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ABSTRACT 

Posttranslational modifications of histones (so-called epigenetic modifications) play a major 

role in transcriptional control and normal development, and are tightly regulated. Disruption 

of their control is a frequent event in disease. Particularly, the methylation of lysine 27 on 

histone H3 (H3K27), induced by the methylase Enhancer of Zeste homolog 2 (EZH2), 

emerges as a key control of gene expression, and a major regulator of cell physiology. The 

identification of driver mutations in EZH2 has already led to new prognostic and therapeutic 

advances, and new classes of potent and specific inhibitors for EZH2 show promising results 

in preclinical trials. This review examines roles of histone lysine methylases and demetylases 

in cells, and focuses on the recent knowledge and developments about EZH2. 

 

Key-terms: epigenetic, histone methylation, EZH2, cancerology, tumors, apoptosis, cell 
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Histone modifications and histone code 

Epigenetic has been defined as inheritable changes in gene expression that occur without a 

change in DNA sequence. Key components of epigenetic processes are DNA methylation, 

histone modifications and variants, non-histone chromatin proteins, small interfering RNA 

(siRNA) and micro RNA (miRNA). They induce changes in gene expression in modifying 

accessibility of the eukaryotic transcription machinery to specific genes. In particular, the 

role of histones as active participants in gene regulation has only recently been appreciated.  

Histones were discovered in 1884 by Albrecht Kossel. But until the early 1990s, these 

proteins, which are assembled into nucleosomes, forming beads around which the DNA is 

wrapped, were considered to be relatively inert scaffolding for packaging the genetic 

material. It is now known that histones play also a key-role in gene expression regulation, 

though post-translational modifications of histone (figure 1). In 2000, the concept of a 

‘histone code’ emerged [1]. 

The histones' amino-terminal tails extend away from the central core, and are thus available 

for reversible acetylation, methylation, phosphorylation, ADP-ribosylation, and 

ubiquitination (figure 2). Histone modifications interact with DNA methylation to mark genes 

for silencing or transcription. By reading the combinatorial and/or sequential histone 

modifications that constitute the histone code (table 1), it was thought that it might be 

possible to predict which gene products will be transcribed and thus determine a cell's RNA 

repertoire and ultimately its proteome, just as reading the DNA code allows us to predict the 

encoded protein sequence. However, some gene loci present both histone 3 lysine 4 

trimethylation (H3K4me3), associated with transcriptional activation and histone 3 lysine 27 

trimethylation (H3K27me3), and linked with repression. These bivalent domains are posited 

to be poised for either up- or downregulation and to provide an epigenetic blueprint for 

lineage determination [2], and are usually found in stem cells. 

 These post-translational modifications (PTM) undergone by histones have a profound effect 

on the remodeling of chromatin. Two distinct chromatin states can be distinguished: 

condensed “closed” heterochromatin, and de-condensed “open” euchromatin. The change 

from transcriptionally silenced heterochromatin to gene expression euchromatin is 

mediated by posttranslational modifications of histones and uses of distinct histone variants.  
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Histone lysine methylation 

Histone methylation is an epigenetic mark actively studied in recent years. On about 11 000 

articles referenced in Pubmed since 1964, more than half of them have been published 

during the last four years.  

The most well-characterized histone methylation appears on lysine [3,4]. Histone lysine 

methylation occurs primarily on histone H3 at lysines 4, 9, 14, 18, 23, 27, 36 and 79 and on 

histone H4 at lysine 20 [4–6]. A number of these methylation events have been linked to 

transcriptional regulation, including those at H3 lysines 4, 36 and 79 (associated with active 

transcription) and those at H3 lysines 9 and 27 (associated with gene repression and 

heterochromatin formation) [3,7]. Unlike acetylation and phosphorylation, which in addition 

to recruit proteins to chromatin can also directly affect chromatin structure by altering the 

histone charge, lysine methylation does not alter the charge of the residue and is therefore 

thought to primarily modulate chromatin structure through the recruitment of distinct 

reader proteins that possess the ability to facilitate transcriptional activation or repression 

[3,4,6,8].  

Lysine residues can be modified with up to three methyl groups (mono-, di- and 

trimethylation) on the epsilon amine of the side-chain (figure 3). Importantly, reader 

domains can distinguish between the different methyl states producing distinct functional 

outcomes [3,4,6,8]. These observations demonstrate the complexity and fine level of control 

that lysine methylation contributes to chromatin function and transcriptional regulation.   

Among activation marks, trimethylation at lysine 4 of histone H3 (H3K4me3) is the 

prominent methyllysine species at active promoter regions  [9–13]. This mark plays a major 

role in transcription initiation, notably in recruiting the general transcription factors, or in 

mediating interactions with RNA polymerase associated proteins [6].  H3K36 methylation, 

meanwhile, primarily exists with the lower methylation states (H3K36me1 and -me2) 

present near 5′ regions and higher methylation states (H3K36me2 and -me3) at the 3′ ends 

of genes [11,14]. The role of H3K36 methylation is also quite diverse and has been shown to 

be involved in numerous functions including transcription, mRNA splicing, DNA replication 

and DNA repair [15,16]. Its function that has been most well defined is its role in 

transcription elongation. Another modification found in gene bodies is methylation of 

H3K79, however, unlike H3K36 methylation, its role in actively transcribed genes is less clear. 

It may act as a protection from silencing [6]. 
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At opposite, histone H3 lysine 9 methylation (H3K9) has been correlated with 

heterochromatin formation and transcriptional repression, making the methylation state of 

lysine 9 an interesting marker of transcriptional activity. H3K9me3 binds heterochromatin 

protein 1 (HP1) to constitutive heterochromatin [17]. HP1 is responsible for transcriptional 

repression and the actual formation and maintenance of heterochromatin. H3K9me2 is a 

characteristic mark of the inactivated X chromosome (Xi) [18,19].  H3K9 methylation is also 

involved in cell reprogramming, or cancer. H3K27 methylation is also another epigenetic 

repressive mark, which plays a major role in a plethora of cellular processes, such as stem 

cell renewal, cell fate, reprogramming, cancer, inflammation. 

 

Histone arginine methylation 

As lysine, arginine on histone can also be methylated. The addition of one or two methyl 

groups on arginine residues results in three different methylation states: monomethylated, 

asymmetrically dimethylated or symmetrically dimethylated arginine. The methyl groups are 

deposited by protein arginine methyltransferases (PRMTs). Histone arginine methylation 

associates with both active and repressed chromatin states depending on the residue 

involved and the status of methylation [20]. This process is involved in several cellular 

processes such as transcription, RNA processing, signal transduction and DNA repair. 

