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ON AN ASYMMETRIC EXTENSION OF MULTIVARIATE
ARCHIMEDEAN COPULAS BASED ON QUADRATIC FORM

ELENA DI BERNARDINO AND DIDIER RULLIÈRE

Abstract. An important topic in Quantitative Risk Management concerns the modeling
of dependence among risk sources and in this regard Archimedean copulas appear to be
very useful. However, they exhibit symmetry, which is not always consistent with patterns
observed in real world data. We investigate extensions of the Archimedean copula family
that make it possible to deal with asymmetry. Our extension is based on the observation
that when applied to the copula the inverse function of the generator of an Archimedean
copula can be expressed as a linear form of generator inverses. We propose to add a
distortion term to this linear part, which leads to asymmetric copulas. Parameters of this
new class of copulas are grouped within a matrix, thus facilitating some usual applications
as level curve determination or estimation. Some choices such as sub-model stability help
associating each parameter to one bivariate projection of the copula. We also give some
admissibility conditions for the considered copulas. We propose different examples as
some natural multivariate extensions of Farlie-Gumbel-Morgenstern or Gumbel-Barnett.

Keywords: Archimedean copulas, transformations of Archimedean copulas, quadratic form.
2010 Mathematics Subject Classification: 62H20 .

1. Introduction

Quantitative Risk Management relies strongly on understanding the risk sources, and quantifying
risks within a probabilistic framework. This requires the precise determination of dependencies
between risks, understood as underlying random variables. The classical copula framework,
detailed hereafter, allows to characterize these dependencies. Many parametric copulas allow to
summary these dependencies using a few parameters. Other class of copulas, like the Archimedean
class, rely on a whole real-valued function (i.e. an infinite number of parameters), but the class
suffers from the symmetric shape of the modelled dependencies. It implies that the dependence
among all pairs of the components is identical. However, the dependence between assets from
the same industry sector is typically very different from the one that we observe for assets that
belong to different sectors. Hence, copulas that accommodate asymmetry are useful. Hereafter,
we thus give more details on the copula framework, and investigate a particular extension of the
Archimedean copula class, in order to allow asymmetry.
Copulas are multivariate distributions on [0, 1]d with uniform marginal distributions. Their main
interest is that by Sklar’s theorem (see Sklar [31]), every continuous multivariate distribution
can be decomposed into its continuous marginal distributions and a unique copula. A review on
different copula functions is available in Nelsen [27].
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A particular class of copulas is the class of Archimedean copulas. Copulas of this class can be
expressed in the dimension d ∈ N∗, where N∗ := N \ {0}, by

Cφ(u1, . . . , ud) = φ (ψ(u1) + . . .+ ψ(ud)) ,(1)

where φ is a real function φ : R+ → [0, 1], called the generator of the copula, and where ψ is
the generalized inverse function of φ, i.e. ψ(u) = inf{x ∈ R+ : φ(x) ≤ u}, for u ∈ [0, 1]. The
generator φ is continuous, decreasing and convex function, with lim

x→+∞
φ(x) = 0 and φ(0) = 1

(see, e.g., Definition 2 in McNeil and Nešlehová [22]). Notice that, for strict generators such that
φ(x) > 0 for all x ≥ 0, Equation (1) writes ψ◦Cφ(u1, . . . , ud) = ψ(u1)+ . . .+ψ(ud): when applied
to the copula, the inverse function of the generator can be expressed as a linear form of generator
inverses.
The Archimedean class of copula in (1) is very flexible, since members of this class are indexed by
a function φ rather than a finite set of parameters. However, a very important limitation is that
Archimedean copulas are symmetric: for any permutation of indexes p : {1, . . . , d} → {1, . . . , d},

Cφ(u1, . . . , ud) = Cφ(up(1), . . . , up(d)), for (u1, . . . , ud) ∈ [0, 1]d.(2)

Remark that property in (2) is also called exchangeability in the literature, and a random vector
having distribution Cφ has necessarily (finite) exchangeable components.
The symmetry of Archimedean copulas class is often considered to be a rather strong restriction,
especially in large dimensional applications. It implies that all multivariate projections of the
same dimension are equal, thus, e.g., the dependence among all pairs of components is identical.
To circumvent exchangeability, Archimedean copulas can be nested within each other under cer-
tain conditions. The resulting copulas are referred to as nested Archimedean copulas. In the last
decade the nested Archimedean copulas have been studied from different points of view (theor-
etically, computationally, in view of applications and so on). The interested reader is referred to
Hofert [14, 12], Hofert and Mächler [15], McNeil [21]. There are other strategies to generalize
Archimedean copulas in order to avoid symmetry such as the Hierarchical kendall copulas (see
Brechmann [3]), or Liouville copulas (see McNeil and Nešlehová [23]). The interested reader is
also referred to Genest and Nešlehová [13] for a survey work on non-exchangeability for bivariate
copulas.

A strategy to overcome asymmetry of Archimedean copulas is to modify their analytic expression.
In the next paragraph we detail this approach, as the results of the present paper can be seen as
a contribution to the corresponding literature.

Construction of multivariate asymmetric copulas by generalizing some known fam-
ilies. Rodŕıguez-Lallena and Úbeda Flores [29] have introduced a class of bivariate copulas C∗

which generalizes some known families such as the Farlie Gumbel Morgenstern distributions of
the form:

(3) C∗(u, v) = u v + λ f(u) g(v),

where f and g are two non-zero absolutely continuous functions such that f(0) = f(1) = g(0) =
g(1) = 0 and the admissible range of the parameter λ can be obtained in terms of the derivatives of

f and g. Moreover, Dolati and Úbeda Flores [9] have provided procedures to construct parametric
families of multivariate distributions which generalize copulas in (3).
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Kim et al. [18] generalized the method of Rodŕıguez-Lallena and Úbeda Flores [29]. They define
the distorted copula C∗ as

C∗(u, v) = C(u, v) + λ f(u) g(v),

where C is an arbitrary given copula. The method of Kim et al. [18] gives a sufficient condi-
tion for the λ coefficient and it is in general rather difficult to be applied. To overcome this
drawback, Mesiar and Najjari [25] introduced a new method of constructing binary copulas,

extending the original study of Rodŕıguez-Lallena and Úbeda Flores [29] to new families of sym-
metric/asymmetric copulas.

Alfonsi and Brigo [1] describe a new construction method for asymmetric copulas based on peri-
odic functions. Liebscher [20] introduced two methods to construct asymmetric multivariate
copulas. The first is connected with products of copulas, i.e,

C∗(u1, . . . , ud) =

k∏
j=1

Cj(gj1(u1), . . . , gjd(ud)), for ui ∈ [0, 1],

where gji are suitable increasing functions and Cj are copulas. The second method proposes a
generalization of the Archimedean copulas class in (1). The aforementioned paper is a generaliz-
ation of the so-called Khoudraji’s device (see Khoudraji [17]).
Remark that Archimedean copulas can be rewritten in the form:

Cφ(u1, . . . , ud) = φ(ψ(u1)× . . .× ψ(ud)),

using the multiplicative generator ψ(u) = exp(ψ(u)). Let us replace the product ψ(u1) × . . . ×
ψ(ud) before by an average of products leading to

(4) C∗φ(u1, . . . , ud) = Ψ

 1

m

m∑
j=1

hj1(ϕ(u1)) . . . hjd(ϕ(ud))

 ,

where ϕ = Ψ−1. Function in (4) represents a generalisation of Archimedean copulas being asym-
metric in general. Liebscher [20] provides conditions on functions and Ψ and hjk such that
function in (4) is a proper copula. Recently, Wu [33] proposes a new method of constructing
asymmetric copulas and a convex-combination of asymmetric copulas that can exhibit different
tail dependence along different directions.

A generalization of the Archimedean copula class, containing both the Archimedean and the
extreme-value copulas as a special case, are the Archimax copulas (see Capéraà et al. [4] for the
bivariate case, Charpentier et al. [5] for the multivariate case). Following Capéraà et al. [4], a
bivariate copula is said to be Archimax if it can be written, for all u1, u2 ∈ (0, 1), in the form:

(5) Cφ,A(u1, u2) = φ

(
(ψ(u1) + ψ(u2))A

(
ψ(u1)

ψ(u1) + ψ(u2)

))
,

using the Pickand function A : [0, 1]→ [0.5, 1] and the generator φ : R+ → [0, 1] (see Mesiar and
Jágr [24] for a suitable d−variate extension of the notion of bivariate Archimax copula).
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Organization of the paper. The paper is organized as follows. In Section 2 we present our
model in order to extend the Archimedean class of copula offering the possibility of asymmet-
ric distributions. Furthermore, suitable theoretical characteristics for the considered model are
presented. Then we consider in Section 3 sufficient admissibility conditions for the proposed
Archimatrix model in some particular cases. Using results of Section 3, we give some examples
exhibiting multivariate distorted copulas or valid bivariate projections (see Section 4). Finally in
Section 5, some supplementary properties and a sampling procedure with associated numerical
illustrations are proposed.

