)| = sup n≥1 cos 2nαπ u -cos 2nβπ 3u = sup n≥1 cos 2nαγπ u -cos 2nβγπ 3u = sup n≥1 cos 2nw π u -cos 2nπ 3u .
Conversely let a = 2απ u ∈ πQ have order u, and let w ∈ Z be such that g cd (u, w ) = 1. If α is not divisible by 3, then g cd (α, 3u) = 1. If α is divisible by 3, then u is not divisible by 3, and so α + u ∈ α + uZ is not divisible by 3. So we can assume without loss of generality that α is not divisible by 3, and there exists β ≥ 1 such that αβ -1 ∈ 3uπZ. Similarly we can assume without loss of generality that w is not divisible by 3, and there exists γ ≥ 1 such that w γ -

1 ∈ 3uπZ. Set b = 2αγπ 3u .
Then b has order 3u, and we see as above that we have

sup n≥1 cos 2nw π u -cos 2nπ 3u ≥ sup n≥1 cos 2nαγw π u -cos 2nαγπ 3u = sup n≥1 |cos(na) -cos(nb)| ≥ sup n≥1 cos 2nαγw βw π u -cos 2nαγβw π 3u = sup n≥1 cos 2nw π u -cos 2nπ 3u ,
which concludes the proof of (iii).

(iv) Clearly, the first assertion of (iv) is a reformulation of the first assertion of (iii). Now assume that the order u of a ∈ πQ is divisible by 3, set v = u 3 , write a = 2απ u , and let w ∈ Z such that g cd (w, v) = 1. We see as above that we can assume without loss of generality that g cd (u, w ) = 1.

Since g cd (α, u) = 1, we have a fortiori g cd (α, v) = 1, so that g cd (αw, v) = 1, so that b := 6αw u has order v and we see as above that a, b, u and w satisfy (4). In order to use lemma 3.4, we introduce the following notions. Definition 3.5. Let u ≥ 2, and denote by ∆(u) the set of all integers s satisfying 1 ≤ s ≤ u 2 , g cd (u, s) = 1, and let ∆ 1 (u) = ∆(u) \ {1}. We set

σ(u) = i n f w∈∆(u) sup n≥1 cos 2π 3u -cos 2w π u , θ(u) = i n f w∈∆ 1 (u) sup n≥1 cos 2π u -cos 2w π u .
with the convention θ(u) = 2 if ∆ 1 (u) = .

Notice that ∆ 1 (u) = if u = 2, 3, 4 or 6, and that ∆ 1 (u) = otherwise since as we observed above

H (n) = c ar d ((Z/nZ) × ) ≥ 3 if n ∉ {1, 2, 3, 4, 6}.
We obtain the following corollary, which shows in particular that the value of k(a) depends only on the order of a. Corollary 3.6. Let a ∈ πQ, and let u ≥ 1 be the order of a.

(i) If u is not divisible by 3, then k(a) = i n f (σ(u), θ(u)). (ii) If u is divisible by 3, then k(a) = i n f (σ u 3 , σ(u), θ(u)).
If wu 3 < 7, set r = |3w -u|. Then 0 ≤ r ≤ 20, and we have

sup n≥1 cos 2nπ u -cos 2w nπ u ≥ sup n≥1 cos 6nπ u -cos 2nr π u .
If u is not divisible by 3, then either r = 3s + 1 or r = 3s + 2, with 0 ≤ w ≤ 6, and it follows from (ii) and (iii) that we have

sup n≥1 cos 2nπ u -cos 2w nπ u > m.
If u is divisible by 3 then r is also divisible by 3. Set v = u 3 and s = r 3 . Then 0 ≤ s ≤ 6, and we have There exists p ≥ 1 and