Besides, it is now clear that there is cross-talk between arginine and lysine methylation: this 

has been termed “arginine/lysine-methyl/methyl switch” [21,22] 

 

 

Histone methyltransferases and demethylases 

There are currently more than 60 predicted lysine methyltransferases and 30 predicted 

lysine demethylases in the human genome [23–25].  

Histone methyltransferase (HMT) activity towards lysine (and arginine) residues is found in a 

family of enzymes with a conserved catalytic domain called SET (Suppressor of variegation, 

Enhancer of Zeste, Trithorax). The human genome encodes 49 SET domain-containing 

proteins and the histone lysine methyltransferase DOT1L, which does not contain a SET 

domain (table 2). The importance of HMTs for embryonic development has been 

demonstrated in numerous mouse knockout studies [26]. In addition, misregulation of HMTs 

has been linked to diseases or cancer aggressiveness. In particular, the Polycomb group 
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transcriptional repressor EZH2 (methylase of H3K27), is overexpressed in many different 

types of cancer [27], and has been proposed as a molecular marker of some cancer 

progression and metastasis [28–33]. 

In 2004, the first histone demethylase (HDM) has been discovered, and called LSD1 (lysine-

specific demethylase 1). Since, more than 20 demethylases have been identified and 

characterized (table 3). They belong to either the LSD family or the JmjC family, 

demonstrating the reversibility of all methylation states at almost all major histone lysine 

methylation sites (table 3). The identification of these histone demethylases (HDMs) has 

completely changed our initial view of histone methylation as a permanent, heritable mark 

[34]. The presence of both histone methyltransferases and demethylases in the same 

complexes permits modifying of chromatin marks and subsequently switching of 

transcriptional states from silenced to activated status or vice-versa. Thus, a tight regulation 

of the expression, activity and recruitment of HMTs and HDMs is necessary. A deregulation 

of their activity or expression might modify the transcriptional balance, and lead to 

inappropriate gene expression programs that in turn could induce human disease (table 1 in 

supplementary material). In particular, the histone methylase EZH2 plays a major role in cell 

fate and cancer development, and appear now as a promising target for treat some diseases.  

 

 

Role of the lysine methyltransferase EZH2  

The methyltransferase Polycomb Group (PcG) protein Enhancer of zeste homolog 2 (EZH2), 

also called KMT6, is the catalytic subunit of the Polycomb Repressor Complex 2 (PRC2). Its C-

terminal SET domain exhibits methyltransferase activity, leading to repress gene 

transcription by silencing target genes through methylation of histone H3 on lysine 27 

(H3K27me3) [35]. In addition to methylation of H3K27, EZH2 has been shown to methylate 

cellular proteins and act as a co-activator of steroid hormone receptors [36]. This function is 

hypothesized to be independent of PRC2 and potentially induced by phosphorylation of 

EZH2 [36,37]. Besides its ability of methylate H3K27, EZH2 has recently been described to 

methylate lysine 120 of histone H2B which competes with ubiquitination on this site [38].  

EZH2 is post-translationnaly regulate by O-linked N-acetylglucosamine (GlcNAc) transferase 

(OGT)-mediated O-GlcNAcylation at S75, which stabilizes EZH2 and hence facilitates the 

formation of H3K27me3 [39].  
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Unlike other SET domains, the methylase EZH2 is inactive on its own for histone substrates. 

To be functional, EZH2 need to  form the PRC2 complex (figure 4) by interacting with other 

partners, including embryonic ectoderm development (EED), suppressor of zeste 12 

homologue (SUZ12), and RBAP48/RBBP4 [40–43]. Collectively, these proteins regulate vital 

cellular processes, such as differentiation, cell identity, stem-cell plasticity, and proliferation 

[44–46]. As a result, aberrations in any PRC2 component can have powerful physiologic 

consequences on the cell.  

 

EZH2, stem cells and reprogramming 

EZH2 plays a central role in stem cells. Recent report showed that Ezh2 is important for 

establishing ES cell lines from blastocysts [47–49]. Additionally, Ezh2 is required for efficient 

somatic cell reprogramming by cell fusion and nuclear transfer [49,50]. Ezh2 is abundantly 

expressed in iPS cells (at a similar level as in ES cells), and Ezh2 knockdown severely impaired 

iPS cell generation. Proper differentiation of iPS cells and reprogrammation require, thus, 

Ezh2 [51]. However, once pluripotency is established, Ezh2 knockdown leaves the 

pluripotent phenotype of iPS cells unaffected [52]. All this indicates that Ezh2 is critical for 

induction of pluripotency, but once pluripotency is established, Ezh2 is not required 

anymore. The mechanism of EZH2 in reprogramming is still poorly known, but it has been 

recently found that Ezh2 impacts on iPS cell generation at least in part through repression of 

the CDK inhibitor Ink4a/Arf, which represents a major roadblock for iPS cell generation [52]. 

Furthermore, c-Myc, one of the iPS cell inducing factors, was recently shown to directly 

regulate the Ezh2 expression and to be required for maintaining high Ezh2 expression in ES 

cells [53].  

The role of EZH2 in reprogramming is, however, unclear. Indeed, in a recent paper[54], 

Fragola et al. generated iPS cells from MEF with a conditional Ezh2 knockout allele for the 

deletion of the catalytic Ezh2 SET domain [54]. Ezh2-deficient iPS cells, obtained using a cell-

permeable TAT-Cre recombinase, exhibited a global loss of H3K27me3, and presented a 

typical iPS cell phenotype, including ES cell-like morphology, growth, and differentiation 

potential. This result on Ezh2-deficient iPS cells contrasts other papers which showed 

essential role of EZh2 in reprogramming [51,52]. It might be explain by used methodology, in 

that Ezh2 inactivation could have occurred after reprogramming. 
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EZH2 and cell fate 

Enhancer of zeste homolog 2 also regulates expression of tissue-specific genes involved in 

cellular differentiation and developmental programs [35,55–58]. It is involved in 

differenciation of embroyonic and adult stem cells into several cell lineages (myogenesis, 

adipogenesis, osteogenesis, neurogenesis, hematopoiesis, lymphopoiesis, epidermal 

differenciation and hepatogenesis) [59]. 

