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ABSTRACT: Transforming growth factor beta (TGF) is a major signalling pathway in joints. This 

superfamilly is involved in numerous cellular processes in cartilage. Usually, they are considered to favor 

chondrocyte differentiation and cartilage repair. However, other studies show also deleterious effects of 

TGF which may induce hypertrophy. This may be explained at least in part by alteration of TGF 

signaling pathways in aging chondrocytes. This review focuses on the functions of TGF in joints and the 

regulation of its signaling mediators (receptors, Smads) during aging and osteoarthritis. 
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Osteoarthritis, an aging disease 

 

Osteoarthritis (OA) is the most common form of arthritis 

with over 151 million sufferers worldwide [1]. It is one of 

the most common diagnoses in general practice [2]. OA 

can occur in any joint but is more common in the joints of 

the hand, knee, and hip [3]. It is mainly characterized by 

the progressive degradation of cartilage [1]. However, OA 

is not only a disease of cartilage; it affects all the tissues 

of the joint, including synovium, subchondral bone, 

capsule, ligaments, periarticular muscles and the sensory 

nerves whose termini lie within these tissues. 

Furthermore, OA may be resulted from abnormalities in 

any of the above tissues. OA leads to pain, functional 

impairment and limited movements, which in turn 

contribute to reduced social interactions and may lead to 

depression [3]. 

The major tissue affected by OA is articular cartilage. 

This latter is located on the surfaces of joints involved in 

mechanical movement [4]. This layer of hyaline cartilage 

protects bone to continual compression and friction and 

acts as a lubricant to facilitate movement [5]. Cartilage is 

composed primarily of water, collagen, proteoglycans, 

and chondrocytes (the only resident cells) [4]. 

Chondrocytes respond to changes induced by joint 

loading, cytokines, growth factors, and the presence of 

fragmented matrix molecules in the extracellular matrix 

of cartilage [1], and are responsible for maintaining a 

balanced cartilage turnover [6].   

Healthy articular cartilage is a stable tissue that 

functions for decades to keep normal joint movement 

possible. In contrast, osteophytic cartilage is temporary 

and subjects to endochondral ossification. This is thought 

to occur in OA cartilage at least in a part of the patients, 

and to induce changes in gene expression of chondrocytes 

[7]. Compared to intact human articular cartilage, 

osteophytic chondrocytes express more genes involved in 

endochondral ossification, such as BMPs or Runx2, and 

also enzymes mediating tissue remodeling, like MMP9 

and MMP13. In contrast, expression of inhibitors for the 

BMP-signaling pathways is decreased. This blocking of 

BMP signaling in healthy articular cartilage may inhibit 

chondrocyte terminal differentiation, and the loss of this 

blockage and elevated BMP signaling might release the 
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brake on chondrocyte endochondral ossification and 

matrix breakdown, and participate to osteophyte 

formation. 

OA is one of the most common sources of pain and 

disability in the elderly [8,9] and age is considered as the 

single greatest risk factor [10,11]. Indeed, OA 

development is highly age-related. For instance, the 

prevalence of radiographic knee OA, the most common 

location, increased with each decade of life from 33% 

among those aged 60–70 to 43.7% among those over 80 

years of age [12]. The prevalence of primary hip OA also 

increases with age from 0.7% in the 40–44 age group to 

14% in the 85+ age group [13].  

There is mounting evidences that the changes 

occurring in the articular cartilage during the development 

of OA are the result of an age-related loss in normal 

homeostasis. The chondrocyte is the one cell type present 

in articular cartilage, and therefore is responsible for both 

synthesis and breakdown of the cartilaginous extracellular 

matrix [14]. Signals generated by cytokines, growth 

factors, and cartilage matrix regulate chondrocyte 

metabolic activity. In OA cartilage, it appears that the 

inflammatory and catabolic signals are in excess relative 

to anabolic factors. This imbalance promotes increased 

production of matrix degrading enzymes by 

chondrocytes, including matrix metalloproteinases, 

aggrecanases and other proteases that degrade the 

cartilage matrix. These changes that can also occur in 

aging chondrocyte, appear to contribute to the loss in 

homeostasis, and in particular in the loss of TGFß 

signaling responsiveness and will be discussed next. 

