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Abstract

Archimedean copulas are copulas determined by a specific real function, called the generator.
Composited with the copula at a given point, this generator can be expressed as a linear form of
generators of the considered point components. In this paper, we discuss the case where this function
is expressed as a quadratic form (called here multivariate Archimatrix copulas). This allows extending
Archimedean copulas, in order for example to build asymmetric copulas. Parameters of this new
class of copulas are grouped within a matrix, thus facilitating some usual applications as level curve
determination or estimation. Some choices as sub-model stability help associating each parameter to
one bivariate projection of the copula. We also give some admissibility conditions for the considered
Archimatrix copulas. We propose different examples as some natural multivariate extensions of Farlie-
Gumbel-Morgenstern, Gumbel-Barnett, or particular Archimax copulas.

Keywords: Archimedean copulas; transformations of Archimedean copulas.

Introduction

Copulas are multivariate distributions on [0, 1]d with uniform marginal distributions. Their main interest
is that by Sklar’s theorem, continuous multivariate distributions can be represented as functions of their
marginal distributions trough the use of a unique copula. A review on different copula functions is available
in Nelsen (1999).
A particular family of copula is the family of Archimedean copulas. Copulas of this family can be expressed
in the dimension d ∈ N∗ by

Cφ(u1, . . . , ud) = φ (ψ(u1) + . . .+ ψ(ud)) , (1)

where φ is a real function φ : R+ → [0, 1], called the generator of the copula, and where ψ is the generalized
inverse function of φ, ψ(u) = inf {x ∈ R+ : φ(x) ≤ u}, u ∈ [0, 1]. The generator φ is continuous, decreasing
and convex function, with lim

x→+∞
φ(x) = 0.

The Archimedean family of copula in (1) is very flexible, since members of this family are indexed by a
function φ rather than a finite set of parameters. However, a very important limitation is that Archimedean
copulas are symmetric: for any permutation of indexes p : {1, . . . , d} → {1, . . . , d},

Cφ(u1, . . . , ud) = Cφ(up(1), . . . , up(d)) , u1, . . . , ud ∈ [0, 1]d. (2)
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The symmetry of Archimedean copulas family is often considered to be a rather strong restriction, espe-
cially in large dimensional applications. It implies that all multivariate projections of the same dimension
are equal, thus, e.g., the dependence among all pairs of components is identical. To circumvent exchange-
ability, Archimedean copulas can be nested within each other under certain conditions. The resulting
copulas are referred to as nested Archimedean copulas and allow to model hierarchical dependence struc-
tures. In the last decade the nested Archimedean copulas have been studied from different points of view
(theoretically, computationally, in view of applications and so on). The interest reader is referred for
instance to Hofert (2008, 2010), Hofert and Mächler (2011), Mcneil (2008), Brechmann (2014).

Another strategy developed in the last decade to overcome symmetry of Archimedean copulas is to
build multivariate asymmetric dependence structures by generalizing some known families (Farlie-Gumbel-
Morgenstern, Extreme-Value copulas and so on). The idea is to generalize the analytical expression of
the considered known copula in order to break its symmetric behaviour. In the next paragraph we detail
this approach, since the results of the present paper can be seen as a contribution to the corresponding
literature.

Construction of multivariate asymmetric copulas by generalizing some known
families

Rodŕıguez-Lallena and Úbeda Flores (2004) have introduced a class of bivariate copulas C∗ which gener-
alizes some known families such as the Farlie Gumbel Morgenstern distributions of the form:

C∗(u, v) = u v + λ f(u) g(u), (3)

where f and g are two non-zero absolutely continuous functions such that f(0) = f(1) = g(0) = g(1) = 0
and the admissible range of the parameter λ can be obtained in terms of the derivatives of f and g.
Moreover, Dolati and Úbeda Flores (2006) provided procedures to construct parametric families of mul-
tivariate distributions which generalize copulas in (3).

Kim et al. (2011) generalized the method of Rodŕıguez-Lallena and Úbeda Flores (2004) in (3). They
define the distorted copula C∗ as

C∗(u, v) = C(u, v) + λ f(u) g(v),

where C is an arbitrary given copula C. The method of Kim et al. (2011) gives a sufficient condition for
the λ coefficient and it is in general rather difficult to be applied. To overcome this drawback, Mesiar and
Najjari (2014) introduced a new method of constructing binary copulas, extending the original study of
Rodŕıguez-Lallena and Úbeda Flores (2004) to new families of symmetric/asymmetric copulas.

Alfonsi and Brigo (2005) describe a new construction method for asymmetric copulas based on periodic
functions. Liebscher (2008) introduced two methods to construct asymmetric multivariate copulas. The
first is connected with products of copulas, i.e,

C∗(u1, . . . , ud) =

k∏
j=1

Cj(gj1(u1), . . . , gjd(ud)), for ui ∈ [0, 1],

where gji are suitable increasing functions and Cj are copulas. The second method proposes a generaliza-
tion of the Archimedean copulas family in (1). Remark that Archimedean copulas can be rewritten in the
form:

Cφ(u1, . . . , ud) = φ(ψ(u1)× . . .× ψ(ud)),
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using the multiplicative generator ψ(u) = exp(ψ(u)). Let us replace the product ψ(u1)× . . .×ψ(ud) before
by an average of products leading to

C∗φ(u1, . . . , ud) = Ψ

 1

m

m∑
j=1

hj1(ϕ(u1)) . . . hjd(ϕ(ud))

 , (4)

where ϕ = Ψ−1. Function in (4) represents a generalisation of Archimedean copulas being asymmetric
in general. Liebscher (2008) provides conditions on functions and Ψ and hjk such that function in (4)
is a proper a copula. Recently, Wu (2014) proposes a new method of constructing asymmetric copulas
and a convex-combination of asymmetric copulas that can exhibit different tail dependence along different
directions.

An interesting class of copulas presented in the recent literature is the extreme-value copulas family. This
class not only arise naturally in the domain of extreme events, but it can also be a convenient choice
to model data with positive dependence. An advantage with respect to the much more popular class of
Archimedean copulas, for instance, is that they are not symmetric. Incidentally, a hybrid class containing
both the Archimedean and the extreme-value copulas as a special case are the Archimax copulas (see
Capéraà et al. (2000) for the bivariate case, Charpentier et al. (2014) for the multivariate case).
Following Capéraà et al. (2000), a bivariate copula is said to be Archimax if it can be written, for all
u1, u2 ∈ (0, 1), in the form:

Cφ,A(u1, u2) = φ ◦
(
ψ(u1) + ψ(u2)A

{
ψ(u1)

ψ(u1) + ψ(u2)

})
,

using the Pickand function A : [0, 1]→ [0.5, 1] and the generator φ : R+ → [0, 1].
Mesiar and Jágr (2013) suggest that a suitable d−variate extension of the notion of bivariate Archimax
copula Cφ,A, would be obtained by setting, for all u1, . . . , ud ∈ [0, 1]d,

C∗(u1, . . . , ud)φ,L = φ ◦ L(ψ(u1), . . . , ψ(ud)),

where L is a the d−variate stable tail dependence function and φ the generator of a d−variate Archimedean
copula. Remark that, for d = 2, A(t) = L(t, 1 − t), for all t ∈ [0, 1], then Cφ,L(u1, u2) = Cφ,A(u1, u2).
Charpentier et al. (2014) proved that, if L is a d−variate stable tail dependence function and φ the gen-
erator of a d−variate Archimedean copula, then the function Cφ,L is a proper d−dimensional copula (see
Corollary 2.3 in Charpentier et al. (2014)).

The aim of the present paper is to construct multivariate families of asymmetric copulas starting from
an initial multivariate Archimedean copula Cφ(u1, . . . , ud) as in (1). This copula will be modified using a
distortion matrix Σ. Then, the proposed model will be called Archimatrix copula, in order to underline
the link with the Archimedean copula and the asymmetry role played by the matrix Σ.