2. Considered model

We focus on the class of Archimedean copulas presented in Equation (1). Let φ the generator
of the Archimedean copula such that lim

x→+∞
φ(x) = 0 and φ(0) = 1. In the following, we re-

strict ourselves to strict generators, where ∀x ∈ R+, φ(x) > 0. In this case, the function ψ
is the regular inverse of φ. From Theorem 2.2 in McNeil and Nešlehová [22], Cφ(u1, . . . , ud) =
φ (ψ(u1) + . . .+ ψ(ud)) , is a d−dimensional copula if and only if its generator φ is d−monotone
on [0,∞), where the d−monotony definition is recalled hereafter, as in McNeil and Nešlehová
[22]. A d−monotone generator will be called in the following valid generator.

Definition 1 (d-monotone function). A real function f is called d−monotone in (a, b), where
a, b ∈ R and d ≥ 2, if it is differentiable there up to the order d− 2 and the derivatives satisfy

(−1)kf (k)(x) ≥ 0, k = 0, 1, . . . , d− 2

for any x ∈ (a, b) and further if (−1)d−2f (d−2) is non-increasing and convex in (a, b). For d = 1,
f is called 1−monotone in (a, b) if it is nonnegative and non-increasing there.

Consider a random vector U = (U1, . . . , Ud) in [0, 1]d whose distribution is an Archimedean
copula Cφ. Symmetric property of Archimedean copulas in Equation (2) has consequences in
particular for bivariate projections: one has a symmetry within any couple of random variable
(Ui, Uj), and a symmetry among different couples of random variables (Ui, Uj) and (Ui′ , Uj′), i.e.,
for i, j, i′, j′ ∈ {1, . . . , d},

(6) (Ui, Uj)
d
= (Uj , Ui) and (Ui, Uj)

d
= (Ui′ , Uj′),

where
d
= denotes the equality in distribution.

In the following we aim at extending the Archimedean class of copula, while offering the pos-
sibility of asymmetric distributions. In order to take into account each interaction (Ui, Uj), we
consider a model with one parameter σij per couple (Ui, Uj). It is rather natural to group all
these parameters within a matrix Σ = (σij)i,j∈I , where from now on I = {1, . . . , d}. A chosen
requirement of our model is to construct a class that contains at least all Archimedean copulas,
for specific values of Σ.
In Definition 2 we present the considered copula model and specify constraints on both parameters
and g, h and z functions. These constraints come from the choices and desired features of the
proposed model. A further section is devoted to admissibility conditions on the proposed copula
(see Section 3).

Definition 2 (Considered model and basic required assumptions). Let us denote the column
vectors of length d by u = (u1, . . . , ud), ψ(u) = (ψ(u1), . . . , ψ(ud)) and 1 = (1, . . . , 1). We define,

4



for all u ∈ [0, 1]d, a function Cφ,G,Σ as

Cφ,G,Σ(u) = φ
(
1tψ(u) + z

(
g(u)t Σ h(u)

))
,(7)

where φ is a valid strict Archimedean generator with regular inverse function ψ, where g : [0, 1]d →
Rd and h : [0, 1]d → Rd are two vector-valued continuous functions, z : R → R is a continuous
real function. The index G in Cφ,G,Σ is a vector function combining g, h, z, i.e., G := (g,h, z).
In the following, we will denote F the class of functions Cφ,G,Σ as in (7). Moreover, we require
that

i. (Sub-model stability) for all u ∈ [0, 1]d, [g(u)]i = [h(u)]i = 0 as soon as ui = 1;
ii. (Boundary conditions) z(0) = 0 and σii = 0, for all i ∈ I;

iii. (Concordance ordering) z is a monotone and d times differentiable function and all com-
ponents of the matrix g(u)h(u)t have the same sign (i.e. either g(u)ih(u)j ≥ 0, i, j ∈ I,

either g(u)ih(u)j ≤ 0, i, j ∈ I), for all u ∈ [0, 1]d.

An interesting feature of this model is that it is based on a linear expression. This will ease the
determination of the level curves of the copula (see Property 2) as well as the estimation of its
parameters (see Property 5). However, one limitation is that it will be difficult to determine the
range of admissible parameters. Some results will give valid ranges in the dimension d = 2, or in
special cases in any dimension d (see Section 4).

As one can see from Equation (7), ψ ◦ Cφ,G,Σ(u) is the sum of two terms and it corresponds to
an Archimedean copula when the second term is zero. This last term uses the distortion mat-
rix Σ with simple matrix multiplications. If the second term is not zero we can obtain several
asymmetric non-Archimedean copula structures. The model in Definition 2 will be called in the
following Archimatrix copula, in order to underline the link with the Archimedean copula (that is
a particular case of Cφ,G,Σ) and the central asymmetry role played by the matrix Σ. Indeed the
distortion matrix Σ in Equation (7), with functions g, h and z, permits to leave the symmetric
structure typical of any Archimedean copula model. Our model in Definition 2 is built in the
same spirit as the recent literature about the construction of multivariate asymmetric copulas
by generalizing some known families. Indeed different asymmetric models for copula structures
presented in the Introduction section can be related to our model. Some comparisons in this
sense will be presented in Section 4.

In the following we discuss Assumptions i, ii and iii in Definition 2 and we illustrate how required
conditions are implied by desired features of our multivariate copula model.

2.1. Sub-model stability. First we consider the sub-model stability assumption (see Assump-
tion i in Definition 2). This requirement is a choice that is not compulsory for defining a valid
copula respecting Equation (7), but that seems to us important in order to simplify the model
and to interpret its parameters. Remark that sub-model stability is not ensured by the initial
model; it does not hold for example if g(u) = h(u) = u.

Proposition 1 (Sub-model stability). Consider Cφ,G,Σ ∈ F as in Equation (7), with given
functions g, h, z, Σ satisfying Assumption i in Definition 2. Assume that Cφ,G,Σ is a valid
copula and let a random vector U be distributed as Cφ,G,Σ. Then, the model is valid for each
sub-model, i.e., for any non-empty subset Ω = {ω1, . . . , ωk} ⊂ I,

(Uω1 , . . . , Uωk) ∼ Cφ,G,ΣΩ
,
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where ΣΩ = (σij)i,j∈Ω is a submatrix of Σ.

In particular, assume that there exist functions gi and hi, i ∈ I so that for any u ∈ [0, 1]d, g(u) =
(g1(u1), . . . , gd(ud)), h(u) = (h1(u1), . . . , hd(ud)). Assume furthermore that gi(1) = hi(1) = 0 for
all i ∈ I. Then the model is valid on any projections on any non-empty subset of indexes Ω ⊂ I,
with

P

[⋂
i∈Ω

Ui ≤ ui

]
= φ

∑
i∈Ω

ψ(ui) + z

∑
i,j∈Ω

gi(ui)σijhj(uj)

 .(8)

The proof of Proposition 1 is postponed to the Appendix.
Despite the reduction of the variety of possible models, the sub-model stability in Proposition 1
is interesting since it permits to understand any coefficient σij in the matrix Σ by considering
only the corresponding bivariate distribution (Ui, Uj). Under this assumption, the interpretation
of these coefficients is thus more straightforward. Notice that the sub-model stability naturally
holds for Archimedean copulas when the function z satisfies z(·) = 0.

2.2. Boundary conditions. Secondly, we focus on the boundary conditions (see Assumption
ii in Definition 2). Indeed, a condition is required when a function Cφ,G,Σ ∈ F has to be a
copula: the uniform distribution of univariate projections of Cφ,G,Σ and more generally boundary
conditions on Cφ,G,Σ (see Proposition 2 below).

Proposition 2. Consider Cφ,G,Σ ∈ F as in Equation (7), with given functions g, h, z, Σ
satisfying Assumptions i and ii in Definition 2, then

(1) Cφ,G,Σ(1, . . . , 1, u, 1, . . . , 1) = u, u ∈ [0, 1], and in particular Cφ,G,Σ(1, . . . , 1) = 1;

(2) Cφ,G,Σ(u1, . . . , ui−1, 0, ui+1, . . . , ud) = 0, for u ∈ [0, 1]d.

The proof of Proposition 2 is postponed to the Appendix.