sup n≥1 cos 2nπ u -cos 2w nπ u ≥ sup n≥1 cos 2nπ v -cos 2nsπ v . If s ∈ {2,
q ∈ Z such that π 2 -π v ≤ 2pπ v + 2π 3v + ǫπ 3 + 2qπ ≤ π 2 + π v , and we obtain, for u ≥ 21, w = v ± 1, sup n≥1 cos 2nπ u -cos 2w nπ u ≥ 3cos π v ≥ 3cos π 7 ≥ 1.56 > m.
We thus see that if u ≥ u 0 is not divisible par 3, or if u ≥ max(21, 3u 0 ) is divisible by 3, we have, for 2 ≤ w ≤ u 2 ,

sup n≥1 cos 2nπ u -cos 2w nπ u ≥ m.
It follows then from corollary 3.6 that if the order u of a ∈ [0, 2π] satisfies u ≥ max(21, 3u 0 ), we have k(a) > m.

We now want to identify the real numbers a for which k(a) ≤ 1.5. If a ∈ πQ has order 1, 2 or 4, then sup n≥1 |cos(an) -cos(3an)| = 0. We also have the following elementary facts. 

(x) = cos(x) -cos(sx), θ s = sup x≥0 | f (s)|, δ s = sup x≥0 | f "(s)|.
We have θ s = 2 if s is even, and a computer verification shows that θ s > 1.8 for s = 5. It follows from the Taylor-Lagrange inequality that if f s attains it maximum at α s , then we have,

f s (x) -θ s ≤ δ s 2 (x -α s ) 2 , f s (x) ≥ θ s - δ s 2 (x -α s ) 2 ,
and so

| f s (x)| > 1.5 if (x -α s ) 2 ≤ 2θ s -3 δ s . So if l s < 2θ s -3 δ s
there exists a closed interval of length 2l s on which | f s (x)| > 1.5. Let u s ≥ π l s be an integer. We obtain

sup n≥1 cos 2nπ u -cos 2snπ u > 1.5 ∀u ≥ u s . (5) 
Values for u s are given by the following We obtain the following lemma. 

3 2: 5 2

 35 it contains 43 elements, and the only values for k(a) for which k(a) < 3 2 are 2 5 = cos π 5 +cos 2π 5 ≈ 1.1180, 2 = cos π 4 + cos 3π 4 ≈ 1.4142, and cos 2π 11 + cos 3π 11 ≈ 1.4961. The zero-5 2 law follows then from the fact that k(a) ≥ cos π 5 + cos π 5 =for every a ∈ R.

  and so there exists there exists c ∈ Γ(0, m) such that cos(nc) = cos(nub) for n ≥ 1. In particular cos(c) = cos(ub), and b = ± c u + 2kπ u , where k ∈ Z. We obtainc ar d (Γ(a, m)) ≤ 2uc ar d (Γ(0, m)) ≤ 2uc ar d π ar ccos(m -1) 2 .We do not know whether it is possible to obtain a majorant for c ar d (Γ(a, m)) which depends only on m when a ∈ πQ.Theorem 2.3. Let a ∈ R, let m < 2, and let (C (n)) n∈Z be a cosine sequence in a Banach algebra A such that sup n≥1 C (n) -cos(na) ≤ m. Then there exists k ≤ c ar d (Γ(a, m)) such that the closed algebra generated by (C (n)) n∈Z is isomorphic to C k , and there exists a finite family p 1 , . . . , p k of pairwise orthogonal idempotents of A and a finite family b 1 , . . . , b k of distinct elements of Γ(a, m) such that we have

Proposition 3 . 1 . 8 3 3 . 8 3 3 .