 

TGFß signaling pathways 
 

The transforming growth factor-β (TGFβ) superfamily is 

comprised of almost forty ligands responsible for 

numerous cellular processes including early embryonic 

development, tissue patterning and homeostasis, bone 

formation, wound healing and fibrosis [15,16]. In 

cartilage, the main representatives of this superfamily are 

TGFß and BMP. Both of them are crucial for normal joint 

development and homeostasis and have been implicated 

in the pathogenesis of OA.  

Members of the TGFß superfamily are synthesized as 

large precursor molecules that are proteolytically 

processed in the Golgi apparatus by the convertase family 

of endonucleases. They are secreted from cells as a 

dimeric small latent complex (SLC) comprising non-

covalently associated latency-associated propeptide 

(LAP) and active TGFß and/or as a large LLC comprising 

SLC bound covalently to a latent TGFß-binding protein 
(LTBP) [17,18]. Physiological activation mechanisms 

leading to receptor signaling are incompletely understood. 

They may involve LTBP-1–mediated proteolytic release, 

thrombospondin-1 (TSP-1) competition with SLC, 

integrin presentation, pH changes, and reactive oxygen 

species [17–20]. 

Once activated, the TGFß superfamily (including 

bone morphogenetic proteins (BMPs)) signals via 

heteromeric complexes of type I (ALK) and type II 

receptors, recruiting downstream R-Smad proteins 

(Receptor-regulated Smad: Smad1, Smad2, Smad3, 

Smad5, and Smad8) and co-Smads (Smad4, serves as a 

common partner for all R-Smad) before translocating to 

the nucleus and act as a transcription factor on target 

genes [21]. TGFß can also exert its biological effects via 

non-Smad pathways [22]. In noncanonical pathways, 

TGFßs may transduce their signals via MAP kinases 

through TGFß-activating kinase (TAK1). They can utilize 

a multitude of intracellular signaling pathways including 

extracellular regulated kinase (ERK) [23], p38 kinase[21], 

c-Jun N-terminal kinase (JNK) [24], phosphatidylinositol-

3-kinase (PI3K)/AKT[25], or Rho-like GTPase [26] 

signaling pathways, to regulate cell function in 

coordination with the Smad pathway. 

Seven type I receptors (ALK) and five type II 

receptors exist. They are all single-pass transmembrane 

receptors, which contain intracellular serine/threonine 

kinase domains. ALK is unable to directly bind its ligand, 

but forms a high-affinity heteromeric receptor complex 

with TβRII in its presence. Upon assembly, the 

intracellular domain of ALK is phosphorylated by TβRII 

on a conserved GS domain, leading the activation of its 

kinase activity and the phosphorylation of R-Smads 

[27,28]. The recruitment of R-Smads to the cytoplasmic 

domains of the ALK/TβRII complex, is facilitated by the 

Smad anchor for receptor activation (SARA)[29]. Upon 

activated, R-Smads modify their conformation, thereby 

facilitating their heteromerization with Smad4 which 

allows translocation to the nucleus, where it acts to 

regulate the transcription of various target genes [28].  

Typically, TGFß signals via ALK5 which 

phosphorylates Smad2/3, while BMP typically signals 

through ALK1, 2, 3, and 6 phosphorylating Smad1/5/8. In 

chondrocyte differentiation, Smad2/3 is required for early 

chondrogenesis and to block terminal differentiation 

while Smad1/5/8 is necessary for terminal differentiation 

[30–32]. All these R-Smads play critical roles as 

transcriptional regulators in osteoblastogenesis and 

chondrogenesis. 