2.3. Concordance ordering. Finally, we consider the concordance ordering assumption (see
Assumption iii in Definition 2). For two copulas C1 and C2, recall that one can say that C1

is smaller than C2 for the concordance ordering, and we write C1 ≺ C2, if for all u ∈ [0, 1]d,
C1(u) ≤ C2(u) (see, e.g., Definition 2.8.1 in Nelsen [27] in the bivariate setting; Joe [16] in the
general dimension d). Considering copulas indexed by a real parameter θ, we recall that a class
{Cθ} of copulas is positively ordered for all θ1 ≤ θ2, Cθ1 ≺ Cθ2 , and negatively ordered if for all

θ1 ≤ θ2, Cθ2 ≺ Cθ1 (see Nelsen [27], Section 4.4 in dimension 2 and Dolati and Úbeda Flores
[9] in the general dimension d). Most usual Archimedean copulas are (positively or negatively)
ordered, even if there exists Archimedean copulas neither negatively or positively ordered (see,
e.g, the bivariate copula 4.2.10 in Table 4.1 of Nelsen [27]).

In the case where the function Cφ,G,Σ is a copula, a desirable feature is that, for any parameter
σij , i, j ∈ I, the copula is either positively or negatively ordered. This may ease, for example,
the interpretation of elements of the distortion matrix Σ of the Archimatrix copula (i.e., of σij
for i, j ∈ I). As the interpretation of one coefficient σij should not depend on indexes i and j,
one asks that parameters are ordered in the same way. A simple sufficient condition for this is
given below.

Proposition 3 (Parameters of Σ matrix and concordance ordering). Consider Cφ,G,Σ ∈ F as
in Equation (7), with given functions g, h, z, Σ satisfying Assumption iii in Definition 2 and
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assume that Cφ,G,Σ is a valid copula. Then the considered copulas of the class are ordered in
the same way with respect to each parameter σij, for i, j ∈ I (i.e. all negatively ordered, or all
positively ordered).

The concordance order is an important aspect for copulas. In particular, some Archimedean
copulas can be ordered via single parameters (see Section 4.4 in Nelsen [27]). Let us consider
an Archimatrix copula satisfying Proposition 3. Due to Proposition 1, any bivariate projection
associated to (Ui, Uj) is also a bivariate Archimatrix copula with parameter σij and same con-
cordance ordering. For instance, bivariate projections of Cφ,G,Σ in Examples 1-2 (resp. Example
3) are negatively (resp. positively) ordered with respect to the only parameter σij .

3. Admissibility conditions

We now discuss admissibility conditions of chosen Archimatrix copulas presented in Section 2.
Consider the model function Cφ,G,Σ ∈ F as in Equation (7) satisfying conditions in Definition
2. Assume that Cφ,G,Σ is d-times differentiable with respect to successive variables u1, . . . , ud

and define cφ,G,Σ(u) = ∂d

∂u1...∂ud
Cφ,G,Σ(u). Throughout the paper, one assumes furthermore

that
∫

[0,1]d cφ,G,Σ(u)du = 1, so that Cφ,G,Σ(u) cannot have a singular component. Then as by

construction Cφ,G,Σ satisfies bounding conditions, it is a copula if and only if

cφ,G,Σ(u) ≥ 0, ∀ u ∈ [0, 1]d,(9)

(see for instance Billingsley [2], Chapter 4). However in practice, this condition requires checking
the value of derivatives of possibly large orders on the whole support of the copula, which can
hardly be done. For this reason, the rest of this section will be devoted to the research of
simpler sufficient conditions to guarantee admissibility of copula Cφ,G,Σ. To this aim, we use a
supplementary set of assumptions that simplify the expression of the copula and its derivatives
(see Assumption 1 below). In particular, this Assumption 1 will be a sufficient condition to prove
a symmetry property within each bivariate projection of Cφ,G,Σ (see Proposition 4), and will be
suited when we focus on asymmetry among bivariate projections of Cφ,G,Σ (cf. Equation 6 for
the distinction between symmetries within or among).

Assumption 1. Consider Cφ,G,Σ ∈ F as in Equation (7) satisfying conditions in Definition 2.
More restrictive assumptions are

(a) g(·) and h(·) are identical vector-valued functions with components [g(u)]i = [h(u)]i =
gi(ui), u ∈ [0, 1]d, where gi is a monotone real function on [0, 1], such that gi(1) = 0, for
all i ∈ I.

(b) σij = σji, for i ∈ I, j ∈ J .

Notice that Assumptions i and iii on g(·) and h(·) in Definition 2 is automatically ensured by
more restrictive Condition (a) in Assumption 1. Notice also that, under Assumption 1, and due to
bounding conditions (Assumptions ii in Definition 2) ensuring that σii = 0, i ∈ I, one can rewrite
g(u)t Σ h(u) = 2 g(u)t Σ> h(u), where Σ> is the upper triangular matrix having components σij
if i < j, or 0 otherwise. More restrictive conditions introduced in Assumption 1 will be useful in
Sections 3.1 and 3.2 below.
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3.1. Valid bivariate projections. Bivariate projections are usually easier to represent and to
understand than multivariate ones. Furthermore, in the dimension d = 2, Equation (7) in Defin-
ition 2 can be seen as a distortion leading to new bivariate copulas, which has an interest in this
reduced dimension. Bivariate projections are thus treated in this section separately.

The proposed shape of the copula Cφ,G,Σ aims at modelling different interactions between random
variables Ui and Uj , when i and j vary in I. However, it could be desirable to have a symmetry
within each bivariate projection, so that (Ui, Uj) and (Uj , Ui) may have identical distributions.
We give here a simple condition ensuring that all bivariate projections are symmetrical. This
condition will be satisfied in further Examples 1-3.

Proposition 4 (Symmetric bivariate projections). Consider Cφ,G,Σ ∈ F as in Equation (7)
satisfying conditions in Definition 2 and condition (a) in Assumption 1. Assume that Cφ,G,Σ is

a proper copula. Then if for all i ∈ I, for all u ∈ [0, 1]d, gi(u) = g(u) does not depend on i, then
bivariate projections are symmetric, i.e., for all i, j ∈ I,

(Ui, Uj)
d
= (Uj , Ui).

The proof is postponed to the Appendix. Notice that even in this symmetric projections case,
one can still have different distributions for (Ui, Uj) and (Ui′ , Uj′), for i, j, i′, j′ ∈ I.
Now one important point is being able to guarantee the positivity of the density in the dimension
2, so that each bivariate projection is a copula. This can be not trivial in a general framework.
However, in some particular cases, one can bound cφ,G,Σ(u) in (9) and obtain sufficient conditions
that are more straightforward to check. The following result gives an example of such a sufficient
condition, which is easy to check when g′ is linked with ψ′.

Proposition 5 (Simplified bivariate admissibility sufficient condition). Consider Cφ,G,Σ ∈ F as
in Equation (7) satisfying conditions in Definition 2 and Assumption 1 with φ being 2−times
differentiable and gi differentiable for all i ∈ I. Assume that the generator φ is such that ρφ :=

inf{
∣∣∣φ′′(x)
φ′(x)

∣∣∣ , x ∈ R+} > 0. Assume that for all x ∈ R+, (z′(x))2ρφ− z′′(x) ≥ 0 and that z′(x) > 0.

If for all u ∈ [0, 1]d,

0 ≤ σij ≤
1

2

1

z′(2σijgi(ui)gj(uj))

ψ′(ui)ψ
′(uj)

g′i(ui)g
′
j(uj)

ρφ ,

then any bivariate projection of Cφ,G,Σ in Equation (22) is a proper bivariate copula.

The proof of Proposition 5 is postponed to the Appendix.
The sufficient admissibility condition in Proposition 5 has an interest when at least one couple

(i, j) ∈ I2 is such that inf
(u,v)∈[0,1]2

1
z′(2σijgi(u)gj(v))

ψ′(u)ψ′(v)
g′i(u)g′j(v)

ρφ > 0. As an example, when for all u,

for all k ∈ I, gk(u) = ψ(u), this infimum is strictly greater than zero if sup
x∈[0,∞)

z′(2σijx) < ∞.

This is the case for linear z, when z′ is a constant and when ρφ > 0 (see Examples 1 and 2 below
for an application).
However, we point out that the admissibility sufficient condition provided in Proposition 5 can
be not precise enough to control the admissibility of the model function Cφ,G,Σ. Then in these
cases a further analysis is required to establish the eventual admissibility of Cφ,G,Σ (for instance
remark that ρφ = 0 in the Clayton and Gumbel case, see Table 1 below. In some cases, bivariate
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projections are admissible FGM copulas, but the sufficient condition is not precise enough, see
Example 3).
In Table 1, we study the quantity ρφ considered in Proposition 5 for classical generators in the
case of most popular Archimedean copulas.

Archimedean Copula class φ(t) ψ(t) parameter θ ρφ

Ali-Mikhail-Haq 1−θ
exp(t)−θ ln

(
1−θ+θt

t

)
θ ∈ (0, 1) 1

Clayton (1 + θt)−1/θ 1
θ (t−θ − 1) θ ∈ (0,∞) 0

Frank −1
θ ln(1− (1− exp(−θ)) exp(−t)) − ln

(
exp(−θt)−1
exp(−θ)−1

)
θ ∈ (0,∞) 1

Gumbel exp
(
−t1/θ

)
(− ln(t))θ θ ∈ (1,∞) 0

Independence exp (−t) (− ln(t)) none 1

Joe 1− (1− exp(−t))1/θ − ln
(
1− (1− t)θ

)
θ ∈ (1,∞) 1

Table 1. Condition on ρφ for classical generators in the case of most pop-
ular Archimedean copulas.