 318383 We have k(a) that a π ∉ Q. Then 3a ∉ ±a + 2πZ, and we have k(a) ≤ sup n≥1 |cos(na) -cos(3na)| = sup x∈R |cos(x) -cos(3x)| = We saw above that If b π in Q, then sup n≥1 |cos(na) -cos(nb)| = 2, and we also have sup n≥1 |cos(na) -cos(nb)| = 2 if p aqb ∉ 2πZ for (p, q) = (0, 0). So if sup n≥1 |cos(na) -cos(nb)| < 2, there exists p ∈ Z \ {0}, q ∈ Z \ {0} and r ∈ Z such that p aqb = 2r π.If p = ±q then it follows from lemma 3.5 of[START_REF] Esterle | Bounded cosine functions close to continuous scalar bounded cosine functions[END_REF] that we havesup n≥1 |cos(na)-cos(nb)| ≥ sup n≥1 |cos(nq a)-cos(nqb)| = sup n≥1 |cos(qna)-cos(pna)| = sup x∈R |cos(q x) -cos(p x)| = sup x∈R cos p q xcos(x) ≥We are left with the case where b = ±a + 2sπ r , where r ∈ Z \ {-1, 0, 1}, and we can restrict attention to the case where b = a + 2sπ r where r ≥ 2, 1 ≤ s ≤ r -1, g cd (r, s) = 1. It follows from Bezout's identity that there exists for every p ≥ 1 some u ∈ Z such that ubua -2pπ r ∈ 2πZ. If r is even, set p = r 2 . We have, since the set e i (2n+1)a n≥1 is dense in the unit circle, sup n≥1 |cos(nb) -cos(na)| = sup n∈Z |cos(nb) -cos(na)| ≥ sup n≥1 |cos((2n + 1)ub) -cos((2n + 1)ua)| = 2sup n≥1 |cos((2n + 1)ua)| = 2. Now assume that r is odd, and set p = r -1 2 . We have sup n≥1 |cos(nb) -cos(na)| ≥ sup n≥1 |cos((2n + 1)ub) -cos((2n + 1)ua)| ≥ sup n≥1 cos((2nr + 1)ua) -cos (2nr + 1)ua + (2nr + 1) ππ r ≥ sup x∈R cos(x) + cos x -

8 π 3 if x ∉ ±ar ccos 1 3 +πZ. If na ∈ ±ar ccos 1 3 + πZ for some n ≥ 1

 83331 Otherwise we have k(a) ≤ sup n≥1 |cos(na) -cos(3na)| = max 1≤n≤u |cos(na) -cos(3na)|. We have |cos(nx)-cos(3nx)| < of unity. So β = α 2 = -1 3 + 2 2i 3 would have the form β = e 2i kπ n

with b -2π 3 ≥

 3 7a, then sup n≥1 |cos (na) -cos (nb)| > 1.55.(ii) If 5π 6 ≤ b ≤ π, and if b ≥ 4a, then 10 cos(a) -cos(b) > 1.57.

3 3 there

 33 exists u p (m) ≥ 1 such that if or d (a) ≥ u(m) we have sup n≥1 |cos(np a) -cos(3np a)| > m. Proof : Set λ = sup x∈R |cos(p x) -cos(q x)| = sup x≥0 |cos(p x) -cos(q x)|. An elementary verification shows that λ > 8 3 3 if q = 3p, and λ = 8 3 3

3 3 .

 33 If w = 3, let d = g cd (u, v), and set r = u d . Then w = 3 = v d > r. So either r = 1 or r = 2. If r = 2, we have u = 2d , v = 3d , a = 2pπ 2d = pπ d with p odd, b = 2qπ 3d with g cd (q, 3d ) = 1, and we obtain

Lemma 3 . 8 .

 38 Let a ∈ πQ, and let u ∉ {1, 2, 4} be the order of a. 1. If u ∉ {3, 5, 6, 8, 9, 10, 11, 12, 15, 16, 18, 22, 24, 30} then sup n≥1 |cos(an) -cos(3an)| > 1.5. 2. If u ∈ {3, 6, 9, 12, 15, 18, 24, 30}, then sup n≥1 |cos(an) -cos(3an)| = 1.5.

3 .. 4 .

 34 If u ∈ {5, 10}, then sup n≥1 |cos(an) -cos(3an)| = 5 2 If u ∈ {8, 16}, then sup n≥1 |cos(an) -cos(3an)| = 2.

Lemma 3 . 10 .cos π 5 +The condition r = 2 gives s -u 3 = 2 3 .