For instance, EZH2 was clearly shown to act as a negative regulator of skeletal muscle 

differentiation favoring the proliferation of myogenic precursors [60–62]. This function 

results from an EZH2-dependent direct repression of genes related to myogenic 

differentiation [60] through the H3K27me3 mark deposition on the promoters of myogenic 

genes [60,63]. EZh2 is expressed early in the myotomal compartment of developing somites 

and in proliferation satellite cells and is down-regulated in terminally differentiated muscle 

cells [60]. In skeletal muscle progenitors, EZH2 is, thus, highly expressed and prevents an 

unscheduled differentiation by repressing muscle-specific gene expression. During the 

course of their differentiation, EZH2 is downregulated, favoring the expression of muscle 

specific genes, such as muscle creatine kinase (mCK), myogenin (MyoG), myh, or MyoD 

[64,65]. Furthermore, the key-role of EZH2 in control of self-renewal and safeguard of the 

transcriptional identity of skeletal muscle stem cells has been shown using mice with 

conditional ablation of Ezh2 in satellite cells. These mice have reduced muscle mass and fail 

to appropriately regenerate. These defects were associated with derepression of genes 

expressed in nonmuscle cell lineages [66]. Besides, in humans, abnormal expression of Ezh2 

is observed in the muscular disorder Duchenne muscular dystrophy [67]. 

EZH2 was also found to be involved in commitment of mesenchymal stem cells towards 

osteoblast lineage [68]. Suppression of Ezh2 activity promotes differenciation of human 

mesenchymal stem cells into osteoblasts. The mechanism might be linked to Runx2 

regulation since a striking decrease in Ezh2 mRNA levels has been found to be correlated to a 

increased Runx2 binding, suggesting that the transcription of Ezh2 is potentially negatively 

regulated by Runx2 [69]. At contrary, deletion of Ezh2 inhibits adipogenesis, by eliminating 

H3K27me3 on Wnt promoters and derepressing Wnt expression, which leads to activation of 

Wnt/b-catenin signaling [70]. These data show that Ezh2 facilitates adipogenesis whereas it 

suppresses osteogenesis. 
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EZH2 and immune system 

EZH2 plays also a role in immune system, for both T and B cell development. Ezh2 is most 

abundant at sites of embryonic lymphopoiesis, such as fetal liver and thymus [71].  

In B cell progenitors, Ezh2 expression is downregulated during differenciation. It is the 

highest in pro-B cells and very low in mature recirculating B cells (Su et al., 2002). Up-

regulation of Ezh2 in proliferating human germinal center B cells (centroblasts) [72] and 

mitogen-stimulated lymphocytes [73] suggested an important role for this histone methylase 

in B cell division and activation. This is further supported by the association of EZH2 with 

Vav, one of the key regulators of the receptor-mediated signaling in lymphocytes [74]. But 

the major proof of a critical role for Ezh2 in early B cell development and rearrangement of 

the immunoglobulin heavy chain gene (Igh) has been established, in 2002, using Cre-

mediated conditional mutagenesis. Ezh2 deficiency leads to diminished generation of pre-B 

cells and immature B cells in the bone marrow. Defective B cell development cannot be 

restored by the presence of the wild-type cells in the mixed bone marrow chimeras. The 

requirement for Ezh2 is development stage−specific: Ezh2  is a key regulator of histone H3 

methylation in early B cell progenitors [75].  

EZH2 is a master regulator of the germinal center (GC) B-cell phenotype [76]. It represses 

genes involved in proliferation checkpoints (e.g. CDKN1A) and in exit from the GC and 

terminal differentiation (e.g. IRF4 and PRDM1). This function is aberrantly reinforced by 

mutant EZH2Y146N lymphoma disease alleles [76]. EZH2 also established bivalent chromatin 

domains at key regulatory loci to transiently suppress GC B-cell differentiation. Beside, EZH2 

cooperates with BCL2 to generate GC derived lymphomas [76]. 

A recent study also established a functional link between this histone methyltransferase 

EZH2 and transcriptional regulation of lineage-specifying genes in terminally differentiated 

CD4(+) T cells. EZH2 inactivation specifically enhanced T helper 1 (Th1) and Th2 cell 

differentiation and plasticity. Ezh2 directly bounds Tbx21 and Gata3 genes, leading to 

substantial trimethylation at lysine 27 of histone 3 (H3K27me3) at these locus, thereby 

facilitating correct expression of these primordial genes in differentiating Th1 and Th2 cells. 

Additionally, Ezh2 deficiency leads to spontaneous generation of a small IFN-γ and Th2 

cytokine-producing populations in non-polarizing cultures, and under these conditions, IFN-γ 

expression was largely dependent on increased expression of the transcription factor 
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Eomesodermin. Besides, in vivo, in a model of allergic asthma,  Ezh2   loss results in 

exacerbated pathology with a progressive accumulation of memory phenotype Th2 cells 

[77]. 

 

EZH2 and cancer 

Among EZH2 roles, its implication in cancer is the most studied: more than 70% of articles 

referenced in Pubmed for “Ezh2” term, are related to cancer. Alterations in EZH2 were first 

discovered in breast and prostate cancer, where amplification and overexpression first 

implied it may function as an oncogene [28,31]. Since, increasing evidence demonstrates 

that EZH2 is not only aberrantly expressed in several types of human cancers, but often 

behaves as a molecular biomarker of poor prognosis [27,28,31,78–84]. The role of EZH2 in 

cancer development was initially validated both in vitro and in vivo, with EZH2 

overexpression proving sufficient to drive proliferation in cancer cells and transform primary 

fibroblasts [27,85].  

 

Overexpression of EZH2 has now been found in a number of human cancers, such as 

prostate cancers, gastric cancers, breast cancer, renal cancer, colorectal cancer, non small 

cell lung cancer, squamous cell carcinomas, urothelial carcinomas in addition to synovial 

sarcomas, chondrosarcoma, lymphomas and melanomas [31,86–91]. EZH2 expression is 

correlated with aggressiveness, metastasis, and poor prognosis in most of these cancers. 

Elevated expression of EZH2 has, also, been identified as a marker for breast cancer initiating 

cells, possibly reflecting its role in maintaining “stemness” [31,92].  

In addition, several mutations, located the most often in SET domain leading to increased 

trimethylation efficiency, have been associated to cancers (table 4) [93–98]. Recurrent 

mutations of EZH2 have been found in germinal center B-cell like diffuse large B-cell 

lymphoma, follicular lymphoma, and melanoma [99]. The mutated residues alter the 

substrate specificity of EZH2 and facilitate the conversion from a dimethylated to a 

trimethylated state, thus resulting in significantly elevated global H3K27me3 levels [93,98]. 

The most frequent identified mutation appears on Y641 (mutations Y/F, Y/N, Y/H, Y/C)  

[98,100,101]. Another mutation has been identify (A677G and A687V) though these mutants 

are less prevalent in [93,102]. 
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Together this data suggests a causative role for elevated catalytic activity of EZH2 in the 

development of cancer. The functional consequence of increased EZH2 (either by 

overexpression or mutations) in cancer tissues includes the silencing of genes that promote 

differentiation and restrain proliferation.   