3.2. Valid multivariate Archimatrix copula for linear function z. Proposition 5 gives a
bivariate admissibility sufficient condition. However, it is more challenging to prove the positivity
of the density of Cφ,G,Σ in any given dimension d. To this aim, the choice of a linear or affine
function z can help since it leads to vanishing derivatives of z

(
g(u)tΣ h(u)

)
when orders are

greater than two. Indeed, for distinct i, j, k ∈ I, and when g(u) = h(u) = (g1(u1), . . . , gd(ud)),

∂3

∂ui∂uj∂uk
z
(
g(u)tΣ g(u)

)
= 0.(10)

In the following proposition, we thus give expressions of the density of the copula and admissibility
conditions in the simplified model

Cφ,G,Σ(u) = φ

(
1tψ(u) +

1

2
g(u)tΣ g(u)

)
,(11)

where g(u) = (g1(u1), . . . , gd(ud)), z(x) = x/2.

Proposition 6 (Density in the simplified model). Consider Cφ,G,Σ ∈ F as in Equation (7) sat-
isfying conditions in Definition 2 and Assumption 1. Furthermore consider the simplified mul-
tivariate Archimatrix model with linear function z as in (11), where g(u) = (g1(u1), . . . , gd(ud))
with gi differentiable for all i ∈ I. Let k ∈ I and assume that φ is a k-times differentiable
generator. Let bxc the integer part of x. Then we have

∂k

∂u1 . . . ∂uk
Cφ,G,Σ(u) =

bk/2c∑
ν=0

φ(k−ν) ◦ ψ ◦ Cφ,G,Σ(u) ·Rν,k(u),(12)

with{
R0,k(u) =

∏k
l=1Gl(u)

Rν,k(u) =
∑
{i1,j1,...,iν ,jν}⊂{1,...,k}Gi1j1 ...Giνjν

∏
l∈{1,...,k}\{i1,j1,...,iν ,jν}Gl(u) , for ν ≥ 1,

9



where Gi(u) = ψ′(ui) + g′i(ui)
∑d

r=1 σirgr(ur), Gij(u) = g′i(ui)σijg
′
j(uj), i, j ∈ I, j 6= i and where

the sum over {i1, j1, . . . , iν , jν} ⊂ {1, . . . , k} refers to all possible distinct choices of ν couples in
the set {1, . . . , k} (i.e. with i1 < . . . < iν , with ir < jr for r = 1, . . . , ν, and with all values in
{i1, j1, . . . , iν , jν} being distinct).

The proof of Proposition 6 is postponed to the Appendix.

As an example, denoting C
(k)
φ,Σ(u) := ∂k

∂u1...∂uk
Cφ,G,Σ(u), one gets for the first four orders

C
(1)
φ,Σ(u) = φ(1) ◦ ψ ◦ Cφ,G,Σ(u) ·G1(u),

C
(2)
φ,Σ(u) = φ(2) ◦ ψ ◦ Cφ,G,Σ(u) · (G1G2)(u) + φ(1) ◦ ψ ◦ Cφ,G,Σ(u) · (G12)(u),

C
(3)
φ,Σ(u) = φ(3) ◦ ψ ◦ Cφ,G,Σ(u) · (G1G2G3)(u) + φ(2) ◦ ψ ◦ Cφ,G,Σ(u) · (G12G3 +G13G2 +G23G1)(u),

C
(4)
φ,Σ(u) = φ(4) ◦ ψ ◦ Cφ,G,Σ(u) · (G1G2G3G4)(u)

+ φ(3) ◦ ψ ◦ Cφ,G,Σ(u) · (G12G3G4 +G13G2G4 +G14G2G3 +G23G1G4 +G24G1G3 +G34G1G2)(u)

+ φ(2) ◦ ψ ◦ Cφ,G,Σ(u) · (G12G34 +G13G24 +G14G23)(u).

In the case where φ(x) = exp(−x), one can check that φ(k) ◦ψ ◦Cφ,G,Σ(u) = (−1)kCφ,G,Σ(u) and
the expression can be simplified. Then, the following proposition illustrates the general result
provided in Proposition 6 in the independence generator case.

Proposition 7 (Density starting from independence). In the same assumption setting as Pro-
position 6, when φ(x) = exp(−x), x ∈ R+ is the independence generator, then for all u ∈ (0, 1)d,

C
(k)
φ,Σ(u) = Cφ,G,Σ(u)

∏
l∈Ik

1

ul

bk/2c∑
ν=0

(−1)ν
∑

{i1,j1,...,iν ,jν}⊂Ik

γi1j1 ...γiνjν (u)
∏

l∈Ik\{i1,j1,...,iν ,jν}

γl(u)

where Ik = {1, . . . , k}, γi(u) = −uiGi(u), γij(u) = uiujGij(u).

The proof of Proposition 7 is postponed to the Appendix.
Also in this case, necessary and sufficient admissibility conditions can be given by requiring the
positivity of the density in Equation (12). However, this kind of expression involving partial
derivatives of order k would be of few interest in practice. In following proposition, we give a
simplified admissibility condition involving more directly coefficients σij of the distortion matrix
Σ. Remark that the sufficient admissibility condition in dimension k proposed in Proposition 8
below requires checking the value of derivatives of order k of the generator, which can hardly be
done in practice. A possible application of Proposition 8 when the initial copula is the independent
one is provided by Corollary 1 below. Furthermore, a numerical illustration for a 3-dimensional
Archimatrix copula is given in Example 1 (see Section 4).

Proposition 8 (Sufficient admissibility condition in dimension k). Consider the multivariate
Archimatrix model for linear z in Equation (11), satisfying Assumption 1. Assume that φ is

k-times differentiable and gi differentiable for all i ∈ I. Denote γij(u) =
g′i(ui)g

′
j(uj)

ψ′(ui)ψ′(uj)
σij, i, j ∈ I.

Let Ik = {1, . . . , k}, Πν(Ik) be the set of all possible distinct choices of ν couples among Ik. Let

ρφ,k = infx∈R+
|φ(k)(x)|
|φ(k−1)(x)| . Assume that all σij are positive or zero. Then, for k ∈ I, a sufficient

condition for the positivity of C
(k)
φ,Σ(u) is that for all ν ≤ bk/2c − 1 even, for all πν ∈ Πν(Ik), for

10



all u, ∑
{i,j}⊂Π1(Ik\πν)

γij(u) ≤ ρφ,k−ν .(13)

Setting ρφ,1..k = infν∈{0,...,bk/2c−1} ρφ,k−ν , a simplified sufficient condition is that
∑

i,j∈Ik,i<j γij(u) ≤
ρφ,1..k.

The proof of Proposition 8 is postponed to the Appendix.

Remark 1. As an illustration of Proposition 8, we write in the following the sufficient admissib-
ility conditions provided in Equation (13), for different values of the considered dimension k, for
all u:

for k = 2, γ12(u) ≤ ρφ,2,
for k = 3, γ12(u) + γ13(u) + γ23(u) ≤ ρφ,3,
for k = 4, γ12(u) + γ13(u) + γ14(u) + γ23(u) + γ24(u) + γ34(u) ≤ ρφ,4,
for k = 5, γ12(u) + γ13(u) + γ14(u) + γ15(u) + γ23(u) + γ24(u) + γ25(u) + γ34(u) +

γ35(u) + γ45(u) ≤ ρφ,5.

Remark that for k = 1, 2, 3, 4, 5, Equation (13) provides a single condition since ν = 0. Further-
more, remark that in the Independent copula case ρφ,k = 1, for all k. Conversely, in the Clayton

copula case
|φ(k)(x)|
|φ(k−1)(x)| = |(k−1) θ+1|

|θ x+1| . Then, for θ > 0, it is not possible in this Clayton case to find

a positive lower bound for this quantity. For Joe, Ali-Mikhail-Haq and Frank copula families, at
least numerically, it seems possible to find positive constants to inferiorly bound the ratio of the
derivatives of the associated generator. The interested reader is referred to Table 1 for ρφ,2 for
classical Archimedean generators.

Following result provides the sufficient admissibility condition in dimension k in Proposition 8 in
the simplified case when g = ψ and φ(t) = exp(−t).

Corollary 1 (Sufficient admissibility condition in dimension k from independence). Consider the
multivariate Archimatrix model for linear z in (11), satisfying Assumption 1. Assume conditions
of Proposition 8 hold true. Furthermore, if gi = ψ for all i ∈ I and φ(t) = exp(−t), a sufficient
admissibility condition is that ∑

i,j∈{1,...,k}, i<j

σij ≤ 1.