 31053 Let u, s be positive integers satisfying u ≥ 4, u 4 ≤ s ≤ 5u 12 , with s ≥ 2, so that u ≥ 5.cos 2π 5 if u = 5, s = 2, or if u = 10, s = 3, = 2 if u = 8, s = 3, or if u = 16, s = 5, = cos 2π 11 + cos 3π 11 if u = 11, s = 4 or if u = 22, s = 7, = 1.5 if u = 12, s = 3, > 1.5 otherwise. Proof : Set r = |3s -u|. Since 2π 3 -π 2 = 5π 6 -2π 3 = π 6 , we have 0 ≤ 2πr u ≤ π 2 . If r ≥ 21, it follows from lemma 3.1(i) that sup n≥1 cos 2nπ u -cos 2snπ u > 1.5. If u is not divisible by 3, then r is not divisible by 3 either, and it follows from the discussion above that if r = 1 and r = 2, we have We saw above that in this situation sup n≥1 cos 2nπ u -cos 2snπ u > 1.5 unless u = 11, which gives s = 3, and we have

  3, 4, 5, 6} it follows from (i) that we have, if u ≥ 3u 0 , Now assume that s = 0. If u ≥ 15, then v ≥ 5, and we have

				sup n≥1 cos		2nπ v	-cos	2snπ u	> m.
	sup n≥1 cos	2nπ v	-cos	2snπ u	= sup n≥1 cos	2nπ v	-1 ≥ 1+cos	π 5	> 1.8 > m.
	Now assume that s = 1. We have, with ǫ = ±1,			
	sup n≥1 cos		2nπ u	-cos	2w nπ u	= sup n≥1 cos	2nπ 3v	-cos	2nπ 3v	+	2nǫπ 3
	≥ sup n≥1 cos	2(3n + 1)π 3v	-cos		2(3n + 1)π 3v	+	2ǫπ 3		= 3 si n	2nπ v	+	2π 3v	+	ǫπ 3	.

  table.If s ≥ 7, the result follows from lemma 3.2 (i). If s ∈ {2, 4, 6}, the result follows from the table since u ≥ 4s. If s = 5, the result also follows from the table for u ≥ 21, and a direct computation shows that we haveNow set g s (x) = cos(3x) -cos(sx), θ s = sup x≥0 |g (s)|, δ s = sup x≥0 |g "(s)|. We have θ s = 2 if s iseven, and a computer verification shows that θ s > 1.85 for s = 5, θ s > 1.91 for s = 7, s = 11, θ s > 1.97 for s = 13, s = 17, θ s > 1.96 for s = 19. We see as above that if l s < 2θ s -3 δ s , and if u s ≥ π l s is an integer, we haveWe will be interested here to the case where u is not divisible by 3 and where 2sπ u ≤ π 2 , which means that u ≥ 4s. So we are left with s = 2, u = 8, 10 or 11, and with s = 5, u = 20. We obtain, by direct computations