Nonetheless, a high expression of EZH2 and trimethylation of histone H3 at lysine 27 were 

sometimes associated with improvements in survival. Thus, increased EZH2 expression is 

correlated to better overall survival in diffuse large B-cell lymphoma and lung cancer 

[103,104]. In the same way, a recent report showed that EZH2 serves as a tumor suppressor 

in myelodysplastic syndromes, which was evidenced by EZH2 deletions, missense and 

frameshift mutations [105].  Besides, enhanced trimethylation of H3K27me3 has been 

correlated with longer overall survival and better prognosis in non-small cell lung cancer, 

breast, ovarian and pancreatic cancers [106,107]. 

 

Mechanistically, EZH2 is usually believed to function predominately as a transcriptional 

repressor that silences an array of target genes, including more than 200 tumor suppressors 

[88,108].  EZH2 is identified as a downstream mediator of the retinoblastoma protein (pRB) 

pathway-E2F pathway which controls multiple key cell-cycle regulators during cell 

proliferation in normal and cancer cells [27]. Additionally, EZH2 represses the p16, p19 and 

p15 directly or indirectly which activates the cyclin D-CDK4/6 complex and promotes 

progression through G1 phase and cell proliferation [109,110]. Furthermore, enforced 

expression of EZH2 increases cancer cell proliferation, epithelial-mesenchymal transition, 

metastatic spreading and other oncogenic properties, whereas its depletion inhibited cell 

proliferation, migration and invasion and induced cell apoptosis and senescence both in vitro 

and in vivo [87,111,112]. Besides, EZH2 could cause a rise in cell migration and invasion in 

cancer cells by regulating E-cadherin and MMP [113]. Increasing evidence also suggests that 

aberrant overexpression of EZH2 could contribute to acquired chemotherapeutic resistance 

in multiple cancers [114–116]. 

In addition to its role as a transcriptional repressor, several studies have shown that EZH2 

may also function in target gene activation [36,117,118]. Recently, Xu et al reported that 

EZH2 plays an important role in castration-resistant prostate cancer, and its oncogenic 

function does not depend on silencing but rather on transcriptional induction of its target 
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genes [36]. Many of these genes were downregulated upon EZH2 knockdown, suggesting 

that the role of EZH2 as an activator was independent of the PRC2 complex. This function is 

hypothesized to be induced by phosphorylation of EZH2 [36,37]. 

 

 

Antagonistic relationship between PRC2 and SWI/SNF 

Accumulating evidence has suggested that SWI/SNF (SWitch/Sucrose NonFermentable)  

chromatin-remodeling complex oppose epigenetic silencing by PcG proteins, and functions 

as a tumor suppressor in some cancers. This SWI/SNF complex is a multi-subunit chromatin 

remodeling complex that uses the energy of ATP hydrolysis to reposition nucleosomes, 

thereby regulating access to the DNA and modulating transcription and DNA 

replication/repair [119]. 

The activity of SWI/SNF complex can be counteracted by PcG proteins [120,121]. This 

antagonistic relationship between SWI/SNF components and PcG proteins were first 

uncovered via genetic studies in Drosophila. In 1988, mutations in core components of the 

SWI/SNF complex were found to suppress defects in body segment identity conferred by 

mutations in PcG proteins [122]. Latter, in 90’s year, it was discovered that the SWI/SNF 

complex promotes Hox gene activation during embryogenesis, while PcG proteins maintain 

their repression [123,124]. SWI/SNF is also capable of displacing PcG proteins from the 

INK4a/ARF locus [125]. 

Furthermore, there seems to be a balanced function between SWI/SNF and PcG. 

Accumulating evidence raises the possibility that the antagonistic relationship between 

these two complexes plays important roles in preventing tumor formation in mammals. 

Intriguingly, while PcG proteins are frequently overexpressed in cancers, specific inactivating 

mutations of SWI/SNF complex have been identified in several human cancers [126]. The 

most compelling case has been that of SMARCB1 (SNF5), which was discovered to be 

homozygously inactivated in nearly all rhabdoid tumors (a rare pediatric malignancy) [127]. 

Interestingly, SMARCB1-heterozygous mice develop sarcomas that closely resemble human 

rhabdoid tumors [128]. Tumorigenesis can be completely suppressed by tissue-specific 

codeletion of EZH2, suggesting an antagonistic interaction between PRC2 and SWI/SNF 

[129]. 
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EZH2 inhibitors 

As described above, most findings have established that EZH2 functions as an important 

oncogenic biomarker for cancer initiation and progression, thus leading to the hypothesis 

that blocking EZH2 expression/activity and its downstream signaling cascade may represent 

a promising strategy for novel anticancer treatment.  That’s why several groups have 

developed small-molecule inhibitors of EZH2 [130]. Over the past few years, several potent 

inhibitors of EZH2, with various selectivities, have been discovered and demonstrated 

promising preclinical results (figure 5, table 5). 

 

DZNep as an indirect inhibitor 

The first EZH2 inhibitor which was described is a cyclopentanyl analog of 3-deazaadenosine, 

called 3-Deazaneplanocin A (DZNep). It is a cyclopentanyl analog of 3-deazaadenosine that 

potently inhibits the activity of S-adenosylhomocysteine hydrolase (SAH), resulting in cellular 

accumulation of (SAH) which in turn represses the S-adenosyl-L-methionine-dependent 

histone lysine methyltransferase activities [143] (figure 5). Initially studied for its antiviral 

proprieties, recent findings indicate that DZNep is a chromatin-remodeling compound that 

induces degradation of cellular PRC2 proteins including EZH2 and concomitant removal of 

H3K27me3 mark [79,132]. 

Disruption of EZH2 by DZNep leads to the reactivation of the epigenetically silenced targets. 

This induces apoptosis, inhibits cell invasion and enhances chemotherapeutic sensitivity in 

tumoral cells, but not in normal and untransformed cells at tumor-inhibiting doses [79]. As 

DZNep has minimal toxicity in vivo [144], it may be a promising drug candidate for anti-

cancer treatment. That’s why, it has been widely examined as a possible epigenetic 

therapeutic agent for the treatment of various cancers, including lung cancer [145], gastric 

cancer [146], myeloma [133], acute myeloid leukemia [132], lymphoma [147], but also 

chondrosarcoma [91]. DZNep-induced inhibition of EZH2 dramatically diminished the 

number and self-renewal capacity of cancer cells with tumor-initiating properties and 

significantly decreased tumor xenograft growth and improved survival [134,148]. 