The proof of Corollary 1 is postponed to the Appendix. Remark that the simplified admissibility
condition in Corollary 1 does only depend on σij parameters.
As we will provide in Example 1 in next section, when φ is the independence generator, and
when g = h = ψ, we have seen that each bivariate projection is a distinct Gumbel-Barnett
copula with one parameter per projection. However if one respects this sufficient condition,
the sum of parameters is bounded. Thus, the higher the dimension, the more constraint is the
copula, with average parameter necessarily closer to zero. However, it does not exclude that one
σij , say σ12, can be close to one and the others being close to zero. In the latter case, Ui and Uj
with i, j ≥ 3, tend to be independent, whereas U1 and U2 still exhibit negative dependence (see
Example 4.10 in Nelsen [27]).
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In high dimension, this illustrates the fact that the copula Cφ,G,Σ may in some cases be relat-
ively close to the initial Archimedean copula Cφ, due to admissibility constraints relying on the
parameters. This is obviously one limitation of the resulting multivariate copula. Remark also
that sufficient conditions in Proposition 8 and Corollary 1 could restrict the possible range of the
dependence structure of Cφ,G,Σ. For instance in Example 1 the obtained bivariate Archimedean
Gumbel-Barnett copula projections exclude the positive dependency (see the negative Kendall’s
tau in Table 3).

4. Examples and links to known models

We give hereafter some examples exhibiting valid projections. Admissibility conditions for bivari-
ate projection or at higher order will be discussed for each example.

When Cφ,G,Σ is a copula, we now consider in its expression the quantity z(g(u)Σh(u)).

- If this quantity is always positive, then, as φ is decreasing, the copula Cφ,G,Σ ≺ Cφ (see
Section 2) and its level curves are nearer to the ones of the lower Fréchet-Hoeffding bound
(cf. Figure 2.2 in Nelsen [27]). The positive dependence is, in this concordance ordering
sense, reduced (this is the case for further Examples 1 and 2).

- This quantity may not be always positive or negative, as shown in Example 3. In this
case the dependence with respect to the initial Archimedean copula Cφ is increased for
some projections and decreased for others.

Example 1 (A model with linear z function). Let z(x) = 1
2 x and gi(x) = hi(x) = ψ(x), i ∈ I,

x ∈ R+. The model in Definition 2 becomes

Cφ,G,Σ(u) = φ

(
1tψ(u) +

1

2
ψ(u)tΣψ(u)

)
,(14)

Let ρφ = inf{
∣∣∣φ′′(x)
φ′(x)

∣∣∣ , x ∈ R+}. By Proposition 5, any bivariate projection is valid if σij ∈ [0, ρφ].

In the particular case where φ(x) = exp(−x), then ρφ = 1, the sufficient validity condition becomes
σij ∈ [0, 1]. One easily shows that each bivariate projection corresponds here to an Archimedean
Gumbel-Barnett copula of parameter σij, where

P [Ui ≤ ui, Uj ≤ uj ] = ui uj exp (−σij ln(ui) ln(uj)) , σij ∈ [0, 1].

This range provided by Corollary 1 corresponds with the parameter range of the Archimedean
Gumbel-Barnett (see Copula 4.2.9 in Nelsen [27]). Each projection has its own parameter σij,
which allows bivariate projections (Ui, Uj) to have different distributions, for i, j ∈ I. In a general
dimension k > 2, Proposition 8 gives conditions on parameters σij ensuring that Cφ,G,Σ is a valid
multivariate copula in dimension k. As an example, if φ is the independence generator, a simple
sufficient condition is given by Corollary 1.

In Section 5, we will generate a 3-dimensional Archimatrix copula as in Equation (14) with
φ(x) = exp(−x) (see Figure 1, left). Remark that in this case condition in (13) in Proposition 8
becomes: σ1 2 + σ1 3 + σ2 3 ≤ 1, since ν = 0, γij(u) = σij, k = 3 and ρφ,3 = 1 (see Corollary 1).
This example is one of the most simple that gives tractable admissibility conditions for both valid
bivariate projections and valid multivariate copulas.
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Example 2 (A model with power-type z function). Let z(x) = α
2 x

α, for α ∈ (0, 1], and gi(x) =

hi(x) = (ψ(x))1/α, for i ∈ I, x ∈ R+. The model in Definition 2 becomes

Cφ,Σ;α(u) = φ
(

1tψ(u) +
α

2

(
ψ1/α(u)tΣψ1/α(u)

)α )
.(15)

Model in (15) generalizes Example 1, which corresponds to the case α = 1. One can show that any

bivariate projection is valid if σij ∈ [0, ρφ
1/α], with ρφ = inf{

∣∣∣φ′′(x)
φ′(x)

∣∣∣ , x ∈ R+}. In the bivariate

case with φ(x) = exp(−x), model in (15) becomes:

Cφ,Σ;α(ui, uj) = ui uj exp

(
−α (2σij)

α

2
ln(ui) ln(uj)

)
(16)

This is an Archimedean Gumbel-Barnett copula of parameter σ̃ij :=
α (2σij)

α

2 . Then, the bivariate
projections are the same of Example 1 with modified dependence parameter. Conversely, in higher
dimension, copulas in Equation (15) are different from copulas in Example 1.

Example 3 (A model with logarithmic z function). Let z(x) = − ln(1 + x
2 ) and gi(x) = hi(x) =

1− x, for i ∈ I, x ∈ R+. The model in Definition 2 becomes

Cφ,G,Σ(u) = φ

(
1tψ(u)− ln

(
1 +

1

2
(1− u)tΣ(1− u)

) )
.(17)

In the particular case φ(x) = exp(−x), one easily shows that each bivariate projection corresponds
to a Farlie–Gumbel–Morgenstern (FGM) copula of parameter σij, where

P [Ui ≤ ui, Uj ≤ uj ] = uiuj (1 + σij(1− ui)(1− uj)) , for σij ∈ [−1, 1].

Typically, this is an example where the simplified sufficient condition given in Proposition 5 does
not suffice to determine the parameter range, which can be obtained from the positivity expression
of the density (see Equation (9)). In Figure 1, the bivariate projections of the data are depicted.
We take σ1 2 = −0.99, σ1 3 = 0.99 and σ2 3 = 0.2. These parameters are chosen in such a way
that σij < 1 for all i, j, in order to guarantee that each bivariate projection corresponds to a FGM
copula with parameter σij. Furthermore, we have checked that the corresponding function Cφ,G,Σ
was a valid trivariate copula in this case since the general admissibility condition in Equation (9)
is satisfied.

In Table 2 we summarize the obtained results for the models detailed in Examples 1-3.

Example Model gi(x) z(x) σ, case d = 2 if φ(x) = exp(−x)

1 Linear-type z function ψ(x) 1
2 x [0, ρφ] [0, 1] (Barnett-

Gumbel)

2 Power-type z function ψ(x)1/α α
2 x

α [0, ρφ
1/α] [0, 1]

3 Logarithmic z function 1− x − ln(1 +
x
2 )

- [−1, 1] (FGM)

Table 2. Examples 1-3 of Archimatrix copula models for different choices
of gi and z functions. Furthermore in the bivariate setting, the range for σ
parameter is provided both in the general case and when φ(x) = exp(−x).
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5. Further properties and numerical illustrations

In this section we gathered some properties of the proposed Archimatrix copulas in Equation (7).
A general stochastic representation would allow a fast sampling procedure for the proposed cop-
ulas Cφ,G,Σ. Unfortunately, we did not find such a representation in the general case. However,
as derivatives of a quadratic form are easy to obtain, it is possible to use the following remark
for sampling.

Remark 2 (Sampling Archimatrix copulas). A sample of a random vector U = (U1, . . . , Ud)
having distribution Cφ,G,Σ can be obtained by a standard construction, using Algorithm 2.1. in
Embrechts et al. [11]. Let Ck(uk|u1, . . . , uk−1) = P [Uk ≤ uk|U1 = u1, . . . , Uk = uk], one have

Ck(uk|u1, . . . , uk−1) =
∂

∂u1 . . . ∂uk−1
Cφ,G,Σ(u1, . . . , uk, 1, . . . , 1)

/ ∂

∂u1 . . . ∂uk−1
Cφ,G,Σ(u1, . . . , uk−1, 1, . . . , 1).