Downregulation of TGFß signaling is mediated 

extracellularly by ligand antagonists, and intracellularly 

by attenuation of R-Smad activity, in part by inhibitory 

Smads (I-Smad) 6 and 7. I-Smads recruit E3 ubiquitin 

ligases to type I receptors, leading to their degradation 
[33,34]. In addition, I-Smads can interfere with R-Smad 

phosphorylation [35]. While Smad6 specifically inhibits 
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the BMP pathway, Smad7 can inhibit both BMP and 

TGFß pathways [36]. 

 

Role of TGFß superfamily in cartilage: angel or devil? 
 

TGFβ superfamily plays numerous roles in cartilage. 

Some are benefit, whereas other may favor OA process.  

 

TGFβ sub-family (TGFβ1, 2 and 3) 

 
TGFβ1, 2, and 3 are expressed by perichondrial cells and 

hypertrophic chondrocytes.  The expressions 

of TGFß1 and 2 are maintained in adult articular 

cartilage, suggesting a role for the TGFß pathway in the 

maintenance of permanent cartilage [37,38]. Concerning 

receptors, TGFß receptor type 1 (ALK5) and TGF beta 

receptor II (TGFßr2 or TßRII) are expressed in 

perichondrial cells as well as proliferating and 

hypertrophic chondrocytes within the growth plate.  

The mechanical shearing of synovial fluid induced 

during joint motion, rapidly activates latent TGFß, which 

is secreted from both synovium and articular cartilage. 

The active TGFß peptide accumulates in the superficial 

zone of articular cartilage, due to the presence of an 

overwhelming concentration of unspecific TGFß binding 

sites in the extracellular matrix. This leads to high level of 

active TGFß in the superficial zone of cartilage. However, 

the active peptide is unable to penetrate deeper into the 

middle and deep zones of cartilage [39]. 

The role of TGFß in joints is controversial [40]. 

While TGFß may favor osteoarthritis [41], it also favors 

chondrogenesis. It promotes the differentiation of 

embryonic chick limb cartilage [42] and up-regulates a 

number of molecules associated with prechondrogenic 

condensation [43–45]. Besides, primary chondrogenesis 

derived from mesenchymal stem cells (MSCs) needs 

TGFß signals [46–48]. TßRII plays a role major in this 

process. Its expression is induced during chondrogenesis 

[49,50], and its downregulation induced by retinoid acid 

treatment inhibits chondrogenesis of mouse embryonic 

palate mesenchymal cells  [51]. Furthermore, TGFßs have 

been shown to inhibit chondrocyte hypertrophy. This 

action was supported by phenotypes of mice 

overexpressing a dominant-negative form of TGFßr2 [43] 

and Smad3−/− mice [31]; these mutant mice showed 

severe progressive osteoarthritis, in which the 

hypertrophic zone was enlarged and the proliferating zone 

was reduced in postnatal articular and growth plate 

chondrocytes.  

In addition, TGFß1 stimulates chondrocyte synthetic 

activity and decreases the catabolic activity of IL-1 [52–
57]. TGFß increases the synthesis of protease inhibitors 

such as tissue inhibitor of metalloproteinase (TIMP) and 

decreases the production of several MMP. It counteracts 

NO production induced by IL1 [58]. In addition, TGFß is 

able to increase the production of essential cartilage 

matrix molecules such as aggrecan and type II collagen 

[54,59], and prevent loss of proteoglycan in articular 

cartilage during experimental OA [57,60–62]. TGFß also 

functions as anti-arthritic[63,64] and is able to block 

inflammation in vivo [65]. TGFß3 also stimulated 

extracellular matrix (ECM) synthesis and has been 

evaluated in vitro in rabbit models of acute cartilage 

injury [66–68].  

However, other studies show a negative effect of 

TGFß on cartilage. It induces the synthesis of MMP-13 

(collagenase-3) in a subpopulation of human articular 

chondrocytes [69] or MMP-9 in normal equine 

chondrocytes [70]. In synovial lining cells, TGFß has also 

been shown to increase the synthesis of aggrecanases 

(ADAMTS4/5), MMP-1 as well as the expression of pro-

inflammatory cytokines [71]. Enhancement of these genes 

could result in accelerated breakdown of cartilage [72]. 