DZNep selectively induced apoptosis in cancer cells but not in normal cells by preferential 

reactivation of genes repressed by PRC2 including the apoptosis effector FBOX32 [79]. EZH2 
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depletion induced not only cell cycle arrest and apoptosis, but also cell senescence. EZH2 

decrease triggered simultaneous remarkable gains of two senescence-associated regulators 

p16 and p21. These data suggest that DZNep exerts its anticancer roles partially through 

inducing cell apoptosis and senescence and inhibiting cell proliferation [149]. Interestingly, 

DZNep also reduces tumoral cell migration and invasion, in part through upregulating E-

cadherin [150]. 

These findings suggested DZNep may be a promising therapeutic agent for cancer treatment 

through multiple mechanisms. Besides its antitumoral role, DZNep has been reported to 

modulate allogeneic T cell responses and may represent a novel therapeutic approach for 

treatment of graft versus host disease [151]. DZNep also promotes erythroid differentiation 

of K562 cells, presumably through a mechanism that is not directly related to EZH2 inhibition  

[152], suggesting that this inhibitor may also be exploited for therapeutic applications for 

hematological diseases, including anemia. 

 

SAM-competitive inhibitor 

Because DZNep is not totally specific to EZH2, significant efforts have been made over the 

past few years to obtain compounds that are potent and highly selective for EZH2 (table 6) 

[99,138,140,141,153]. To identify inhibitors of EZH2 methyltransferase activity, high-

throughput biochemical screening experiments have been performed. Although the 

structure of the EZH2 active site has not yet been determined, the conserved SET domain 

architecture predicts two essential binding pockets: one for the SAM methyl donor and 

another for the Lys27 substrate. Because more than 50 SET domain proteins have been 

identified in humans thus far, the selectivity of the inhibitors is crucial for minimizing off-

target effects [154]. From the end of 2012, several SAM-competitive inhibitors were 

announced with promising preclinical results [153] (figure 5, table 6). 

The compound EPZ005687 has a Ki value of 24 nmol/L and is over 500-fold more selective for 

EZH2 versus 15 other PMTs and 50-fold more selective for EZH2 versus the closely related 

enzyme EZH1 [138]. Interestingly, EPZ005687 can also inhibit H3K27 methylation induced by 

the EZH2 mutants Y646 and A682, and it has been shown to selectively kill lymphoma cells 

that are heterozygous for one of these EZH2 mutations, with minimal effect on the 

proliferation of wild-type cells [138]. Another EZH2 inhibitor developed by Epizyme Inc. is 

EPZ-6438 (also called E7438). It shares similar in vitro properties (i.e. mechanism of action, 

http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3914023/table/tbl2/
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specificity, and cellular activity) as EPZ005687, but it demonstrates significantly improved 

pharmacokinetic properties, including good oral bioavailability in animals.  Interestingly, oral 

dosing of EPZ-6438 leads to potent in vivo target inhibition and antitumor activity in a 

SMARCB1-deleted malignant rhabdoid tumor xenograft model (21). The ability of EPZ-6438 

to reduce global H3K27Me3 levels was further demonstrated in several other human 

lymphoma cell lines, including lines expressing either wild-type or mutant EZH2. This 

compound is currently under study in a phase 1/2 trial as a single agent in subjects with 

advanced solid tumors or with B cell lymphomas. The primary goal of the phase 1 trial is to 

establish the safety and define the maximal tolerated dose of the drug.  

EI1, another inhibitor of EZH2, was developed by Novartis [140] and shows very good 

selectivity with a low Ki value (approximately 13 nmol/L). Loss of the H3K27 methylation 

function and activation of PRC2 target genes have been observed in EI1-treated cells. EI1 is 

equally active against both wild type and the Y646 mutant form of EZH2, and the inhibition 

of the EZH2 Y646 mutant in B-cell lymphomas decreases the H3K27 methylation level 

genome-wide and activates PRC2 target genes, leading to decreased proliferation, cell cycle 

arrest, and apoptosis [140]. 

Another EZH2 inhibitor is GSK126 (developed by GlaxoSmithKline), which has a Ki of 0.5–3 

nmol/L [99]. The selectivity of GSK126 for EZH2 is more than 1000-fold higher than its 

selectivity for 20 other human methyltransferases containing SET or non-SET domains, and it 

is over 150-fold more selective for EZH2 than for EZH1. McCabe et al. showed that the 

compound GSK126 decreased global methylation at H3K27 and reactivated silenced PRC2 

target genes in EZH2-mutant diffuse large B-cell lymphoma (DLBCL) cell lines [99]. 

Furthermore, this compound effectively inhibited the proliferation of the EZH2-mutant 

DLBCL cells, and suppressed tumor growth in a mouse xenograft model. 

UNC1999, an analogue of GSK126, is the first orally bioavailable inhibitor that has high in 

vitro potency against wild type and mutant EZH2 over a broad range of epigenetic and non-

epigenetic targets. As GSK126, UNC1999 potently reduced H3K27me3 levels in cells (IC50<50 

nmol/L) and selectively killed DLBCL cell lines harboring the Y646N mutation [141]. However, 

UNC1999 shows less selectivity for EZH1 than the inhibitors mentioned above.  

 

Stabilized α-helix of EZH2 (SAH-EZH2) 
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Most recently, Kim et al. developed a peptide called stabilized α-helix of EZH2 (SAH-EZH2), 

which inhibits EZH2 inhibition by a different mechanism from previous inhibitors [142]. SAH-

EZH2 selectively disrupts the contact between EZH2 and EED, another subunit in the PRC2 

complex, whereas the other EZH2 inhibitors target the HMT catalytic domain (figure 5). As in 

the case of GSK126, SAH-EZH2 decreases the H3K27 trimethylation level, resulting in growth 

arrest of PRC2-dependent MLL-AF9 leukemia cells (table 6). 

 

 

Future perspective 

Due to frequent activation of EZH2 in cancers, these new targeted therapies hold exciting 

promise in the clinic. Indeed, as discusses above, several reports have shown that genetic 

silencing and pharmacologic inhibition of EZH2 induced cell apoptosis, inhibited cell invasion 

and tumor angiogenesis, ultimately suppressed cancer growth and progression [155,156]. 

More importantly, given the advantages of specific chemical compounds including 

convenient to use and reversible nature of epigenetic modifications behind carcinogenesis, 

administration of small molecules targeting EZH2 seems to be a plausible and appealing way 

as a novel anti-cancer strategy [157]. However, the down-regulation of the EZH2 causes the 

hepatocytes to become more susceptible to lipid accumulation and inflammation. 

Significantly, from a translational point of view, because EZH2 inhibitors are potential and 

promising drugs useful in the treatment of various types of cancer, the patients who will be 

eventually treated with them should be monitored for the induction of non-alcoholic fatty 

liver disease (NAFLD) as a potential side effect [158]. 