The algorithm is: simulate u1 from U[0,1], simulate u2 from C2(·|u1), ..., simulate ud from

Cd(·|u1, . . . , ud−1). As an example, setting Q(u) = g(u)tΣh(u), general trivariate copulas can
be sampled from derivatives

∂

∂u1
Cφ,G,Σ(u) = φ′(ψ ◦ Cφ,G,Σ(u))

(
ψ′(u1) + z′(Q(u))

∂

∂u1
Q(u)

)
;

∂2

∂u1∂u2
Cφ,G,Σ(u) = φ′′(ψ ◦ Cφ,G,Σ(u))

(
ψ′(u1) + z′(Q(u))

∂

∂u1
Q(u)

)(
ψ′(u2) + z′(Q(u))

∂

∂u2
Q(u)

)
+φ′(ψ ◦ Cφ,G,Σ(u))

(
z′′(Q(u))

∂

∂u1
Q(u)

∂

∂u2
Q(u) + z′(Q(u))

∂2

∂u1∂u2
Q(u)

)
.

For linear expressions of z, all derivatives of Cφ,G,Σ are given in Proposition 6.

Using Remark 2, in Figure 1 (left) we provide a scatterplot of data from the distorted 3-
dimensional copula Cφ,G,Σ presented in Example 1. We take σ1 2 = 0.001, σ1 3 = 0.32 and
σ2 3 = 0.65. We know that each bivariate projection corresponds here to an Archimedean Gumbel-
Barnett copula of parameter σij . Indeed in Figure 1 we can observe the anti-comonotonic behavior
of the sampling data. Furthermore, we give estimates of the the Kendall’s τ for different para-
meters σ and we compare them with the theoretical ones in the case of bivariate Gumbel-Barnett
copula. Results are gathered in Table 3 (first column). In Figure 1 (right) we provide a scatter-
plot of data from the distorted 3-dimensional copula Cφ,G,Σ in Example 3. We take σ1 2 = −0.99,
σ1 3 = 0.99 and σ2 3 = 0.2. Also in this case the comparison between theoretical and estimated
pair-wise Kendall’s τ is provided (see Table 3, second column).
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Bivariate Gumbel-Barnett Copula Bivariate FGM Copula

τ0.001 = −0.00049 τ−0.99 = −0.220
τ̂0.001 = −0.00043 τ̂−0.99 = −0.229
τ0.32 = −0.14011 τ0.99 = 0.220
τ̂0.32 = −0.14511 τ̂0.99 = 0.215
τ0.65 = −0.25671 τ0.2 = 0.0444
τ̂0.65 = −0.24789 τ̂0.2 = 0.0441

Table 3. Theoretical and estimated pair-wise Kendall’s τ for bivariate
Gumbel-Barnett copula (first column) and bivariate FGM copula (second
column) for different choices of parameters σi j.
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Figure 1. Left: Sample of size n = 1000 from the 3-dimensional copula
Cφ,G,Σ as in Equation (14) with z(x) = 1

2
x, φ(x) = exp(−x) and gi(x) =

ψ(x), i ∈ {1, 2, 3}, x ∈ R+. We take σ1 2 = 0.001, σ1 3 = 0.32 and σ2 3 = 0.65
(see Example 1). Right: Sample of size n = 1000 from the 3-dimensional
copula Cφ,G,Σ as in Equation (17) with z(x) = − ln(1 + x

2
), φ(x) = exp(−x)

and gi(x) = 1−x, i ∈ {1, 2, 3} for x ∈ R+. We take σ1 2 = −0.99, σ1 3 = 0.99
and σ2 3 = 0.2 (see Example 3).

Now, we detail some further properties for the proposed copula Cφ,G,Σ.

Property 1 (Impact of Archimedean transformations). Let T : [0, 1] → [0, 1] be an increasing
bijection, and denote a transformed copula by

C̃(u1, . . . , ud) = T ◦ C
(
T−1(u1), . . . , T−1(ud)

)
.(18)

For furthers details on transformed copulas as in (18) the interested reader is referred for ex-
ample to Durrleman et al. [10], Valdez and Xiao [32], Klement et al. [19], Di Bernardino and
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Rullière [8], Morillas [26]. It is easily seen that if C is an Archimedean copula with generator φ,

then when C̃ is a copula, C̃ is still Archimedean with transformed generator φ̃ = T ◦ φ. Now
consider an Archimatrix copula Cφ,G,Σ as in Equation (7) and the transformed associated one,

i.e., C̃φ,G,Σ(u) = T ◦ Cφ,G,Σ(T−1(u)), where T−1(u) = (T−1(u1), . . . , T−1(ud)). Consider the

multivariate functions g̃(u) = g(T−1(u)) and h̃(u) = h(T−1(u)). Then

C̃φ,G,Σ(u) = C
φ̃,G̃,Σ

(u),

where φ̃ = T ◦ φ and G̃ = (g̃, h̃, z).
The proof of Property 1 is postponed to the Appendix. What is noticeable here is that in the
Archimedean case, T is preserving the Archimedean structure, and thus the symmetry. For
Archimatrix copulas, the asymmetry depends in this case on the matrix Σ, which is the same in
Cφ,G,Σ or in C

φ̃,G̃,Σ
. In a sense, Σ impacts essentially the symmetry of the copula, whereas the

transformation T impacts the position of its level curves (see, e.g., Di Bernardino and Rullière
[7]).

Property 2 (Level curves). Consider an Archimatrix copula Cφ,G,Σ as in Equation (7) and
assume that g = h = ψ. Define the level-set ∂LCφ,G,Σ(α), for α ∈ (0, 1), as

∂LCφ,G,Σ(α) = {u ∈ [0, 1]d : Cφ,G,Σ(u) = α}.
One can easily check that

∂LCφ,G,Σ(α) = {u ∈ [0, 1]d : u = φ(x), x ∈ S(ψ(α))} ,

where the solution set S(β) = {x ∈ Rd+ : 1tx + z(xtΣx) = β}. In the case where z is linear, this
solution set is easily obtained as a solution of a quadratic form, and explicit parametric forms of
the level set can be obtained. The proof of Property 2 is postponed to the Appendix.

Property 3 (Averaging of Archimatrix functions). Consider a finite set of indexes K, a sequence
of matrices Σk, and functions Cφ,G,Σk , k ∈ K as in Equation (7), which are not necessarily
copulas. Consider the case where all these functions depend on the same z(x) = c x for some
constant c ∈ R. Let {αk, k ∈ K} be a set of real coefficients such that

∑
k∈K αk = 1 and let

Σ =
∑

k∈K αk Σk, then

φ

(∑
k∈K

αk · ψ ◦ Cφ,G,Σk

)
= Cφ,G,Σ.

In particular, for independence generator φ(x) = exp(−x), we get∏
k∈K

Cαkφ,G,Σk = Cφ,G,Σ,

which in dimension d = 2 is the well known geometric mean property for corresponding Gumbel-
Barnett copulas (see Nelsen [27], Exercise 4.10). This follows directly from the linear properties
of the quadratic form in Equation (7). The proof of Property 3 is postponed to the Appendix.

Property 4 (Bivariate upper tail dependence coefficient). Consider Cφ,G,Σ ∈ F as in Equa-
tion (7), with given functions g, h, z, Σ satisfying assumptions in Definition 2. Assume that
[g(u)]i = gi(ui) and [h(u)]i = hi(ui), for all i ∈ I. Then, the associated bivariate projection is
given by

Cφ,G,Σij (ui, uj) = φ (ψ(ui) + ψ(uj) + z(σij gi(ui)hj(uj) + σji gj(uj)hi(ui))) .(19)
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Recall that the bivariate upper tail coefficient λU (see Sibuya [30]) associated to a copula C can
be written, when the limit exists, using the diagonal section δC(u) := C(u, u) (see, e.g., Nelsen
et al. [28], Nelsen [27]):

λU (C) = 2− lim
u→1−

d

du
δC(u).

If | z′(0) |< +∞, | g′i(1) |< +∞, | g′j(1) |< +∞, | h′i(1) |< +∞ and | h′j(1) |< +∞, then

λU (Cφ,G,Σij ) = λU (Cφ).

The proof of Property 4 is postponed to the Appendix. Using Property 4, we can construct an
Archimatrix copula with the same upper tail dependence structure of Cφ. This result hold true
for Examples 1, 2 and 3 discussed before.

Property 5 (Linear expression in σij). Due to the sub-model stability, estimation of each para-
meter σij can be done for each bivariate projection (Ui, Uj), by classical moment method, regres-
sion or by maximum likelihood estimation using given expressions of the copula density. As a
consequence of the choice of a quadratic form in the general model, using Equation (8) in the
case where g = h, one gets for each couple i, j ∈ I a linear expression in σij ,

σij · 2 gi(ui) gj(uj) = z−1 (ψ ◦ P [Ui ≤ ui, Uj ≤ uj ]− (ψ(ui) + ψ(uj))) .(20)

The proof of Property 5 is postponed to the Appendix. This expression can help finding estim-
ators of separate coefficients σij . Estimating each coefficient separately can be straightforward
since it relies only on one parameter at a time. However, it may result in a global non-admissible
copula, due to constraints like those in Corollary 1. The problem of constraint joint estimation of
parameters and resulting properties of estimators is not treated here, but constitute an interesting
perspective of this work.