Consequently, TGFß could contribute to the progression 

of inflammation and joint destruction in RA [73,74]. 

Moreover, repeated local administration of TGFß resulted 

in OA-like changes in articular cartilage [41].  

This differential effect of TGFß responses may be 

explained by the modulation of canonical Smad signaling 

pathways by TGFß itself. Indeed, our recent research 

works showed that TGFß1 exerts a diphasic effect on 

chondrocytes, at least in vitro [75]. A short TGFß1 

administration induces Sox9 expression, followed by 

induction of collagen type II expression. This effect was 

transient, but a second peak of collagen II expression 

appears later. These data suggest that at least two different 

mechanisms are responsible for cell response to TGFß. A 

short TGFß administration may activate the Smad2/3 

pathway (upregulation of TßRI, TßRII and Smad3, and 

phosphorylation of Smad2/3), leading to an increase of 

Sox9, which, in turn, may induce collagen type II 

expression. This is supported by the upregulation of 

ALK5, and Smad3 observed after a short administration 

of TGFß1, which is correlated to phosphorylation of 

Smad2/3. At contrary, continuous TGFß exposure leads 

to a negative feedback loop, characterized by a reduction 

of ALK5, TßRII and Smad3 expression and simultaneous 

induction of the inhibitory Smad7. This leads to the 

blockage of Smad2/3-mediated TGFß signalling and 

reduction of Sox9. This late response is also associated 

with increased atypical collagen expression (COL1A1 

and COL10A1) and reduction of aggrecan expression. 

These data suggest that a non canonical pathway could be 

involved in this late response to TGFß. Several pathways 

may be implied. In particular, the reduction of ALK5 
expression may change the ratio between ALK5 and 

ALK1, another type I TGFß receptor recently identified 

in chondrocytes, favoring TGFß signalling via the 
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Smad1/5/8 route and, subsequently, chondrocyte terminal 

differentiation [76,77]. 

 

Bone morphogenetic proteins (BMPs) 

 

BMPs have multiple important roles during skeletal 

formation [[16,78]. They are expressed by chondrocytes. 

The perichondrium expresses Bmp2, 3, 4 and 7 [79–82] , 

the hypertrophic chondrocytes expressed Bmp2 and Bmp6 

[83], and the proliferating chondrocytes expressed Bmp7 
[84].  

In humans, there are three type I receptors (BMPRIA, 

BMPRIB and ACVRI) and three type II receptors 

(BMPRII, ActRIIA and ActRIIB) that bind to BMP 

ligands to signal. BMP receptor type 1A (Bmpr1a), also 

called as ALK3, is highly expressed in perichondrial cells, 

proliferating chondrocytes, and hypertrophic 

chondrocytes; BMP receptor type 1B (Bmpr1b, ALK6) is 

expressed throughout the growth plate and in the 

perichondrium; and activin A receptor type 1 (Acvr1, 

ALK2) is expressed in resting and proliferating 

chondrocytes [80,85–87]. BMP receptor type II (Bmpr2) 

is expressed throughout the growth plate. The specificity 

of signaling is primarily determined by type I receptors 

[88]; however, the specificity of ligand binding is altered 

by the combination of type I and II receptors [89]. It has 

been reported that BMPRIA is a potent receptor of BMP2 

and BMP4 [90,91], and ACVR1 is a receptor of 

BMP7[92]. The majority of BMP signaling in cartilage 

development occurs via the canonical pathway through R-

Smads 1/5/8. It play a critical role in skeletal 

development, bone formation and stem cell 

differentiation [93,94]. Thus, mice lacking R-Smads1/5/8 

present severe chondrodysplasia  [95]. 

BMPs derive their name from their potent ability to 

induce ectopic bone formation when subcutaneously 

implanted in rodents [96]. Then, numerous studies 

reported that BMPs stimulate osteoblast differentiation. 