 

Executive summary 

- Histone modifications and histone code: Post-translational modifications of histone play a 

major role in transcriptional control and normal development, and are tightly regulated 

(histone code).  

-  Role of the lysine methyltransferase EZH2:  

* H3K27 methylation is a major epigenetic mark, related to gene silencing, and its control by 

HMTs (EZH2) and HDMs (JMJD3 and UTX) is a major regulator of cell physiology 

(reprogrammation, cell differentiation, immune system, cancers…). 

* EZH2 is overexpressed or mutated in numerous types of cancers. 
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- EZH2 inhibitors: EZH2 inhibitors are promising anticancer drugs 

 

Defined key-terms 

1) A current search of the PubMed database for the term ‘epigenetic’ returns more 

than 33 000 papers, with about half of them published during the past 4 years, 

marking an explosion of research efforts on this topic. Striking is the diversity of 

biological processes that are described in these articles, including fundamental 

aspects of development, cell fate or reprogramming in diverse organisms, as well as 

basic mechanisms of transcriptional control or DNA damage repair. Thus, epigenetic, 

through the modulation of genetic information, plays roles in fundamental life 

processes, such as cell proliferation, cell development, cell fate, or decision between 

cell survival and cell death.  

2) EZH2 (Enhancer of Zeste Drosophila Homolog 2) was initially cloned in 1996. This 

genes located on human chromosome 21 encodes a histone methyltransferase and 

constitutes the catalytic component of the polycomb repressive complex-2 (PRC2). 

EZH2 specifically methylates the histone H3 at lysine-27 (H3K27). It plays a major role 

in a plethora of biological processes, including development, cell fate or 

reprogramming, as well as regulation of immune system or cancers. 
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Figures  

 

 

 

 

Figure 1: Schema of nucleosome organization 

The fundamental DNA packing unit is known as a nucleosome. Each nucleosome is about 

11nm in diameter. The DNA double helix wraps around a central core of eight histone 

protein molecules (an octamer containing 2 H2A, 2 H2B, 2 H3 and 2 H4) to form a single 

nucleosome. The N-terminal “tail” of these histones can undergo post-translational 

modifications (acetylation, methylation or phosphorylation). 
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Figure 2: Schematic representation of major histone modifications 

Histone modifications mainly occur on the N-terminal tails of histones but also on the C-

terminal tails and globular domains. The major modifications shown include acetylation (A), 

methylation (M), phosphorylation (P) and ubiquitination (U).  
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Figure 3: Methyl group transfer reaction on lysine 

The lysine amino group of the substrate histone polypeptide engages in a SN2 reaction with 

the activated co-factor S-adenosyl-L-methionine (SAM), resulting in the formation of an N-

methylated lysine and S-adenosyl-L-homocysteine (SAH). 
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Figure 4: Schematic representation of PRC2 complex.  

(A) Domain organizations of each subunit in the human PRC2 complex.  

Domain “1”, binding region for PHF1 in human cells; domain “2”, binding region for SUZ12; 

CXC, cysteine-rich domain; SANT, domain that allows chromatin remodeling protein to 

interact with histones; SET, catalytic domain of EZH2; VEFS, VRN2-EMF2-FIS2-SUZ12 domain; 

WD, WD-40 domain; WDB, WD-40 binding domain; Zn, Zn-finger region.  

(B) The subunits of human PRC2 complexes, their interactions, and shematic function of 

PRC2 are shown.  
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Figure 5: Modes of inhibition of PRC2. 

Three types of inhibitors are indicated: DZNep as an SAH hydrolase inhibitor, SAM 

competitive inhibitors, and SAH-EZH2 peptides as disrupters of the contact between EZH2 

and EED. 
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Tables 

Table 1: The histone code.1 

 

 Methylation 
Acetylation Ubiquitination 

 
Mono-methylation di-methylation tri-methylation 

H2AK119 - - - - repression 

H2BK5 activation - repression - - 

H3K4 activation activation activation - - 

H3K9 activation repression repression activation - 

H3K14 - - - activation - 

H3K18 - - - activation - 

H3K27 activation repression repression activation - 

H3K36 repression activation activation - - 

H3K56 - - - activation - 

H3K79 activation activation 
activation 

repression 
- - 

H4K12 - - - activation - 

H4K20 activation 
 

repression - - 

  

                                                           
1 For each post-translational modification, the known functional association on gene 

transcription is shown. By reading the combinatorial and/or sequential histone modifications 

that constitute the histone code, it may be possible to predict which gene products will be 

transcribed. However, this code is controversial, since some gene loci present marks both 

associated with transcriptional activation and linked with repression. These bivalent domains 

are posited to be poised for either up- or downregulation and to provide an epigenetic 

blueprint for lineage determination, and are usually found in stem cells. 
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Table 2: Histone target substrates and domain structure of histone lysine 

methyltransferases. 2 

                                                           
2 For each protein, the official name as well as the most commonly used synonyms, the 

histone target substrates and domain structure are provided.  

SET: Suppressor of variegation, Enhancer of Zeste, Trithorax domain; pre/post-SET: cysteine-

rich motifs found adjacent to a subset of SET domains; PHD: plant homeodomain zinc finger; 

ANK: ankyrin repeats; AT hook: A/T DNA binding motif; C2H2 Znf: C2H2-type zinc finger; 

HMG: high mobility group; SANT: SWI3, ADA2, N-CoR and TFIIIB DNA-binding domain; CxxC: 

CxxC zinc finger; MBD: methyl CpG binding domain.  

 

 Synonyms Protein structure Histone substrates 

With 
SET 

domain 

MLL, KMT2A 
 

H3K4me1/2/3 

MLL2, KMT2D 
 

H3K4me1/2/3 

SETD1A, SET1A, 
KMT2F  

H3K4me1/2/3 

SET1D1B, SET1B, 
KMT2G  

H3K4me1/2/3 

MLL4, KMT2B 
 

H3K4me1/2/3 

MLL3, HALR, KMT2C 
 

H3K4me1/2/3 

EZH2, KTM6A, KTM6 
 

H3K27me2/3 

EZH1, KTM6B 
 

H3K27me2/3 

NSD2, WHSC1, 
MMSET  

H3K36me3 

NSD3, WHSC1L 
 

  

NSD1, KMT3B 
 

H3K36me2/3 

SET2, HYPB, SETD2 
 

H3K36me3 

ASH1L 
 

H3K4me3 

SUV39H1, KTM1A 
 

H3K9me2/3 

SUV39H2, KTM1B 
 

H3K9me2/3 

EHMT2, G9A 
 

H3K9me1/2 

EHMT1, GLP1 
 

H3K9me1/2 

SETDB1, ESET 
 

H3K9me2/3 

SETDB2, CLL8 
 

  