For the separate estimation of each σij , P [Ui ≤ ui, Uj ≤ uj ] =
Cφ,G,Σ(1, . . . , 1, ui, 1, . . . , 1, uj , 1, . . . , 1) is the only unknown quantity in Equation (20).
The question is thus how to estimate a quantity z−1

(
ψ ◦ Cφ,G,Σ(u)−ψ(u)t1

)
when z(·) and

ψ(·) are given. An immediate estimator is the plug-in estimator where Cφ,G,Σ(u) is replaced by
the empirical copula Cn(u) (see, e.g., Deheuvels [6]).

Figure 2 illustrates the possible use of this linearity for estimating each parameter, and for
visualizing the dispersion relying on this estimation. We draw two types of set of points:

{αi j(u), β̂i j(u)} (see first and third panels in Figure 2), and {αi j(u), βi j(u)} (see second and

fourth panels in Figure 2), where β̂i j(u) = z−1 (ψ ◦ Cn(ui, uj)− (ψ(ui) + ψ(uj))), βi j(u) =
z−1 (ψ ◦ P [Ui ≤ ui, Uj ≤ uj ]− (ψ(ui) + ψ(uj))) and αi j(u) = 2gi(ui)gj(uj) (see Equation (20)).
Furthermore, in Figure 2 we present the theoretical regression line (blue line) and the estimated
one (red line). In the first and second panels of Figure 2 we choose the Gumbel-Barnett para-
meters setting, i.e., z(x) = 1

2 x, φ(x) = exp(−x), gi(x) = ψ(x) with in particular i = 1, j = 3 (see
Example 1). In the third and fourth panels the Farlie–Gumbel–Morgenstern parameters setting
is considered, i.e., z(x) = − ln(1 + x

2 ), gi(x) = 1 − x and φ(x) = exp(−x) with i = 1, j = 3 (see

Example 3). The empirical copula Cn in β̂i j(u) is estimated on the data-sets of size n = 1000
sampled before (see Property 2 and Figure 1).

17



0 5 10 15

−
10

−
5

0
5

10

Empirical Copula

 Gumbel−Barnett case

0 5 10 15

−
10

−
5

0
5

10

Theoretical Copula 

 Gumbel−Barnett case

0.0 0.5 1.0 1.5

−
10

−
5

0
5

10

Empirical Copula

 Farlie−Gumbel−Morgenstern case

0.0 0.5 1.0 1.5

−
10

−
5

0
5

10

Theoretical Copula

 Farlie−Gumbel−Morgenstern  case

Figure 2. Illustration for theoretical and estimated linear expression in

σ1 3 in Equation (20). We draw two types of set of points: {αi j(u), β̂i j(u)}
(see first and third panels from the left), and {αi j(u), βi j(u)} (see second
and fourth panels). First and second panels: Gumbel-Barnett case with
σ1 3 = 0.32. Third and fourth panels: Farlie–Gumbel–Morgenstern case with
σ1 3 = 0.99. We present the theoretical regression line (blue line) and the
estimated one (red line).

Conclusion

We have proposed a new general class of functions Cφ,G,Σ that permits to build bivariate or
multivariate asymmetric copulas. The approach is based on a distortion of Archimedean copulas,
involving a linear expression with a parameters matrix Σ. This new class extends the widely used
class of Archimedean copulas. The proposed extension is based on a simple linear expression.
It thus helps building properties on concordance ordering, on level lines representation or on
parameters estimation. One drawback is that, depending on the considered distortion functions,
the k-fold differentiation of the copula is sometimes difficult to simplify, and conditions on the
parameters matrix Σ are not always straightforward, especially in the multivariate case. We
focused more precisely on multivariate copulas presenting symmetric bivariate projections but
asymmetries among bivariate projections. We showed that in a simplified model (with linear
function z), simple conditions on Σ can be obtained in the multivariate case. Some examples show
new constructions of copulas, where the validity condition is easy to check in the bivariate case.
In the multivariate case, some examples are given with straightforward validity conditions, some
with conditions that are more difficult to check. Even in this last case, we give some illustrations of
valid asymmetric 3-variate copulas exhibiting symmetric bivariate (and Archimedean) projections.
Natural extensions of this work would be the determination of a stochastic representation of
the corresponding random variables, and developments on parameters estimation under validity
constraints. Another interesting future study could be the investigation of the link between the
proposed Archimatrix copulas and the Archimax ones (see Equation (5)).
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Appendix: Technical proofs

Proof of Proposition 1
Let Ω = {ω1, . . . , ωk} ⊂ I and UΩ = {(u1, . . . , ud) ∈ [0, 1]d : ui = 1, i ∈ I \ Ω}. Let u = (u1, . . . , ud) ∈
UΩ, and recall P [U ≤ u] = φ

(∑
i∈I ψ(ui) + z

(∑
i,j∈I [g(u)]iσij [h(u)]j

))
. Then, ψ(1) = 0 implies∑

i∈I ψ(ui) =
∑

i∈Ω ψ(ui), and Assumption i in Definition 2 implies
∑

i,j∈I [g(u)]iσij [h(u)]j =∑
i,j∈Ω[g(u)]iσij [h(u)]j . For u ∈ UΩ, P [U ≤ u] = P

[⋂
i∈Ω Ui ≤ ui

]
, and finally (Uω1 , . . . , Uωk) ∼

Cφ,G,ΣΩ
. Equation (8) is a direct application when [g(u)]i = gi(ui) and [h(u)]j = hj(uj). �

Proof of Proposition 2
The first item comes down directly from Assumptions i and ii in Definition 2. Furthermore, since
φ is a strict generator, then limui→0 ψ(ui) = +∞, and limui→0Cφ,G,Σ(u) = 0. �

Proof of Proposition 3
The proof of Proposition 3 comes down from differentiation of Cφ,G,Σ with respect to each para-
meter σij , for i, j ∈ I. �

Proof of Proposition 4
Consider Cφ,G,Σ ∈ F satisfying conditions in Definition 2 and assume Cφ,G,Σ be a proper copula.
Consider u = (u1, . . . , ud). From Equation (7), using σkk = 0, for all k ∈ I, any bivariate
projection writes

(21) P [Ui ≤ ui, Uj ≤ uj ] = φ (ψ(ui) + ψ(uj) + z (Qij(u))) ,

where Qij(u) = [g(u)]iσij [h(u)]j + [g(u)]jσji[h(u)]i. If condition (a) in Assumption 1 is sat-
isfied, g(·) and h(·) are identical vector-valued functions with components [g(u)]i = [h(u)]i =
gi(ui), u ∈ [0, 1]d, then P [Ui ≤ u, Uj ≤ v] = φ (ψ(u) + ψ(v) + z ((σij + σji)gi(u)gj(v))). Since
P [Uj ≤ u, Ui ≤ v] = P [Ui ≤ v, Uj ≤ u], the condition gi(u) = g(u) ensures that P [Ui ≤ v, Uj ≤ u] =

P [Ui ≤ u, Uj ≤ v], so that (Ui, Uj)
d
= (Uj , Ui). �

Proof of Proposition 5
Let u = (u1, . . . , ud) ∈ [0, 1]d, Ω = {i, j} ⊂ I, for i, j ∈ I, i 6= j and let uΩ be the vector with
components ui if i ∈ Ω, or 1 otherwise. Then, under Assumption 1, there exist functions gi and
hi, i ∈ I so that for any u ∈ [0, 1]d, g(u) = h(u) = (g1(u1), . . . , gd(ud)). In this setting, the model
in Definition 2 becomes:

Cφ,G,Σ(uΩ) = φ

ψ(ui) + ψ(uj) + z

∑
i,j∈I

σijgi(ui)gj(uj)

 .(22)

Since φ and z are 2-times differentiable and gi is differentiable for all i ∈ I, then first order
derivative of Cφ,G,Σ are, for i ∈ I,

∂

∂ui
Cφ,G,Σ(uΩ) = φ′(ψ ◦ Cφ,G,Σ(uΩ))

[
ψ′(ui) + z′ (2σijgi(ui)gj(uj)) 2σijgj(uj)g

′
i(ui)

]
,

19



and second order derivatives ∂2

∂ui∂uj
Cφ,G,Σ(uΩ), for i, j ∈ I, i 6= j, are

φ′′(ψ ◦ Cφ,G,Σ(uΩ))
[
ψ′(ui)ψ

′(uj) + 2σijz
′ (σijηij(u))

(
gj(uj)g

′
i(ui)ψ

′(uj) + g′j(uj)gi(ui)ψ
′(ui)

)]
+ φ′′(ψ ◦ Cφ,G,Σ(uΩ))

[
4σ2

ij(z
′(σijηij(u))2g′i(ui)gi(ui)g

′
j(uj)gj(uj)

]
+ φ′(ψ ◦ Cφ,G,Σ(uΩ))

[
2σijg

′
i(ui)g

′
j(uj)

[
2σijgi(ui)gj(uj)z

′′(σijηij(u)) + z′(σijηij(u))
]]
,

where ηij(u) = 2 gi(ui) gj(uj). One easily checks that the density expressed in previous equation
is positive when σij = 0, and corresponds to the one of the initial Archimedean copula bivariate
projections.
Let us denote in a synthetic way g′i = g′i(ui), g

′
j = g′j(uj), ψ

′
i = ψ′(ui), z

′ = z′(2σijgi(ui)gj(uj)),

z′′ = z′′(2σijgi(ui)gj(uj)), φ
′ = φ′(ψ ◦Cφ,G,Σ(uΩ)), φ′′ = φ′′(ψ ◦Cφ,G,Σ(uΩ)). The density can be

written

φ′′ψ′iψ
′
j + 2σijz

′ ·
[(
gjg
′
iψ
′
j + g′jgiψ

′
i

)
φ′′ + g′ig

′
jφ
′]+ 4σ2

ijg
′
igig

′
jgj
[
(z′)2 · φ′′ + z′′ · φ′

]
(23)

Under Assumption 1, gi is monotone with gi(1) = 0, so that necessarily gig
′
i ≤ 0 for any ui ∈ [0, 1].