Organization of the paper The paper is organized as follows. In Section 1 we present our model to
extend the Archimedean family of copula offering the possibility of asymmetric distributions. In Section 2
suitable theoretical characteristics for the considered model are presented. Then we consider in Section 3
sufficient admissibility conditions for the proposed Archimatrix model in some particular cases. Using
results of Section 3, we give some examples exhibiting multivariate distorted copulas or valid bivariate
projections (see Section 4). Finally in Section 5, some supplementary properties and a sampling procedure
with associated numerical illustrations are proposed.
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1 Considered model

We focus on Archimedean copulas family presented in Equation (1). From Theorem 2.2 in McNeil and
Nešlehová (2009), Cφ(u1, . . . , ud) = φ (ψ(u1) + . . .+ ψ(ud)) , is a d−dimensional copula if and only if its
generator φ is d−monotone on [0,∞), where the d−monotony definition is recalled hereafter.

Definition 1.1 (d-monotone function) A real function f is called d−monotone in (a, b), where a, b ∈ R
and d ≥ 2, if it is differentiable there up to the order d− 2 and the derivatives satisfy

(−1)kf (k)(x) ≥ 0, k = 0, 1, . . . , d− 2

for any x ∈ (a, b) and further if (−1)d−2f (d−2) is non-increasing and convex in (a, b). For d = 1, f is
called 1−monotone in (a, b) if it is nonnegative and non-increasing there.

If f has derivatives of all orders in (a, b) and if (−1)kf (k)(x) ≥ 0, for any x ∈ (a, b), then f is called
completely monotone.

In the following, we restrict ourselves to strict generators, where ∀x ∈ R+, φ(x) > 0. In this case, the
function ψ is the regular inverse of φ.

Consider a random vector U = (U1, . . . , Ud) in [0, 1]d with Archimedean distribution Cφ. Symmetric
property of Archimedean copulas in Equation (2) has consequences in particular for bivariate projections:
one have a symmetry within any couple of random variable (Ui, Uj), and a symmetry among different
couples of random variables (Ui, Uj) and (Ui′ , Uj′), i.e., for i, j, i′, j′ ∈ {1, . . . , d},

(Ui, Uj)
d
= (Uj , Ui) and (Ui, Uj)

d
= (Ui′ , Uj′) . (5)

where
d
= denotes the equality in distribution.

In the following we aim at extending the Archimedean family of copula, while offering the possibility of
asymmetric distributions. In order to take into account each interaction (Ui, Uj), we consider a model with
one parameter σij per couple (Ui, Uj). It is rather natural to group all these parameters within a matrix
Σ = (σij)i,j∈I , where from now on I = {1, . . . , d}. A requirement of our model is to be able to retrieve
any member of the Archimedean family of copula for specific values of Σ. It is also very natural to use
parameters of Σ with simple matrix products.

Definition 1.2 (Considered model) Let us denote the column vectors of length d, u = (u1, . . . , ud),
ψ(u) = (ψ(u1), . . . , ψ(ud)) and 1 = (1, . . . , 1). We define a function Cφ,Σ as

Cφ,Σ(u) = φ
(
1tψ(u) + z

(
g(u)t Σ h(u)

))
, (6)

where φ is a valid strict Archimedean generator with regular inverse function ψ, where g : [0, 1]d → Rd and
h : [0, 1]d → Rd are two vector-valued continuous functions, and z : R→ [0, 1] is a continuous real function.
For the sake of simplicity, functions z, g and h do not appear in the notation of the function Cφ,Σ.

As one can see from Equation (6), ψ ◦ Cφ,Σ(u) is the sum of two terms and it corresponds to an
Archimedean copula when the second term is zero. This last term uses the distortion matrix Σ with
simple matrix multiplications. Then if the second terms is not zero we can obtain different asymmetric
non-Archimedean copula structures. The model in Definition 1.2 will be called in the following Archimatrix
copula, in order to underline the link with the Archimedean copula (that is a particular case of Cφ,Σ) and
the central asymmetry role played by the matrix Σ. Indeed the distortion matrix Σ in Equation (6), with
functions g, h and z, permits to leave the symmetric structure typical of any Archimedean copula model.
Our model in Definition 1.2 is built in the same spirit as the recent literature about the construction of
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multivariate asymmetric copulas by generalizing some known families. Indeed different asymmetric models
for copula structures presented in the Introduction section can be related to our model. Some comparisons
in this sense will be presented in Section 4.

Furthermore, the second term in the right-hand side of Equation (6) depends on three functions g, h and
z, and further requirement are obviously necessary in order to ensure that the function Cφ,Σ is a copula.
We deliberately choose first a quite general form for the model, and will try to specify constraints on both
parameters and g, h and z functions. These constraints will derive from the validity of Cφ,Σ as a copula
function, but also on choices and desired features of the model discussed in the next section.

2 Suitable characteristics for the considered model

In this section we discuss requirements that are implied by desired features of the considered model in
Definition 1.2. In the following, in order to link requirements implied by chosen specificities of the model,
every chosen characteristic is given in a separate proposition. A further section is devoted to admissibility
conditions on the copula Cφ,Σ (see Section 3).

2.1 Concordance ordering for Archimatrix copulas Cφ,Σ

For two copulas C1 and C2, recall that one can say that C1 is smaller than C2 for the concordance ordering,
and we write C1 ≺ C2, if for all u ∈ [0, 1]d, C1(u) ≤ C2(u) (see, e.g., Definition 2.8.1 in Nelsen (1999)
in the bivariate setting; Joe (1990) in the general dimension d). Considering copulas indexed by a real
parameter θ, we recall that a family {Cθ} of copulas is positively ordered for all θ1 ≤ θ2, Cθ1 ≺ Cθ2 , and
negatively ordered if for all θ1 ≤ θ2, Cθ2 ≺ Cθ1 (see Nelsen (1999), Section 4.4 in dimension 2 and Dolati
and Úbeda Flores (2006) in the general dimension d). Most usual Archimedean copulas are (positively or
negatively) ordered, even if there exists Archimedean copulas neither negatively or positively ordered (see,
e.g, the bivariate copula 4.2.10 in Table 4.1 of Nelsen (1999)).

In the case where the function Cφ,Σ is a copula, a desirable feature is that, for any parameter σij , i, j ∈ I,
the copula is either positively or negatively ordered. This may ease, for example, the interpretation of the
parameters of the copula (i.e., of σij for i, j ∈ I). A simple sufficient condition for this is given below.

Proposition 2.1 (Parameters of Σ matrix and concordance ordering) Let Cφ,Σ be defined as in
Definition 1.2, and assume that Cφ,Σ is a valid copula. Assume that z is a monotone function, and that
all components of the matrix g(u)h(u)t have the same sign (i.e. either g(u)ih(u)j ≥ 0, i, j ∈ I, either
g(u)ih(u)j ≤ 0, i, j ∈ I). Then the copula is ordered with respect to each parameter σij, i, j ∈ I.

Proof : This follows from differentiation of Cφ,Σ with respect to every parameter σij , i, j ∈ I. �

2.2 Sub-model stability

Consider a model as in Equation (6), with given functions g, h, z, and assume that Cφ,Σ is a valid
copula. Let a random vector U = (U1, . . . , Ud) be distributed as Cφ,Σ. Among the suitable constraints
to impose to our model, we ask that the model remains valid for any subset of random variables among
{U1, . . . , Ud}. In particular, we say that the model is valid for each sub-model if for any non-empty subset
Ω = {ω1, . . . , ωk} ⊂ I,

(Uω1 , . . . , Uωk) ∼ Cφ,ΣΩ , (7)

where ΣΩ = (σij)i,j∈Ω is a submatrix of Σ. This requirement is a choice that is not compulsory for defining
a copula respecting (6), but that seems to us important in order to simplify the model and to interpret
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its parameters. Sub-model stability is not ensured by the initial model; it does not hold for example if
g(u) = h(u) = u. A sufficient condition for sub-model stability is given in the proposition below.