However, the effects of BMP signaling on chondrocyte 

are still debated. Both in vitro and in vivo evidence 

suggest that BMP signaling promotes or inhibits the 

hypertrophic differentiation [96–99]. In the earliest stage 

of chondrogenesis, BMP signaling promotes 

mesenchymal cells to differentiate into chondrocytes and 

stimulates chondrocyte proliferation by 

inducing Sox9 expression [30,100,101]. BMP signaling 

also promotes chondrocyte hypertrophy and is required 

for endochondral bone formation [85,95,98,102].  

In vitro, BMP-2 is able to maintain or restore the 

differentiated phenotype of adult chondrocytes [103,104]. 

However, in cultures of embryonic chondrocytes, BMP-2 
induced chondrogenesis can continue to 

hypertrophy [105], even to osteoblast differentiation 

characterized by osteocalcin expression [102]. In cultures 

of human mesenchymal stem cells, BMP-2 and BMP-9 

increase the synthesis of cartilage-specific proteins [106]. 

Comparing the ability of BMP-2, BMP-4 and BMP-6 to 

promote the differentiation of mesenchymal stem cells 

from bone marrow toward chondrocyte showed that 

BMP-2 appears to be the most effective [107]. However, 

under BMP-2, mesenchymal stem cells can possibly 

continue their differentiation to hypertrophy and 

osteogenesis [108]. 

BMP-14, also known as cartilage-derived 

morphogenetic protein (CDMP-1) or GDF-5 (growth 

differentiation factor-5) plays also a major role in 

cartilage. Variations in its gene in humans have been 

associated with the development of osteoarthritis 

[109]. BMP-14 shows also some capacity to stimulate 

cartilage matrix synthesis. It induces the differentiation of 

mesenchymal stem cells into chondrocytes and promoted 

increased accumulation of GAG and type II collagen 

during pellet culture [110]. Chubinskaya et al. reported 

that addition of GDF-5 resulted in an increase in 

proteoglycan accumulation in adult human articular 

chondrocytes cultured in alginate beads for 9 days, 

compared with controls without growth factors [111]. 

 

Deregulation of TGFß signalling in old and OA joint 

(Figure 1) 

 

Because OA is rare in young adults and even serious joint 

injuries usually don't manifest as OA until years later 

[112], it appears that young joint tissues can compensate, 

to some degree, to abnormal mechanical stress. But with 

aging, the ability to compensate to stress declines. Older 

adults who experience a joint injury develop OA much 

more rapidly than younger adults with a similar injury  

[113]. If the basic cellular mechanisms that maintain 

tissue homeostasis decline with aging, then the response 

to stress or joint injury will not be adequate and joint 

tissue destruction and OA will be the result. A mechanism 

possible may be a deregulation of TGFß signaling with 

age leading to the decline of anabolic activity of 

chondrocytes. In particular, several studies suggest that 

modifications of chondrocyte phenotype during aging 

result from alteration of the TGFß signalling, decline 

which may be at the root of OA development.  

This notion is supported by studies demonstrating an 

age-associated decrease in proteoglycan synthesis in 

equine cartilage in response to TGFß1 [114]. Similar 

decreases in TGFß responsiveness have been seen in 

human immature and mature cartilage explants [115]. 

Furthermore, 3D culture of human chondrocytes from old 

donors (over 40) did not show any increase in 
proteoglycan content following TGFß1 treatment, 

contrasting with observations in chondrocyte cultures 

from young donors [116]. 

http://www.discoverymedicine.com/tag/proteoglycan/
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Blaney Davidson showed that levels of TGFβ2 and 

TGFβ3 (but not TGFβ1) decrease with age as does the 

level of TGF-β receptors I (ALK5) and II [117]. The 

decline of ALK5 and TßRII lead an alteration in Smad 

recruitment, as confirmed by the loss of phosphorylated-

Smad2 in old murine chondrocytes [117], leading to 

illegitimate entry of chondrocytes into hypertrophy and 

disruption of normal cartilage homeostasis [118]. This 

age-induced downregulation of TßRII has also been 

reported from cultures of human chondrocytes [50], and 

has been associated to a loss of Smad2/3 phosphorylation 

and an increase of collagen type X expression, MMP13 

and Adamts5 [75,119]. The role of TßRII in hypertrophy 

is corroborated by in vivo data which show that TβRII-

deficient mice have a reduced proliferation of 

chondrocytes and an accelerated early hypertrophic 

differentiation [120].  