	sup n≥1 cos sup n≥1 cos 4nπ 2nπ u 8 -cos -cos 6nπ 2nsπ u 8 = sup n≥1 cos = sup n≥1 cos nπ 2	2nπ u -cos -1 > 1.8. 3nπ 4 = 2.
	sup n≥1 cos		4nπ 10	-cos	6nπ 10	= sup n≥1 cos	2nπ 5	-cos	3nπ 5	= 2.
	sup n≥1 cos sup n≥1 cos	2nπ 20 4nπ 11	-cos -cos	10nπ 20 6nπ 11	= sup 1≤n≤20 cos = cos 20π 11 -cos	nπ 10 30π 11	-cos = cos	nπ 2 2π 11	= 1+cos +cos 3π 11	π 5 ≈ 1.4961. > 1.80.
	sup n≥1 cos	10nπ 20	-cos	6nπ 20	= sup n≥1 cos	nπ 2	-cos	3nπ 10	> 1.80.
		sup n≥1 cos	2snπ u	-cos	6nπ u	> 1.5 ∀u ≥ u s .	(6)
	We have the following table.			
					s	θ s		δ s	l s	u s
	s θ s 2 2 4 2 5 > 1.8 ≤ 26 0.1519 21 δ s l s u s ≤ 5 0.4472 8 ≤ 17 0.2425 13 6 2 ≤ 37 0.1644 20 We obtain the following result Lemma 3.9. Let u ≥ 4 be an integer, and let s ≤ u 4 be a nonnegative integer. If s = 3, then we have sup n≥1 cos 2nπ u -cos 2nsπ u > 1.5 2 2 0.2774 12 ≤ 13 4 2 0.2085 16 ≤ 23 5 0.1435 22 > 1.85 ≤ 34 7 0.1189 27 > 1.91 ≤ 58 8 2 0.1170 27 ≤ 73 10 2 ≤ 109 0.0958 33 11 > 1.91 ≤ 130 0.0794 40 13 > 1.97 ≤ 178 0.0727 44 14 2 ≤ 205 0.0698 45 16 2 ≤ 275 0.0603 53 17 > 1.97 ≤ 298 0.0562 56 19 > 1.96 ≤ 390 0.0486 65 20 2 ≤ 409 0.0494 64
	Proof : If s = 0, then						

3.

, and it follows from lemma 3.4(i) that we have

and it follows from lemma 3.4 (ii), (iii) and (iv) that λ 1 (a) = θ(u) if ∆ 1 (u) = , that λ 2 (a) = σ(u), and that λ 3 (a) = σ u 3 if u is divisible by 3. We have the following result. Proof : It follows from lemma 3.3 applied to 2π u and 6π u that there exists u 0 ≥ 1 such that we have, for u ≥ u 0 ,

Let u ≥ u 0 , and let w be an integer such that 2 ≤ w ≤ u 2 . Il 

A direct computation shows the that we have

We now consider the case where u = 3v is divisible by 3. Then r is also divisible by 3. If r = 0, and if u = 9, then we have

If u = 9, then s = 3, and we have

Now assume that r = 3, which means that s = v + ǫ, with ǫ = ±1. We have

, and we obtain

We are left with the cases where u = 6, v = 2, s = 1 or 3, u = 9, v = 3, s = 2 or 4, u = 12, v = 4, s = 3 or 5, u = 15, v = 5, s = 4 or 6, u = 18, v = 6, s = 5 or 7. But s = 1 is not relevant, and the condition u 4 ≤ s ≤ 5u 12 is not satisfied for u = 6, s = 3 and for u = 9, s = 2 or 4.

Direct computations which are left to the reader show that we have Now assume that u = 3v is divisible by 3, and that 2 ≤ |s -v| ≤ 6. Set again r = |3s -u|, and set p = r 3 , so that 2 ≤ p ≤ 6. Notice also that p ≤ u 12 since r ≤ u 4 , so that u ≥ 24 and v ≥ 8. We have

It follows then from lemma 3.9 that sup n≥1 cos 2nπ u -cos 2snπ We consider again the numbers θ(u) and σ(u) introduced in definition 3.6. It follows from lemma 3.8, lemma 3.9, lemma 3.10 and lemma 3.11 that we have the following results. -If a ∈ π 5 , 2π 2 for some bounded scalar G-cosine family (c(g )) g ∈G . Then C (g ) = c(g ) for every g ∈ G.

Proof : Let g ∈ G. Since the scalar cosine sequence (c(ng )) n∈Z is bounded, a standard argument shows that there exists a(g ) ∈ R such that c(ng ) = cos(na(g ))1 A for n ∈ Z. Since k(a(g )) ≥ 5 2 , it follows from corollary 2.4 that C (ng ) = cos(na(g ))1 A = c(ng ) for n ∈ Z, and C (g ) = c(g ).