Proposition 2.2 (Sub-model stability) Consider a model as in Equation (6), assume Cφ,Σ to be a
valid copula and let a random vector U be distributed as Cφ,Σ. A sufficient condition for the propriety of
sub-model stability in (7) is that for all u ∈ [0, 1]d, for any ith component, i ∈ I

[g(u)]i = [h(u)]i = 0 as soon as ui = 1. (8)

In particular, assume that there exist functions gi and hi, i ∈ I so that for any u ∈ [0, 1]d, g(u) =
(g1(u1), . . . , gd(ud)), h(u) = (h1(u1), . . . , hd(ud)). Assume furthermore that gi(1) = hi(1) = 0 for all
i ∈ I. Then the model is valid on any projections on any non-empty subset of indexes Ω ⊂ I, with

P

[⋂
i∈Ω

Ui ≤ ui

]
= φ

∑
i∈Ω

ψ(ui) + z

∑
i,j∈Ω

gi(ui)σijhj(uj)

 . (9)

Proof : Let Ω ⊂ I and UΩ =
{

(u1, . . . , ud) ∈ [0, 1]d : ui = 1, i /∈ Ω
}

. Starting from U ∼ Cφ,Σ for any
u ∈ UΩ, and using ψ(1) = 0, a sufficient condition for sub-model stability is that ∀Ω ⊂ I, ∀u ∈ UΩ,
components [g(u)]i = [h(u)]i = 0 as soon as i ∈ I \ Ω. Other sufficient conditions follows immediately. �

Despite the reduction of the variety of possible models, the sub-model stability is interesting since it per-
mits to understand any coefficient σij in the matrix Σ by considering only the corresponding bivariate
distribution (Ui, Uj). Under this assumption, the interpretation of these coefficients is thus more straight-
forward. Notice that the sub-model stability naturally holds for Archimedean copulas when the function
z satisfies: z(·) = 0.

2.3 Boundary conditions

A condition is required when the function Cφ,Σ has to be a copula: the uniform distribution of univariate
projections of Cφ,Σ (see Proposition 2.3), and more generally boundary conditions on Cφ,Σ (see Proposi-
tion 2.4).

Under the assumption of sub-model stability (see Proposition 2.2 before), it follows directly from Equa-
tion (9) that any Ui has a uniform distribution if and only if for any ui ∈ [0, 1], z (gi(ui)σiihi(ui)) = 0,
i ∈ I. A sufficient condition to achieve this compulsory requirement is the following.

Proposition 2.3 (Uniform margins) Assume that z(0) = 0 and that σii = 0 for all i ∈ I. Then all
margins Ui follow a uniform distribution on [0, 1], i.e.,

Ui ∼ U[0,1] , for i ∈ I. (10)

Other sufficient conditions such as setting z(x) = 0 for all x, or g(u) = h(u) = 0 for all u could be used,
but would imply a simple Archimedean model for Cφ,Σ.

In order to construct a multidimensional copula Cφ,Σ, we provide in Proposition 2.4 two important re-
quirements. Firstly, from assumptions in Proposition 2.2 and 2.3, Cφ,Σ(1, . . . , 1, u, 1, . . . , 1) = u, u ∈ [0, 1],
and in particular Cφ,Σ(1, . . . , 1) = 1. Secondly, for all u ∈ [0, 1]d, Cφ,Σ(u1, . . . , ui−1, 0, ui+1, . . . , ud) = 0,
i.e., the copula must be zero if one of its arguments is zero.
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Proposition 2.4 (Boundary conditions) Assume that Cφ,Σ is defined as in Definition 1.2. Assume
that assumptions in Proposition 2.2 and 2.3 are fulfilled. Assume that φ is a valid Archimedean generator
and that there exists mz ∈ R such that for any x ∈ R+, z(x) > mz. If φ is strict, or if mz = 0, then

Cφ,Σ(1, . . . , 1, u, 1, . . . , 1) = u, u ∈ [0, 1], (11)

Cφ,Σ(u1, . . . , ui−1, 0, ui+1, . . . , ud) = 0, u ∈ [0, 1]d (12)

Proof: The first part comes down directly from Proposition 2.2 and 2.3. If z has a lower bound, this
ensures that when ui tends to zero, Cφ,Σ ≤ φ(

∑
j∈I ψ(uj) +mz). If φ is strict, then limui→0 ψ(ui) = +∞,

and limui→0 Cφ,Σ(u) = 0. If φ is non strict and if mz = 0, Cφ,Σ ≤ φ(
∑
j∈I ψ(uj)) which ensures the

equality. �

2.4 Resulting chosen assumptions

We summary here the sufficient assumptions that are introduced before to fulfil concordance ordering,
sub-model stability and boundary conditions. We only consider in the following of this paper functions
Cφ,Σ that satisfy at least Assumption 1.

Assumption 1 (Basic required assumptions) Consider a function Cφ,Σ as in Definition 1.2. Basic
sufficient assumptions ensuring concordance ordering, sub-model stability and boundary conditions are

(a) φ is a strict d-monotone Archimedean generator (see Definition 1.1),

(b) g(·) and h(·) have monotone components, such that [g(u)]i(u) = [h(u)]i(u) = 0 if ui = 1, i ∈ I,

(c) all components of the matrix g(u)h(u)t have the same sign, for any u ∈ [0, 1]d,

(d) z is a monotone function such that z(0) = 0,

(e) σii = 0, for i ∈ I.

In the following, we often use a supplementary set of assumptions that simplify the expression of the copula
and its derivatives.

Assumption 2 (More restrictive assumptions) Consider a function Cφ,Σ as in Definition 1.2. More
restrictive assumptions are

(f) Cφ,Σ satisfies Assumption 1,

(g) g(·) and h(·) are identical vector-valued functions with components [g(u)]i(u) = [h(u)]i(u) = g(ui),
u ∈ [0, 1]d, where g is a monotone real function on [0, 1], such that g(1) = 0.

(h) σij = σji, for i ∈ I, j ∈ J .

Notice that Conditions (b) and (c) on g(·) and h(·) in Assumption 1 is automatically ensured by more
restrictive Condition (g) in Assumption 2.

3 Admissibility conditions

We now discuss admissibility conditions of chosen Archimatrix copulas presented in Sections 1 and 2.
We give here a general necessary and sufficient condition ensuring that a function Cφ,Σ in Definition 1.2
is a copula. However, this condition require in practice checking the value of derivatives of possibly large
orders on the whole support of the copula, which can be hard to provide. For this raison, the rest of
this section will be devoted to the research of simpler sufficient conditions to guarantee admissibility of
copula Cφ,Σ.
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Proposition 3.1 (General admissibility condition) Consider a function Cφ,Σ as in Definition 1.2,
satisfying Assumption 1. Assume that Cφ,Σ is d-times differentiable with respect to successive variables
u1, . . . , ud, then Cφ,Σ is a copula if and only if

∂d

∂u1 . . . ∂ud
Cφ,Σ(u) ≥ 0, ∀u ∈ [0, 1]d. (13)

Proof: The density of order d of the function Cφ,Σ exists by assumption, then its positivity is a necessary
condition in order to get a multivariate distribution function. Now if the derivative is positive, then by
integration this ensures that the obtained copula is d−increasing. Furthermore, the function Cφ,Σ satisfies
Assumption 1 and thus boundary conditions: the function is zero if one of the arguments is zero, and the
function is equal to u if one argument is u and all others 1, u ∈ [0, 1]. Then the condition is sufficient:
under chosen assumption, it ensures that Cφ,Σ is a proper d−dimensional copula. �.