 

 

 

 

 
 

 

Figure 1. Role of TGF-beta in healthy and OA cartilage. TGF signals through TRII 

and ALK5 in young and healthy cartilage eliciting chondrogenic factors. In aged or AO 

cartilage, TRII and ALK5 breakdown occurs while ALK1 expression is enhanced. 

Therefore, TGF signalling shifts from Smad2/3 to Smad 1/5/8 leading to COL10 and 

MMP13 expression. 

 

Besides, age also reduces ALK1 expression, but the 

extent of this decrease is not as great as that in ALK5, 

suggesting a shift from Smad2/3 signaling via ALK5 to 

Smad1/5/8 via ALK1 in aging chondrocytes [76,121]. 

The reduction of ALK5/ALK1 ratio could shift 

chondrocyte differentiation towards a more hypertrophic 

phenotype expressing markers characteristic of OA. 

Indeed, ALK1 overexpression and ALK5 inhibition can 

induce MMP-13, while ALK5 expression induces AGC1 

expression. Subsequently, all these deregulations of TGFß 

receptor expression lead to the decline of anabolic 

response and favors hypertrophy of chondrocytes.  
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Surprisingly, it has been observed that aging is 

associated to an increase of Smad3 expression [50,117]. 

This Smad3 upregulation may be a consequence of the 

loss of TGFß signaling due to the decline of receptor 

expression. Since Smad3 acts as one important TGFß 

signaling pathway member to develop and/or maintain the 

phenotype of chondrocytes [31,122] and to stimulate 

chondrogenesis [123], it is possible that the increased 

Smad3 expression observed during aging could be a 

compensatory mechanism to promote cartilaginous 

phenotype. Moreover, it can be also due to a direct 

regulation of Smad3 gene expression by TGFß. Given that 

TGFß reduces Smad3 expression [75,124], the reduction 

of TGFß  signaling may upregulate Smad3.   

The deregulation of TGFß signaling is also found in 

OA cartilage. It is now admitted that OA chondrocytes 

lose their capacity to respond to TGFß. This decrease of 

TGFß responsiveness is correlated to a decrease of TßRII 

expression in OA cartilage [125]. This downregulation of 

TßRII cannot be only imputed to aging, since it is also 

found in experimental induced-OA cartilage in young 

rabbit [126]. At least, another mechanism may explain 

this downregulation, namely the increase of IL1 level in 

OA joint. Indeed, we have now well-established that this 

proinflammatory cytokine reduces TßRII gene 

transcription [127] and increases receptor degradation 

[128] making cells insensitive to TGFß [53]. Furthermore, 

OA development is accompanied by a decrease of ALK5 

[125,126]. These deregulations of TGFß receptors may be 

one of OA roots. 

The response to BMP in aging is less well reported. 

However, rabbit intervertebral disc cells show reduced 

proteoglycan synthesis in response to BMP2 in old 

compared to young animals [129]. 

 

Potential of TGFß in the development of novel 

therapeutic strategies to treat cartilage defects and OA 

 

TGFß family members, mainly TGFß1, TGFß3 or BMP2, 

are often use for the development of cartilage engineering 

strategy. These growth factors can be introduced by 

different ways: direct addition to the culture medium, 

overexpression in genetically engineering cells [130], 

construction of polymeric systems that provide for the 

controlled release of growth factors [131], direct 

incorporation of plasmid DNA encoding growth factors 

into scaffolds [132,133], and embedding cationic 

polymeric gene delivery systems that encode growth 

factors into scaffolds for sustained release of pDNA 

[134,135]. 