From Assumption iii in Definition 2, gig
′
j ≤ 0 for all i, j ∈ I. Thus

(
gjg
′
iψ
′
j + g′jgiψ

′
i

)
φ′′ ≥ 0,

4σ2
ijg
′
igig

′
jgj ≥ 0 and by assumption (z′)2 · φ′′ + z′′ · φ′ ≥ 0. Then the density given by (23) is

lower bounded by

φ′′ψ′iψ
′
j + 2σijz

′ [0 + g′ig
′
jφ
′]+ 0

and we check that this latter quantity is greater than zero under chosen assumptions. �

Proof of Proposition 6
This follows directly from the multivariate version of Faà di Bruno’s formula for partial derivati-
ves, using the fact that derivatives of g(u)t Σ g(u) vanish for orders greater than 2 (see Equa-
tion (10)). �

Proof of Proposition 7
Follows directly from Proposition 6, using in the independence case φ(k) ◦ ψ ◦ Cφ,G,Σ(u) =

(−1)kCφ,G,Σ(u), factorizing the product of ψ′(ul) = − |ψ′(ul)|, and using here ψ′(u) = −1/u.
�

Proof of Proposition 8
Using previous notations, Gi(u) = ψ′(ui)γi(u) and Gij(u) = ψ′(ui)ψ

′(uj)γij(u). Let πν =
{i1, j1, . . . , iν , jν} be an (ordered) member of Πν(Ik), for ν ≥ 1. Denote

Sk0 (u) =
∏
l∈Ik

γl(u) and Skν (u) =
∑

πν∈Πν(Ik)

γi1j1(u) . . . γiνjν (u)
∏

l∈Ik\πν

γl(u)

so that Rkν(u) =
∏
l∈Ik ψ

′(ul)S
k
ν (u). Using φ(k−ν)(·) = (−1)k−ν

∣∣φ(k−ν)(·)
∣∣ from the d-monotony

of φ,

∂k

∂u1 . . . ∂uk
Cφ,G,Σ(u) =

∏
l∈Ik

(−ψ′(ul))
bk/2c∑
ν=0

(−1)ν
∣∣∣φ(k−ν) ◦ ψ ◦ Cφ,G,Σ(u)

∣∣∣× Skν (u).
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Since ρφ,k = infx∈R+
|φ(k)(x)|
|φ(k−1)(x)| , then ∂k

∂u1...∂uk
Cφ,G,Σ(u) is greater than

bk/2c∑
ν=0, ν even

∣∣∣φ(k−1−ν) ◦ ψ ◦ Cφ,G,Σ(u)
∣∣∣ [ρφ,k−ν Sν(u)− 1{ν+1≤bk/2c}Sν+1(u)

]
.

One can check that for any ρφ,k−ν > 0, since γiν+1(u)γjν+1(u) ≥ 1,

ρφ,k−νSν(u)− Sν+1(u) ≥
∑

πν∈Πν(Ik)

γi1j1(u) . . . γiνjν (u)·

·
∏

l∈Ik\πν

γl(u)

ρφ,k−ν − 1{ν+1≤bk/2c}
∑

{iν+1,jν+1}⊂Π1(Ik\πν)

γiν+1jν+1(u)

 ,
so that a sufficient condition is that for all k ∈ I, for all ν even such that ν + 1 ≤ bk/2c, for all
πν ∈ Πν(Ik), ∑

{iν+1,jν+1}⊂Π1(Ik\πν)

γiν+1jν+1(u) ≤ ρφ,k−ν .

Hence the result. �

Proof of Corollary 1
Remark that in the case of independent generator φ, ρφ,1..k = 1. Since, under Assumption of
Corollary 1, gi = ψ, for all i ∈ I, then γij(u) = σij , for all u. Hence the result. �

Proof of Property 1
Using transformation in Equation (18), we get

C̃φ,G,Σ(u) = T ◦ Cφ,G,Σ(T−1(u)) = T ◦ φ
(
ψ(T−1(u)) + z(g(T−1(u))t Σ h(T−1(u)))

)
,

where T−1(u) = (T−1(u1), . . . , T−1(ud)). Then C̃φ,G,Σ(u) = C
φ̃,G̃,Σ

(u), where φ̃ = T ◦ φ,

G̃ = (g̃, h̃, z) with g̃(u) = g(T−1(u)) and h̃(u) = h(T−1(u)). �

Proof of Property 2
By using the expression of Cφ,G,Σ in Equation (7), we get the level-set

∂LCφ,G,Σ(α) = {u ∈ [0, 1]d :
(
1tψ(u) + z

(
g(u)t Σ h(u)

))
= ψ(α)}

Since, by assumption, g = h = ψ,

∂LCφ,G,Σ(α) = {u ∈ [0, 1]d :
(
1tψ(u) + z

(
ψ(u)t Σψ(u)

))
= ψ(α)}.

Then finally we have

∂LCφ,G,Σ(α) = {u ∈ [0, 1]d : u = φ(x), x ∈ S(ψ(α))},
where S(β) = {x ∈ Rd+ : 1tx + z(xtΣx) = β}. �

Proof of Property 3
By using the expression of Cφ,G,Σ in Equation (7) and the fact that by assumption

∑
k∈K αk = 1,
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we get∑
k∈K

αk · ψ ◦ Cφ,G,Σk =
∑
k∈K

αk
(
1tψ(u) + z

(
g(u)t Σk h(u)

))
=

∑
k∈K

αk
(
1tψ(u) + c ·

(
g(u)t Σk h(u)

))
= 1tψ(u) + c

∑
k∈K

αk
(
g(u)t Σk h(u)

)
Since Σ =

∑
k∈K αk Σk, then φ

(∑
k∈K αk · ψ ◦ Cφ,G,Σk

)
= Cφ,G,Σ. Furthermore, if φ(x) =

exp(−x), then we get

exp

(
−
∑
k∈K

αk · ψ ◦ Cφ,G,Σk

)
=
∏
k∈K

exp(−αk · ψ ◦ Cφ,G,Σk) =
∏
k∈K

Cαkφ,G,Σk = Cφ,G,Σ.

Hence the desired result. �

Proof of Property 4
Let δφ,G,Σij (u) := Cφ,G,Σij (u, u) = φ (2ψ(u) + z(σij gi(u)hj(u) + σji gj(u)hi(u))) .
Then, we get

δ
′
φ,G,Σij

(u) = φ′ (2ψ(u) + z(σi j gi(u)hj(u) + σj igj(u)hi(u)))

·
[
2ψ′(u) + (σi j ξi j(u) + σj i ξj i(u)) z′(σi j gi(u)hj(u) + σj i gj(u)hi(u))

]
,

where ξij(u) = g′i(u)hj(u) + gi(u)h′j(u). From conditions in Definition 2 for all u ∈ [0, 1]d,

[g(u)]i = [h(u)]i = 0 as soon as ui = 1 and z(0) = 0. Furthermore ψ(1) = 0. Then, if
| z′(0) |< +∞, | g′i(1) |< +∞, | g′j(1) |< +∞, | h′i(1) |< +∞ and | h′j(1) |< +∞, we obtain the
desired result. �

Proof of Property 5

Since, by assumption, g = h, one gets for each couple i, j ∈ I
P [Ui ≤ ui, Uj ≤ uj ] = φ (ψ(ui) + ψ(uj) + z (2σij g(ui)hj(uj))) .

Then we get σij · 2 gi(ui) gj(uj) = z−1 (ψ ◦ P [Ui ≤ ui, Uj ≤ uj ]− (ψ(ui) + ψ(uj))) . �
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