3.1 Valid bivariate projections

Bivariate projections are usually easier to represent and to understand than multivariate ones. Further-
more, in the dimension d = 2, Equation (6) in Definition 1.2 can be seen as a distortion leading to new
bivariate families of copulas, which has an interest in this reduced dimension. Bivariate projections are
thus treated in this section separately.

The proposed shape of the copula Cφ,Σ aims at modelling different interactions between random variables
Ui and Uj , when i and j vary in I. However, it could be desirable to have a symmetry within each
bivariate projection, so that (Ui, Uj) and (Uj , Ui) may have identical distributions. A sufficient condition
for symmetric bivariate projections is given in Proposition 3.2 below.

Proposition 3.2 (Symmetric bivariate projections) Let Cφ,Σ as in Definition 1.2 be a proper cop-
ula, satisfying Assumption 2. Then for all i, j ∈ I,

σij = σji ⇒ (Ui, Uj)
d
= (Uj , Ui). (14)

Remark that, when the matrix Σ is symmetric, any bivariate projection is symmetric, however one can
still have different distributions for (Ui, Uj) and (Ui′ , Uj′), for i, j, i′, j′ ∈ I.

Now one important point is being able to guarantee the positivity of the density in the dimension 2, so
that each bivariate projection is a copula. Let u = (u1, . . . , ud) ∈ [0, 1]d, Ω = {i, j} ⊂ I, for i, j ∈ I, i 6= j
and let uΩ be the vector with components ui if i ∈ Ω, or 1 otherwise. Assume that the model satisfies
requirements in Propositions 2.2, 2.3 and 3.2, then

Cφ,Σ(uΩ) = φ
(
ψ(ui) + ψ(uj) + z

(
g(u)t Σ h(u)

) )
. (15)

As in Proposition 2.2, assume that there exist functions gi and hi, i ∈ I so that for any u ∈ [0, 1]d,
g(u) = (g1(u1), . . . , gd(ud)), h(u) = (h1(u1), . . . , hd(ud)). Assume that φ and z are 2-times differentiable
and that g is differentiable, then first order derivative of Cφ,Σ are, for i ∈ I,

∂

∂ui
Cφ,Σ(uΩ) = φ′(ψ ◦ Cφ,Σ(uΩ)) [ψ′(ui) + z′ (2σijgi(ui)gj(uj)) 2σijgj(uj)g

′
i(ui)] , (16)

and second order derivatives ∂2

∂ui∂uj
Cφ,Σ(uΩ), for i, j ∈ I, i 6= j, are
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φ′′(ψ ◦ Cφ,Σ(uΩ))
[
ψ′(ui)ψ

′(uj) + 2σijz
′ (σijηij(u))

(
gj(uj)g

′
i(ui)ψ

′(uj) + g′j(uj)gi(ui)ψ
′(ui)

)]
+ φ′′(ψ ◦ Cφ,Σ(uΩ))

[
4σ2

ij(z
′(σijηij(u))2g′i(ui)gi(ui)g

′
j(uj)gj(uj)

]
+ φ′(ψ ◦ Cφ,Σ(uΩ))

[
2σijg

′
i(ui)g

′
j(uj) [2σijgi(ui)gj(uj)z

′′(σijηij(u)) + z′(σijηij(u))]
]
, (17)

where ηij(u) = 2 gi(ui) gj(uj).
One easily checks that the density expressed in Equation 17 is positive when σij = 0, and corresponds to
the one of the initial Archimedean copula bivariate projections. However, it is not easy to find minimal
and maximal values of σij in the general case: σij appears into z′(·) and in an hidden way in ψ ◦Cφ,Σ(uΩ).
When Cφ,Σ satisfies Assumption 1, a necessary and sufficient condition for bivariate projection admiss-
ibility is simply given by the positivity of the density in Equation (17) (see Proposition 3.1). However,
in some cases, a minoration of this density leads to sufficient conditions that are more straightforward to
check. Following result gives an example of such a sufficient condition, which is easy to check when g′ is
linked with ψ′.

Proposition 3.3 (Simplified bivariate admissibility sufficient condition) Consider a function
Cφ,Σ as in Definition 1.2, satisfying Assumption 2 with φ being 2−times differentiable and g differentiable.

Assume that the generator φ is such that ρφ := inf
{∣∣∣φ′′(x)

φ′(x)

∣∣∣ , x ∈ R+
}
> 0. Assume that for all x ∈ R+,

(z′(x))2ρφ − z′′(x) ≥ 0 and that z′(x) > 0. If for all u ∈ [0, 1]d,

0 ≤ σij ≤
1

2

1

z′(2σijgi(ui)gj(uj))

ψ′(ui)ψ
′(uj)

g′i(ui)g
′
j(uj)

ρφ , (18)

then any bivariate projection in (15) of Cφ,Σ is a copula.

Proof : Let us denote in a synthetic way g′i = g′i(ui), g
′
j = g′j(uj), ψ

′
i = ψ′(ui), z

′ = z′(2σijgi(ui)gj(uj)),
z′′ = z′′(2σijgi(ui)gj(uj)), φ

′ = φ′(ψ ◦ Cφ,Σ(uΩ)), φ′′ = φ′′(ψ ◦ Cφ,Σ(uΩ)). The density can be written

φ′′ψ′iψ
′
j + 2σijz

′ ·
[(
gjg
′
iψ
′
j + g′jgiψ

′
i

)
φ′′ + g′ig

′
jφ
′]+ 4σ2

ijg
′
igig

′
jgj
[
(z′)2 · φ′′ + z′′ · φ′

]
which under chosen assumption is greater that

φ′′ψ′iψ
′
j + 2σijz

′ [0 + g′ig
′
jφ
′]+ 0

and we check that this latter quantity is greater than zero under chosen assumptions. �

3.2 Valid multivariate Archimatrix copula for linear function z

Proposition 3.3 gives a bivariate admissibility sufficient condition. However, it is more challenging to prove
the positivity of the density of Cφ,Σ in any given dimension d. To this aim, the choice of a linear or affine
function z can help since it leads to vanishing derivatives of z (g(u)tΣ h(u)) when orders are greater than
two. Indeed, for distinct i, j, k ∈ I, and when g(u) = (g1(u1), . . . , gd(ud)), h(u) = (h1(u1), . . . , hd(ud)),

∂3

∂ui∂uj∂uk
z
(
g(u)tΣ h(u)

)
= 0. (19)

In the following, we thus give expressions of the density of the copula and admissibility conditions in the
simplified model where g(u) = (g1(u1), . . . , gd(ud)), z(x) = x/2 and

Cφ,Σ(u) = φ

(
1tψ(u) +

1

2
g(u)tΣ g(u)

)
. (20)

In this case we get the following expression for the density.
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Proposition 3.4 (Density in the simplified model) Consider a function Cφ,Σ as in Definition 1.2,
satisfying Assumption 2. Furthermore consider the simplified multivariate Archimatrix model with linear
function z as in (20), where g(u) = (g1(u1), . . . , gd(ud)) with g differentiable. Let k ∈ I and assume that
φ is a k-times differentiable generator. Let bxc the integer part of x. Then we have

∂k

∂u1 . . . ∂uk
Cφ,Σ(u) =

bk/2c∑
ν=0

φ(k−ν) ◦ ψ ◦ Cφ,Σ(u) ·Rν,k(u), (21)

with{
R0,k(u) =

∏k
l=1Gl(u)

Rν,k(u) =
∑
{i1,j1,...,iν ,jν}⊂{1,...,k}Gi1j1 ...Giνjν

∏
l∈{1,...,k}\{i1,j1,...,iν ,jν}Gl(u) , for ν ≥ 1,

(22)

where Gi(u) = ψ′(ui) + g′(ui)
∑d
r=1 σirg(ur), Gij(u) = g′(ui)σijg

′(uj), i, j ∈ I, j 6= i and where the sum
over {i1, j1, . . . , iν , jν} ⊂ {1, . . . , k} refers to all possible distinct choices of ν couples in the set {1, . . . , k}
(i.e. with i1 < . . . < iν , with ir < jr for r = 1, . . . , ν, and with all values in {i1, j1, . . . , iν , jν} being
distinct).