SETMAR 
 

  

SETD8, PR-SET7 
 

H4K20me1 

SMYD4 
 

  

MLL5, KMT2E 
 

  

SETD5 
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SETD7, SET7/9 
 

H3K4me1 

SETD4 
 

  

SUV4-20H1, KMT5B 
 

H4K20me2/3 

SUV4-20H2, KMT5C 
 

H4K20me2/3 

SMYD5 
 

  

SETD3 
 

  

SETD6 
 

  

SMYD1, KMT3D 
 

  

SMYD2, KMT3C 
 

H3K36me2 

H3K4 

SMYD3, KMT3E 
 

H3K4me2/3 

PRMD1, BLIMP1 
 

  

PRDM14 
 

  

PRDM9, MEISETZ 
 

H3K4me3 

PRDM11, PFM8 
 

  

PRDM4, PFM1 
 

  

PRDM15, PFM15 
 

  

PRDM6, PFM3 
 

  

PRDM12, PFM9 
 

  

PRDM5, PFM2 
 

  

PRDM8, PFM5 
 

  

PRDM13, PFM10 
 

  

PRDM3, PDS1-EVl1 
 

  

PRDM6, MEL1, PFM3 
 

  

PRDM2, RIZ1, KMT8 
 

H3K9 

Without 
SET 

domain 
DOT1L, KMT4 

 

H3K79 
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Table 3: Histone target substrates and domain structure of histone lysine 

demethyltransferases. 3 

  
Synonyms Protein structure Histone substrates 

Other 
substrates 

LSD 
demethylases 

LSD1, KDM1A, 
AOF2, BHC110 

 

H3K4me1, H3K4me2 p53, E2F1, 
DNMT1 H3K9me1, H3K9me2 

LSD2, KDM1B, 
AOF1  

H3K4me1, H3K4me2   

JMJC 
demethylases 

JMJD7 
 

    

HIF1AN 
 

    

HSPBAP1 
 

    

JMJD5, KDM8 
 

H3K36me2   

JMJD4 
 

    

JMJD6, PSR, 
PTDSR  

H3R2 
 

H4R3   

JMJD8 
 

    

FBXL10, 
JHDM1B, KDM2B 

 

H3K36me1, H3K36me2 
  

H3K4me3 

FBXL11, 
JHDM1A, KDM2A  

H3K36me1, H3K36me2 NFkB (p65) 

KIAA1718, 
JHDM1D  

H3K9me1, H3K9me2   

H3K27me1, H3K27me2   

PHF8, JHDM1F 
 

H3K9me1, H3K9me2   

                                                           
3 For each protein, the official name as well as the most commonly used synonyms, the 

histone target specificities and domain structure are provided. Structural domains are 

annotated. 

ARID: AT-rich interacting domain:amine oxidase: amine oxidase domain; C5HC2: C5HC2 zinc-

finger domain; CXXC: CXXC zinc-finger domain; DNMT1: DNA methyltransferase 1; FBOX: F-

box domain; FBXL: F-box and Leu-rich repeat protein; HIF1AN: hypoxia-inducible factor 1A 

inhibitor; HR: hairless domain; HSPBAP1: heat chock protein-associated protein 1; JARID: 

Jumonji domain-ARID-containing protein; JMJC: Jumonji C domain; LRR: Leu-rich repeat 

domain; LSD: Lys-specific demethylase; MINA: MYC induced nuclear antigen; NFkB: nuclear 

factor kB; NO66: nucleolar protein 66; PHD: plant homeodomain; SWIRM: Swi3p Rsc8p and 

Moira domain; TPR: tetratricopeptide domain; TUDOR: Tudor domain; UTX: ubiquitously 

transcribed X chromosome tetratricopeptide repeat protein; UTY: ubiquitously transcribed Y 

chromosome tetratricopeptide repeat protein.  
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H4K20me1   

PHF2, JHDM1E 
 

H3K9me2 ARID5B 

HR 
 

    

KDM3B 
 

    

JMJD1A, 
JHDM2A, TSGA, 
KDM3A 

 

H3K9me1, H3K9me2   

JMJD1C 
 

    

JMJD3, KDM6B 
 

H3K27me2, H3K27me3   

UTX, KDM6A 
 

H3K27me2, H3K27me3   

UTY 
 

    

JMJD2A, 
JHDM3A, KDM4A 

 

H3K9me2, H3K9me3   

H3K36me2, H3K36me3   

H1.4K26me2, H1.4K26me3   

JMJD2C, 
JHDM3C, GASC1, 
KDM4C 

 

H3K9me2, H3K9me3   

H3K36me2, H3K36me3   

H1.4K26me2, H1.4K26me3   

JMJD2B, 
JHDM3B, KDM4B  

H3K9me2, H3K9me3   

H3K36me2, H3K36me3   

H1.4K26me2, H1.4K26me3   

JMJD2D, 
JHDM3D, 
KDM4D 

 

H3K9me2, H3K9me3   

H3K36me2, H3K36me3   

H1.4K26me2, H1.4K26me3   

JARID1B, PLU1, 
KDM5B 

 

H3K4me2, H3K4me3   

JARID1C, SMCX, 
KDM5C  

H3K4me2, H3K4me3   

JARID1D, SMCY, 
KDM5D  

H3K4me2, H3K4me3   

JARID1A, RBP2, 
KDM5A  

H3K4me2, H3K4me3   

JARID2 
 

    

MINA 
 

    

NO66 
 

H3K4me2, H3K4me3   

H3K36me2, H3K36me3   
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Table 4: Association between EZH2 mutations and disease.4 

 

                                                           
4 EZH2 mutations identified in association with disease are annotated below with the 

disease-associated with each mutation, the nature of the mutation, and the structural 

domain involved. The sequence is numbered in accordance with EZH2 isoform A and the 

numbering for some mutations has been transposed from the original references so that all 

mutations can be referred to relative to the same sequence. (Abbreviations: fs, frameshift; X, 

nonsense).  