TGFß1 is an important growth factor in tissue 
engineering for cartilage repair. It has been shown to 

promote chondrocyte proliferation and differentiation, 

both of which are important features of effective cartilage 

regeneration [132,136,137].  TGFß is also known to be a 

potent inducer of stem cells chondrogenic differentiation 

[138–140] and favor the differentiation of MSCs to form 

ectopic cartilage in vivo [141]. Supplementation with 

TGFβ1 could initiate and promote chondrogenesis of 

synovium-derived stem cell (SDSCs), but TGFβ1 alone 

was insufficient to fully differentiate SDSCs into 

chondrocytes. However, it is reported that TGFβ inhibits 

early chondrogenic induction of human ESCs but is 

required at the later stages of the differentiation, and 

TGFβ can sustain an undifferentiated population of ESCs 

within the differentiation culture, suggesting that caution 

should be exercised to avoid possible teratoma formation 

in vivo when using TGFβ as a chondrogenic inducer of 

ESCs [142]. In addition, a high dose of TGFβ1 via intra-

articular injection is known to induce chemotaxis and 

activation of inflammatory cells, resulting in 

characteristic cartilage defects such as fibrosis and 

osteophyte formation [135,143,144]. Therefore, it is 

evident that TGFβ1 should be administered in a controlled 

manner to minimize adverse effects.  

Another TGFß superfamily member often used for 

the development of cartilage engineering strategy is 

BMP2. Since BMP-2 was more potent than TGFß1 in 

inducing not only the expression of the gene for type-II 

collagen but also the post-translational production and 

secretion of the protein itself, it would appear to be the 

more promising candidate of the two for the generation of 

a hyaline type of cartilage at least from synovial explants 

[145]. However, BMP-2 alone was unable to effect the 

complete differentiation of synovial explants into a 

typically hyaline type of articular cartilage throughout the 

entire tissue volume, and the synovial cells underwent full 

downstream differentiation into the terminal hypertrophic 

state, leading to calcification of the extracellular matrix. 

All these experiments showed that a limit of this 

strategy is the development of adverse effects, mainly the 

development of a hypertrophic cartilage characterized by 

type X collagen and Runx2 expression, or a fibroblastic 

cartilage with a high expression of type I collagen. Find a 

way to reduce these adverse effects is subsequently 

essential to the development of an efficient strategy of 

tissue engineering for cartilage repair. Some researchers 

propose to co-treat cell with TGFß and BMP2. 

Pretreatment with TGFβ could prevent fully 

differentiation of MSCs encapsulated in alginate beads 

into osteoblasts [146]. Although BMP-2 induces 

osteogenic and chondrogenic phenotypes in alginate-

encapsulated adipose-derived stem cells, TGFβ1 can 

inhibit BMP-2-induced differentiation of the osteogenic 

lineage, and combined growth factor treatment shows a 
synergistic effect on the expression of cartilage-specific 

genes and elevated release of cartilage-specific ECM 

proteins [147]. Another way to reduce efficiently the 
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adverse effects of TGFß or BMP2 addition might to 

modulate TGFß receptor expression. Indeed, we found 

that TβRII expression level is intimately linked to 

differentiation status of chondrocytes, and that TβRII 

ectopic expression permits to restore TGFß1 

responsiveness as well as to increase the expression of 

some specific cartilage matrix components in 

chondrocytes [50]. Subsequently, the reintroduction of 

TßRII in chondrocytes may improve the current strategies 

of cartilage engineering. Indeed some studies show a 

benefic effect of TGFß transgenesis for inducing 

chondrocyte phenotype. However, since TGFß at long 

term, has a negative effect due to the loss of TßRII [75], 

it may be interesting to co-transfect TßRII in order to 

maintain benefic effect of TGFß1 [50]. Similarly, it may 

be pertinent to reintroduce ALK5 in OA chondrocytes 

before reimplantation in patients. 
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