Proof : This follows directly from the multivariate version of Faà di Bruno’s formula for partial derivatives,
using the fact that derivatives of g(u)tΣg(u) vanish for orders greater than 2 (see Equation (19)). �

As an example, denoting C
(k)
φ,Σ(u) := ∂k

∂u1...∂uk
Cφ,Σ(u), one gets for the first four orders

C
(1)
φ,Σ(u) = φ(1) ◦ ψ ◦ Cφ,Σ(u) ·G1(u),

C
(2)
φ,Σ(u) = φ(2) ◦ ψ ◦ Cφ,Σ(u) · (G1G2)(u) + φ(1) ◦ ψ ◦ Cφ,Σ(u) · (G12)(u),

C
(3)
φ,Σ(u) = φ(3) ◦ ψ ◦ Cφ,Σ(u) · (G1G2G3)(u) + φ(2) ◦ ψ ◦ Cφ,Σ(u) · (G12G3 +G13G2 +G23G1)(u),

C
(4)
φ,Σ(u) = φ(4) ◦ ψ ◦ Cφ,Σ(u) · (G1G2G3G4)(u)

+ φ(3) ◦ ψ ◦ Cφ,Σ(u) · (G12G3G4 +G13G2G4 +G14G2G3 +G23G1G4 +G24G1G3 +G34G1G2)(u)

+ φ(2) ◦ ψ ◦ Cφ,Σ(u) · (G12G34 +G13G24 +G14G23)(u),

In the case where φ(x) = exp(−x), one can check that φ(k)◦ψ◦Cφ,Σ(u) = (−1)kCφ,Σ(u) and the expression
can be simplified. Then, the following corollary illustrates the general result provided in Proposition 3.4
in the independence generator case.

Corollary 3.1 (Density starting from independence) In the same assumption setting as Proposi-
tion 3.4, when φ(x) = exp(−x), x ∈ R+ is the independence generator, then for all u ∈ (0, 1)d,

C
(k)
φ,Σ(u) = Cφ,Σ(u)

∏
l∈Ik

|ψ′(ul)|
bk/2c∑
ν=0

(−1)ν
∑

{i1,j1,...,iν ,jν}⊂Ik

γi1j1 ...γiνjν (u)
∏

l∈Ik\{i1,j1,...,iν ,jν}

γl(u) (23)

where Ik = {1, . . . , k}, γi(u) = Gi(u)/ψ′(ui), γij(u) = Gij(u)/(ψ′(ui)ψ
′(uj) and here ψ′(u) = −1/u.

Proof : Follows directly from Proposition 3.4, using in the independence case φ(k) ◦ ψ ◦ Cφ,Σ(u) =
(−1)kCφ,Σ(u), and factorizing the product of ψ′(ul) = − |ψ′(ul)|. �

Also in this case, necessary and sufficient admissibility conditions can be given by requiring the positivity
of the density in Equation (21). However, this kind of expression involving partial derivatives of order k
would be of few interest in practice. In following proposition, we give a simplified admissibility condition
involving more directly coefficients σij of the matrix Σ.
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Proposition 3.5 (Sufficient admissibility condition in dimension k) Consider the multivariate Ar-
chimatrix model for linear z in (20), satisfying Assumption 2. Assume that φ is k-times differentiable,

g differentiable and denote γij(u) =
g′(ui)g

′(uj)
ψ′(ui)ψ′(uj)

σij, i, j ∈ I. Let Ik = {1, . . . , k}, Πν(Ik) be the set of

all possible distinct choices of ν couples among Ik. Let ρφ,k = infx∈R+
|φ(k)(x)|
|φ(k−1)(x)| . Assume that all σij

are positive or zero. Then for k ∈ I a sufficient condition for the positivity of C
(k)
φ,Σ(u) is that for all

ν ≤ bk/2c − 1 even, for all πν ∈ Πν(Ik), for all u,∑
{i,j}⊂Π1(Ik\πν)

γij(u) ≤ ρφ,k−ν . (24)

Setting ρφ,1..k = infν∈{0,...,bk/2c−1} ρφ,k−ν , a simplified sufficient condition is that
∑
i,j∈Ik,i<j γij(u) ≤

ρφ,1..k. If φ is the independent generator, then ρφ,1..k = 1. In the case where g = ψ, γij(u) = σij and the
admissibility condition does only depend on these parameters.

Proof : Using previous notations, Gi(u) = ψ′(ui)γi(u) and Gij(u) = ψ′(ui)ψ
′(uj)γij(u). Let πν =

{i1, j1, . . . , iν , jν} be an (ordered) member of Πν(Ik), for ν ≥ 1. Denote

Sk0 (u) =
∏
l∈Ik

γl(u) and Skν (u) =
∑

πν∈Πν(Ik)

γi1j1(u) . . . γiνjν (u)
∏

l∈Ik\πν

γl(u) (25)

so that Rkν(u) =
∏
l∈Ik ψ

′(ul)S
k
ν (u). Using φ(k−ν)(·) = (−1)k−ν

∣∣φ(k−ν)(·)
∣∣ from the d-monotony of φ,

∂k

∂u1 . . . ∂uk
Cφ,Σ(u) =

∏
l∈Ik

(−ψ′(ul))
bk/2c∑
ν=0

(−1)ν
∣∣∣φ(k−ν) ◦ ψ ◦ Cφ,Σ(u)

∣∣∣× Skν (u). (26)

Since ρφ,k = infx∈R+
|φ(k)(x)|
|φ(k−1)(x)| , then ∂k

∂u1...∂uk
Cφ,Σ(u) is greater than

bk/2c∑
ν=0, ν even

∣∣∣φ(k−1−ν) ◦ ψ ◦ Cφ,Σ(u)
∣∣∣ [ρφ,k−ν Sν(u)− 1{ν+1≤bk/2c}Sν+1(u)

]
. (27)

One can check that for any ρφ,k−ν > 0, since γiν+1
(u)γjν+1

(u) ≥ 1,

ρφ,k−νSν(u)− Sν+1(u) ≥
∑

πν∈Πν(Ik)

γi1j1(u) . . . γiνjν (u)·

·
∏

l∈Ik\πν

γl(u)

ρφ,k−ν − 1{ν+1≤bk/2c}
∑

{iν+1,jν+1}⊂Π1(Ik\πν)

γiν+1jν+1
(u)

 ,
so that a sufficient condition is that for all k ∈ I, for all ν even such that ν+1 ≤ bk/2c, for all πν ∈ Πν(Ik),∑

{iν+1,jν+1}⊂Π1(Ik\πν)

γiν+1jν+1
(u) ≤ ρφ,k−ν . (28)

Hence the result. �
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As an illustration of Proposition 3.5, we write in the following the sufficient admissibility conditions
provided in Equation (24), for different value of the considered dimension k:

for k = 2, γ12 ≤ ρφ,2,
for k = 3, γ12 + γ13 + γ23 ≤ ρφ,3,
for k = 4, γ12 + γ13 + γ14 + γ23 + γ24 + γ34 ≤ ρφ,4,
for k = 5, γ12 + γ13 + γ14 + γ15 + γ23 + γ24 + γ25 + γ34 + γ35 + γ45 ≤ ρφ,5.

Remark that for k = 1, 2, 3, 4, 5, Equation (24) provides a single condition since ν = 0. Furthermore,
remark that in the Independent copula case ρφ,k = 1, for all k. Conversely, in the Clayton copula case
|φ(k)(x)|
|φ(k−1)(x)| = |(k−1) θ+1|

|θ x+1| . Then, for θ > 0, there is not possible to find a positive lower bound for this

quantity. For Joe, Ali-Mikhail-Haq and Frank copula families, at least numerically, it seems possible to
find positive constants to inferiorly bound the ratio of the derivatives of the associated generator.

Following result provides the sufficient admissibility condition in dimension k in Proposition 3.5 in the
simplified case when g = ψ and φ(t) = exp(−t).

Corollary 3.2 (Admissibility condition from independence) Consider the multivariate Archimatrix
model for linear z in (20), satisfying Assumption 2. Assume conditions of Proposition 3.5 hold true. Fur-
thermore, if g = ψ and φ(t) = exp(−t), a sufficient admissibility condition is that∑

{i,j}⊂Π1(Ik)

σij ≤ 1. (29)

When φ is the independence generator, and when g = h = ψ, we have seen that each bivariate projection is
a distinct Gumbel-Barnett copula with one parameter per projection. However if one respects this sufficient
condition, the sum of parameters is bounded. Thus, the higher the dimension, the more constraint is the
copula, with average parameter necessarily closer to zero. In high dimension, this illustrates the fact
that the copula Cφ,Σ may in some cases be relatively close to the initial Archimedean copula Cφ, due
to admissibility constraints relying on the parameters. This is obviously one limitation of the resulting
multivariate copula.

4 Examples and links with existing models

We give hereafter some examples exhibiting valid projections. One shall keep in mind that the related
functions Cφ,Σ are not necessarily copulas. Admissibility conditions for bivariate projection or at higher
order will be discussed for each example.
When Cφ,Σ is a copula, we now consider in its expression the quantity z(g(u)Σh(u)).

- If this quantity is always positive, then, as φ is decreasing, the copula Cφ,Σ ≺ Cφ (see Section 2) and
its level curves are nearer to the ones of the lower Fréchet-Hoeffding bound (cf. Figure 2.2 in Nelsen
(1999)). The positive dependence is, in this concordance ordering sense, reduced (this is the case for
further Examples 1 and 2).

- If it is always negative, then the positive dependence is increased (this will be the case for Example 4).

- This quantity may not be always positive or negative, as shown in Example 3. In this case the
dependence is increased for some projections and decreased for others.
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Example 1 (A model with linear z function) Let z(x) = 1
2 x and gi(x) = hi(x) = ψ(x), i ∈ I,

x ∈ R+. The model in Definition 1.2 becomes

Cφ,Σ(u) = φ

(
1tψ(u) +

1

2
ψ(u)tΣψ(u)

)
, (30)

Let ρφ = inf
{∣∣∣φ′′(x)

φ′(x)

∣∣∣ , x ∈ R+
}

. By Proposition 3.3, any bivariate projection is valid if

σij ∈ [0, ρφ] (31)

In the particular case where φ(x) = exp(−x) (i.e., the generator of the independence copula), then ρφ =
1, the sufficient validity condition becomes σij ∈ [0, 1]. On easily shows that each bivariate projection
corresponds here to an Archimedean Gumbel-Barnett copula of parameter σij, where

P [Ui ≤ ui, Uj ≤ uj ] = uv exp (−σij ln(ui) ln(uj)) , σij ∈ [0, 1]. (32)

Each projection has its own parameter σij, which allows bivariate projections (Ui, Uj) to have different
distributions, for i, j ∈ I. In Section 5, we will generate a 3-dimensional Archimatrix copula as in (30)
with φ(x) = exp(−x) (see Figure 1, left). Remark that in this case condition (24) in Proposition 3.5
becomes: σ1 2 + σ1 3 + σ2 3 ≤ 1, since ν = 0, γij(u) = σij, k = 3 and ρφ,3 = 1 (see Corollary 3.2.)

Example 2 (A model with power-type z function) Let z(x) = α
2 x

α, for α ∈ (0, 1], and gi(x) =

(ψ(x))1/α, for i ∈ I, x ∈ R+. The model in Definition 1.2 becomes

Cφ,Σ;α(u) = φ
(

1tψ(u) +
α

2

(
ψ1/α(u)tΣψ1/α(u)

)α )
. (33)

Model in (33) generalizes Example 1, which corresponds to the case α = 1. One can show that any bivariate
projection is valid if

σij ∈ [0, ρφ
1/α], (34)

with ρφ = inf
{∣∣∣φ′′(x)

φ′(x)

∣∣∣ , x ∈ R+
}

.

Example 3 (A model with logarithmic z function) Let z(x) = − ln(1 + x
2 ) and gi(x) = 1 − x, for

i ∈ I, x ∈ R+. The model in Definition 1.2 becomes

Cφ,Σ(u) = φ

(
1tψ(u)− ln

(
1 +

1

2
(1− u)tΣ(1− u)

) )
, (35)

In the particular case where φ(x) = exp(−x) (i.e., the generator of the independence copula), one easily
shows that each bivariate projection corresponds to a Farlie–Gumbel–Morgenstern copula of parameter σij,
where

P [Ui ≤ ui, Uj ≤ uj ] = uiuj (1 + σij(1− ui)(1− uj)) , for σij ∈ [−1, 1]. (36)

Typically, this is an example where the simplified sufficient condition given in Proposition 3.3 does not
suffice to determine the parameter range, which can be obtained from the positivity expression of the
density. In Figure 1, right (Section 5) we generate 3−dimensional data from model in (35). We take
σ1 2 = −0.99, σ1 3 = 0.99 and σ2 3 = 0.2.
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Example 4 (A particular Archimax case) Let z(x) = −
(
x
2

) 1
2α and gi(x) = ψ(x)α, for i ∈ I, x ∈

R+. The model in Definition 1.2 becomes:

Cφ,Σ;α(u) = φ

(
1tψ(u)−

(
1

2
ψα(u)t Σψα(u)

) 1
2α

)
, (37)

with α > 0. For a bivariate projection on axis i and j, a couple of parameter (α, σij) leads to the same

function as a couple (1, σ
1/(2α)
ij ), thus for varying σij, the class of reachable bivariate projections does not

depend on α. The model in (37) can be seen as a particular model of Archimax copulas. Indeed, we have

Cφ,Σ(u) = Cφ,L = φ ◦ L(ψ(u1), . . . , ψ(ud)),

with L(x) = 1tx−
(

1

2
xαΣxα

) 1
2α

, x ∈ Rd+, (38)

(see the Introduction section). For instance in a bivariate framework, for α = 1/2 we have the simplified
Archimax model:

Cφ,Σ(ui, uj) = φ

(
ψ(ui) + ψ(uj)− σ

√
ψ(ui)

√
ψ(uj)

)
. (39)

Trivially, the function L in (38) is homogeneous of order 1, with L(αx) = αL(x), for all α ∈ (0,∞)
and x ∈ Rd+. Furthermore, L(e1) = . . . = L(ed) = 1, where ej denotes a d−dimensional vector whose
components are all 0 except the jth. Finally, for the bivariate Archimax model in (39) one can prove
that, if σ ∈ [0, 1], then L satisfies the fully 2−max decreasing property (see Theorem 2.2 in Charpentier
et al. (2014) and Ressel (2013)) and L is a 2−variate stable tail dependence function. Then, in this
particular case, all conditions of Corollary 2.3 in Charpentier et al. (2014) are satisfied. Then a sufficient
condition so that the function Cφ,Σ in Equation (39) is a valid copula is that σ ∈ [0, 1]. A sampling of the
2-dimensional Archimax model in Equation (39) is provided in Figure 2 (see Section 5). Furthermore, a
study of the tail dependent coefficients of this model in given in Property 5.

Example Model gi(x) z(x) σ, case d = 2 if φ(x) = exp(−x)

1 Linear-type z function ψ(x) 1
2 x [0, ρφ] [0, 1] (Barnett-Gumbel)

2 Power-type z function ψ(x)1/α α
2 x

α [0, ρφ
1/α] [0, 1]

3 Logarithmic z function 1− x − ln(1 + x
2 ) - [−1, 1] (FGM)

4 Particular Archimax model ψ(x)α −
(
x
2

) 1
2α [0, 1] [0, 1]

Table 1: Examples 1-4 of Archimatrix copula models for different choices of gi and z functions. Furthermore
in the bivariate setting, the range for σ parameter is provided both in the general case and when φ(x) =
exp(−x).

Remark that in Table 1, in the case of of logarithmic z function and general bivariate generator, the
explicit condition for the admissibility of the considered transformed copula Cφ,Σ can be difficult to obtain.
However in this logarithmic model an explicit condition is given when φ(x) = exp(−x). The reason of this
difficulty is related to the fact that in Example 3 the dependence can increase in some projections and
decrease in others.

5 Further properties and numerical illustrations

In this section we gathered some properties of the proposed Archimatrix copulas in Equation (6).
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Property 1 (Impact of Archimedean transformations) Let T : [0, 1]→ [0, 1] be an increasing bijec-
tion, and denote a transformed copula by

C̃(u1, . . . , ud) = T ◦ C
(
T−1(u1), . . . , T−1(ud)

)
. (40)

For furthers details on copulas as in (40) the interested reader is referred for example to Durrleman et al.
(2000), Valdez and Xiao (2011), Klement et al. (2005), Di Bernardino and Rullière (2013). It is easily seen

that if C is an Archimedean copula with generator φ, then when C̃ is a copula, C̃ is still Archimedean with
transformed generator φ̃ = T ◦ φ. Now consider an Archimatrix copula Cφ,T as in Equation (6). If there
exist functions fg and fh such that g(u) = fg(ψ(u)) and h(u) = fh(ψ(u)) depend on the chosen generator,
then

Cφ̃,Σ(u) = T ◦ Cφ,Σ
(
T−1(u1), . . . , T−1(ud)

)
= C̃φ,Σ(u). (41)

What is noticeable here is that in the Archimedean case, T is preserving the Archimedean structure, and
thus the symmetry. For Archimatrix copulas, the asymmetry depends in this case on the matrix Σ, which
is the same in Cφ̃,Σ or in C̃φ,Σ. In a sense, Σ impacts essentially the symmetry of the copula, whereas the

transformation T impacts the position of its level curves (see, e.g., Di Bernardino and Rullière (2013)).

Property 2 (Level curves) Consider an Archimatrix copula Cφ,Σ as in Equation (6) and assume that
g = h = ψ. Define the level-set ∂LCφ,Σ(α), for α ∈ (0, 1), as

∂LCφ,Σ(α) =
{
u ∈ [0, 1]d : Cφ,Σ(u) = α

}
. (42)

One can easily check that

∂LCφ,Σ(α) =
{
u ∈ [0, 1]d : u = φ(x), x ∈ S(ψ(α))

}
, (43)

where the solution set S(β) =
{
x ∈ Rd+ : 1tx + z(xtΣx) = β

}
. In the case where z is linear, this solution

set is easily obtained as a solution of a quadratic form, and explicit parametric forms of the level set can
be obtained.

Property 3 (Averaging of Archimatrix functions) Consider a finite set of indexes K, a sequence of
matrices Σk, and functions Cφ,Σk , k ∈ K as in Equation (6), which are not necessarily copulas. Consider
the case where all these functions depend on the same z(x) = c xr for some constant c ∈ R, r ∈ R∗. Let

{αk, k ∈ K} be a set of real coefficients such that
∑
k∈K αk = 1 and let Σ =

∑
k∈K α

1/r
k Σk, then

φ

(∑
k∈K

αk · ψ ◦ Cφ,Σk

)
= Cφ,Σ (44)

In particular, for independence generator φ(x) = exp(−x), when z is linear, we get Σ =
∑
k∈K

αkΣk and

∏
k∈K

Cαkφ,Σk = Cφ,Σ, (45)

which in dimension d = 2 is the well known geometric mean property for corresponding Gumbel-Barnett
copulas (see Nelsen (1999), Exercice 4.10). This follows directly from the linear properties of the quadratic
form in Equation (6).
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Property 4 (Sampling Archimatrix copulas) A sample of a random vector U = (U1, . . . , Ud) having
distribution Cφ,Σ can be obtained by standard construction, using Algorithm 2.1. in Embrechts et al.
(2003). Let Ck(uk|u1, . . . , uk−1) = P [Uk ≤ uk|U1 = u1, . . . , Uk = uk], one have

Ck(uk|u1, . . . , uk−1) =
∂

∂u1 . . . ∂uk−1
Cφ,Σ(u1, . . . , uk, 1, . . . , 1)

/ ∂

∂u1 . . . ∂uk−1
Cφ,Σ(u1, . . . , uk−1, 1, . . . , 1)

The algorithm is: simulate u1 from U[0,1], simulate u2 from C2(·|u1), ..., simulate ud from Cd(·|u1, . . . , ud−1).
As an example, setting Q(u) = g(u)tΣh(u), general trivariate copulas can be sampled from derivatives

∂

∂u1
Cφ,Σ(u) = φ′(ψ ◦ Cφ,Σ(u))

(
ψ′(u1) + z′(Q(u))

∂

∂u1
Q(u)

)
∂2

∂u1∂u2
Cφ,Σ(u) = φ′′(ψ ◦ Cφ,Σ(u))

(
ψ′(u1) + z′(Q(u))

∂

∂u1
Q(u)

)(
ψ′(u2) + z′(Q(u))

∂

∂u2
Q(u)

)
+φ′(ψ ◦ Cφ,Σ(u))

(
z′′(Q(u))

∂

∂u1
Q(u)

∂

∂u2
Q(u) + z′(Q(u))

∂2

∂u1∂u2
Q(u)

)

For linear expressions of z, all derivatives of Cφ,Σ are given in Proposition 3.4.

Using Property 4, in Figure 1 (left) we provide a scatterplot of 3-dimensional data from copula presented
in Example 1. We take σ1 2 = 0.001, σ1 3 = 0.32 and σ2 3 = 0.65. The parameters σij are chosen in such
a way that σ1 2 + σ1 3 + σ2 3 < 1, in order to guarantee the admissibility of the considered Archimatrix
copula (see Corollary 3.2). We know that each bivariate projection corresponds here to an Archimedean
Gumbel-Barnett copula of parameter σij . Indeed in Figure 1 we can observe the anti-comonotonic behavior
of the sampling data. Furthermore, we give estimates of the the Kendall’s τ for different parameters σ
and we compare them with the theoretical ones in the case of bivariate Gumbel-Barnett copula. Results
are gathered in Table 2 (first column).

In Figure 1 (right) we provide a scatterplot of 3-dimensional data from copula presented in Example 3. We
take σ1 2 = −0.99, σ1 3 = 0.99 and σ2 3 = 0.2. The parameters σij are chosen in such a way that σij < 1 for
all i, j, in order to guarantee that each bivariate projection corresponds to a Farlie–Gumbel–Morgenstern
(FGM) copula with parameter σij . Also in this case the comparison between theoretical and estimated
Kendall’s τ is provided (see Table 2, second column).

Bivariate Gumbel-Barnett Copula Bivariate FGM Copula

τ0.001 = −0.00049 τ−0.99 = −0.220

τ̂0.001 = −0.00043 τ̂−0.99 = −0.229

τ0.32 = −0.14011 τ0.99 = 0.220

τ̂0.32 = −0.14511 τ̂0.99 = 0.215

τ0.65 = −0.25671 τ0.2 = 0.0444

τ̂0.65 = −0.24789 τ̂0.2 = 0.0441

Table 2: Theoretical and estimated Kendall’s τ for bivariate Gumbel-Barnett copula (first column) and
bivariate FGM copula (second column) for different choises of parameters σi j .
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Figure 1: Left: Sample of size n = 1000 from the 3-dimensional copula Cφ,Σ as in Equation (30) with
z(x) = 1

2 x, φ(x) = exp(−x) and gi(x) = ψ(x), i ∈ {1, 2, 3}, x ∈ R+. We take σ1 2 = 0.001, σ1 3 = 0.32 and
σ2 3 = 0.65. Right: Sample of size n = 1000 from the 3-dimensional function Cφ,Σ as in Equation (35)
with z(x) = − ln(1+ x

2 ), φ(x) = exp(−x) and gi(x) = 1−x, i ∈ {1, 2, 3} for x ∈ R+. We take σ1 2 = −0.99,
σ1 3 = 0.99 and σ2 3 = 0.2.

Finally, using Property 4, in Figure 2 we provide a plot of 2-dimensional data from the bivariate Archimax
model in Equation (39). We take σ = −0.3 (Figure 2, left) and σ = −0.495 (Figure 2, right). Remark
that the chosen parameters guarantee the admissibility of the proposed copula.

Property 5 (Bivariate tail dependence coefficients) We consider the general model introduced in
Definition 1.2 and the associated bivariate projection

Cφ,Σ(ui, uj) = φ (ψ(ui) + ψ(uj) + z(σij gi(ui)hj(uj) + σij gj(uj)hi(ui))) . (46)

The associated bivariate diagonal is

δ(u) := Cφ,Σ(u, u) = φ (2ψ(u) + z(σij gi(u)hj(u) + σij gj(u)hi(u))) .

Remark that, the bivariate lower and upper tail coefficients λU and λL (see Sibuya (1960)) associated to
the copula Cφ,Σ can be written using the diagonal section δCφ,Σ(u) = Cφ,Σ(u, u) (see, e.g., Nelsen et al.
(2008), Nelsen (1999)):

λL(Cφ,Σ) = lim
u→0+

d

du
δCφ,Σ(u) = δ

′

Cφ,Σ
(0+),

λU (Cφ,Σ) = 2− lim
u→1−

d

du
δCφ,Σ(u) = 2− δ

′

Cφ,Σ
(1−).

Lemma 1 Let consider the general model introduced in Definition 1.2 and the associated bivariate projec-
tion in (46). Under Assumption 1 and if |z′(0)| < +∞, |g′i(1)| < +∞,

∣∣g′j(1)
∣∣ < +∞, |h′i(1)| < +∞ and
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∣∣h′j(1)
∣∣ < +∞, then

λU (Cφ,Σ) = λU (Cφ), (47)

where λU (Cφ) is the bivariate upper tail coefficient associated to the Archimedean copula Cφ.

Remark that result in (47) holds true for Examples 1, 2 and 3 discussed before. Conversely, for the Archi-

max model in Example 4 we have |g′i(1)| =
∣∣g′j(1)

∣∣ = +∞. In this case we get λU (Cφ,Σ) = σ
1

2α , with
σ ∈ [0, 1] and α > 0 (see Figure 2).

In the lower case, we get

δ
′

Cφ,Σ
(0+) = φ′ (2ψ(0) + z(σi j gi(0)hj(0) + σi jgj(0)hi(0)))

·
[
2ψ′(0) + σi j ξij(0) z′(σi j gi(0)hj(0) + σi j gj(0)hi(0))

]
.

where ξij(0) = g′i(0)hj(0)+gi(0)h′j(0)+g′j(0)hi(0)+gj(0)h′i(0). For a strict generator (i.e., ψ(0) = +∞), if
z(σi j gi(0)hj(0)+σi jgj(0)hi(0)), if furthermore the second line of equation before is bounded in (−∞,+∞),
and φ′(+∞) = 0, then λL(Cφ,Σ) = 0. Remark that it is exactly the case in Examples 1, 2 and 3 the
discussed before. Conversely, for the Archimax model in Example 4, we get λL(Cφ,Σ) = 0 for σ ∈ [0, 1)
(see Figure 2, left) and λL(Cφ,Σ) = 1 for σ = 1 (see Figure 2, right).
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Figure 2: Sample of size n = 2000 from the 2-dimensional Archimax model Cφ,Σ as in Equation (39) with

z(x) = −
(
x
2

) 1
2α , φ(x) = exp(−x) and gi(x) = ψ(x)α with α = 0.5, i ∈ {1, 2}, x ∈ R+. We take σ = 0.5

(left) and σ = 0.99 (right). A zoom of the data-set in the lower side and in the upper one is also displayed.

Property 6 (Linear expression in σij) Due to the sub-model stability, estimation of each parameter
σij can be done for each bivariate projection (Ui, Uj), by classical moment method, regression or by
maximum likelihood estimation using given expressions of the copula density. As a consequence of the
choice of a quadratic form in the general model, using Equation (9) in the case where g = h, one get for
each couple i, j ∈ I a linear expression in σij ,

σij · 2gi(ui)gj(uj) = z−1 (ψ ◦ P [Ui ≤ ui, Uj ≤ uj ]− (ψ(ui) + ψ(uj))) . (48)
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This expression can help finding estimators of separate coefficients σij . Estimating each coefficient sepa-
rately can be straightforward since it relies only on one parameter at time. However, it may result in a
global non-admissible copula, due to constraints like those in Corollary 3.2. The problem of constraint
joint estimation of parameters and resulting properties of estimators is not treated here, but constitute an
interesting perspective of this work.

For the separate estimation of each σij , P [Ui ≤ ui, Uj ≤ uj ] = Cφ,Σ(1, . . . , 1, ui, 1, . . . , 1, uj , 1, . . . , 1)
is the only unknown quantity in Equation (48). The question is thus how to estimate a quantity
z−1 (ψ ◦ Cφ,Σ(u)−ψ(u)t1) when z(·), ψ(·) and ψ(·) are given. An immediate estimator is the plug-in
estimator where Cφ,Σ(u) is replaced by the empirical copula Cn(u).

Figure 3 illustrates the possible use of this linearity for estimating each parameter, and for visualiz-
ing the dispersion relying on this estimation. Then, in Figure 3 we draw two types of set of points:
{αi j(u), β̂i j(u)} (see first and third panels), and {αi j(u), βi j(u)} (see second and fourth panels), where

β̂i j(u) = z−1 (ψ ◦ Cn(ui, uj)− (ψ(ui) + ψ(uj))), βi j(u) = z−1 (ψ ◦ P [Ui ≤ ui, Uj ≤ uj ]− (ψ(ui) + ψ(uj)))
and αi j(u) = 2gi(ui)gj(uj) (see Equation (48)). Furthermore, in Figure 3 we present the theoretical regres-
sion line (blue line) and the estimated one (red line). In the first and second panels of Figure 3 we choose
the Gumbel-Barnett parameters setting, i.e., z(x) = 1

2 x, φ(x) = exp(−x), gi(x) = ψ(x) with in particular
i = 1, j = 3 (see Example 1). In the third and fourth panels the Farlie–Gumbel–Morgenstern parameters
setting is considered, i.e., z(x) = − ln(1 + x

2 ), gi(x) = 1 − x and φ(x) = exp(−x) with i = 1, j = 3 (see

Example 3). The empirical copula Cn in β̂i j(u) is estimated on the data-sets of size n = 1000 sampled
before (see Property 4, Figure 1).
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Figure 3: Illustration for theoretical and estimated linear expression in σ1 3 in Equation (48). We draw two

types of set of points: {αi j(u), β̂i j(u)} (see first and third panels from the left), and {αi j(u), βi j(u)} (see
second and fourth panels). First and second panels: Gumbel-Barnett case with σ1 3 = 0.32. Third and
fourth panels: Farlie–Gumbel–Morgenstern case with σ1 3 = 0.99. We present the theoretical regression
line (blue line) and the estimated one (red line).
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