 

Mutated 
domain 

Mutation Phenotype 

CXC domain 
(503-605) 

H530N Acute myeloid leukemia 

C547fs Acute myeloid leukemia 

Q553X Acute myeloid leukemia 

C571Y Myelofibrosis 

C576W Myelodysplastic syndrome, myeloproliferative neoplasms  

P577L Early T-cell precursor acute lymphoblastic leukaemia 

R583X Chronic myelomonocytic leukemia 

SET domain 
(612-727) 

V626M Werner syndrome 

K639E Werner syndrome 

Y646N, H, F, C Diffuse large B-cell lymphoma 

I651F Early T-cell precursor acute lymphoblastic leukaemia 

V662fs Myelodysplastic syndrome 

D644E 
Atypical Chronic Myeloid Leukemia, Myelodysplastic syndrome, 
myeloproliferative neoplasms  

D664V Werner syndrome 

D664fs Acute megakaryoblastic leukemia 

N673S Chronic myelomonocytic leukemia 

L647V Myelodysplastic syndrome, Acute myeloid leukemia 

N675K Refractory Cytopenia with Multilineage Dysplasia 

V679E Myelofibrosis 

A682G Lymphoma,  

A682T Werner syndrome,  neuroblastoma 

A682V Acute myeloid leukemia 

R684C Werner syndrome, Myelofibrosis 

R684H Early T-cell precursor acute lymphoblastic leukaemia 

K685fs Chronic myelomonocytic leukemia 

R690H 
Refractory Cytopenia with Multilineage Dysplasia, Chronic 
myelomonocytic leukemia 

R690C Myelodysplastic syndrome 
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A692V Diffuse large B-cell lymphoma 

N693T Acute Myelomonocytic Leukemia 

N693Y Early T-cell precursor acute lymphoblastic leukaemia, Myelofibrosis 

H694Y Werner syndrome 

H694R Chronic myelomonocytic leukemia 

S695L 
Werner syndrome, Early T-cell precursor acute lymphoblastic 
leukaemia 

I727fs Myelodysplastic/myeloproliferative neoplasm, unclassifiable 

 
 

Other domain 
 
 
 
 
 
 
 

F728fs Early T-cell precursor acute lymphoblastic leukaemia 

Y731X Chronic myelomonocytic leukemia 

Y733fs Myelodysplastic syndrome 

Y733X Werner syndrome 

Y741C Werner syndrome 

V742ins Acute myeloid leukemia 

V742D Early T-cell precursor acute lymphoblastic leukaemia 

I744fs Acute myeloid leukemia 

E745K Werner syndrome, lymphoma 

E745fs Acute myeloid leukemia 
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Table 5: Chemical structures and biochemical data for small-molecule inhibitors of EZH2  

Structure Compount 
Mechanism 
and potency 

Selectivity 
toward EZH2 

Highest 
clinical 
status 

Reférences 

 

DZNep 
SAH 

hydrolase 
inhibitor 

non selective preclinical 
[79,131–

134] 

 

GSK126 

SAM-
competive 
inhibitor of 

PRC2,  
Ki = 0,5-3 nM 

> 1000-fold over 
20 other HMTs; 

over EZH1 
preclinical [99,135] 

 

GSK343 

SAM-
competive 
inhibitor of 

PRC2,  
Ki = 0,5-3 nM 

IC50 = 4nM and 
is over 1000-fold 

selective for 
other HMTs 

except EZH1 (60-
fold selectivity) 

preclinical [136,137] 

 
 

EPZ005687 

SAM-
competive 
inhibitor of 

PRC2, 
 Ki = 24 nM 

> 500-fold over 
15 other HMTs; 
about 50-fold 

over EZH1 

preclinical [138] 

 
 

EPZ-6438 

SAM-
competive 
inhibitor of 

PRC2, 
 Ki = 0,5-3 nM 
IC50 = 11 nM 

35-fold 
selectivity versus 

EZH1 ; >4,500-
fold selectivity 
relative to 14 
other HMTs 

phase I/II [139] 
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El1 

SAM-
competitive 
inhibitor of 

PRC2  
IC50=15 nM; 

Ki=13 nM 

 
preclinical [140] 

 

UNC1999 

SAM-
competitive 
inhibitor of 

PRC2  
IC50=2-15 
nM; Ki=13 

nM  
  

over 1000-fold 
selective for 
other HMTs 

except EZH1 (22-
fold selectivity). 

preclinical [141] 

Peptide: 
FSSNRXKILXRTQILNQEWKQRRIQPV 

stabilized 
a-helix of 

EZH2 
peptide 
(SAH-
EZH2) 

Hydrocarbon-
stapled 

peptide that 
mimics the a-
helical EED-

dinding 
domain of 

EZH2, 
disrupting 
the EZH2–

EED complex 

not selective for 
EZH1 

preclinical [142] 
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Supplementary material  1 

Table 1: List of histone lysine methyltransferases and demethylases linked to disease.1 2 

  
Gene 

histone 
substrate 

Disease 
Genetic/epigenetic 
aberration 

Aberrant 
expression 

References 

h
is

to
n

e 
ly

si
n

e 
m

et
h

yl
 t

ra
n

sf
er

as
e

 

MLL H3K4 

Leukemia (AML, ALL, MLL) 
> 50 different MLL 
fusions 

  [1–7] 

Acute myeloid leukemia (AML) MLL-PTD   [8–10] 

Wiedemann-Steiner syndrome intragenic mutations   [11–13] 

MLL2 H3K4 

Hepatocellular carninoma (HCC) 
Hepatitis B virus 
integration into MLL2 : 
HBx-MLL2 fusion 

  [14] 

Acute myeloid leukemia (AML) 
(mice) 

NUP98-JARID1A   [15] 

Kabuki syndrome 1 (KABUK1) intragenic mutations   [16,17] 

MLL3 H3K4 
Leukemia     [18,19] 

Colorectal cancer Intragenic mutations   [19–22] 

DOT1L H3K79 

Leukemia (AML, ALL) 
MLL-AF10 fusion, MLL-
AF4 fusion 

  [23,24] 

T cell acute lymphoblastic 
leukemia (T-ALL) 

CALM-AF10 fusion, SET-
NUP214 fusion 

  [25,26] 

Osteoarthritis intragenic mutations   [27,28] 

EZH2 H3K27 

Bladder carcinoma   overexpression [29–36] 

Breast cancer   overexpression [29,30,37,38] 

Colorectal cancer    overexpression [29,39–45] 

Gastric cancer    overexpression [46–53] 

Hepatocellular carcinoma   overexpression [54–59] 

Lymphoma Intragenic mutations 
overexpression 
downregulation 

[60–82] 
[64] 

Myeloproliferative neoplasms Intragenic mutations 
 

[83–91] 

Rhabdoid tumors 

Intragenic mutations; 
Mutations of opposing 
chromatin modifying 
complex SWI-SNF 

 

[92–94] 
 
[95] 

Melanoma   overexpression [38,96–99] 

Prostate cancer   overexpression [100–121] 

chondrosarcoma 
 

overexpression [122] 

lung cancer 
 

downregulation [123] 

Various other cancers   overexpression [29,38] 

Weaver syndrome Intragenic mutations   [124–126] 

                                                           
1 However, in many cases the molecular mechanisms of disease development are not well 

understood yet, and it remains to be shown whether misregulation of these HMTs 

contributes to disease initiation or progression. 
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NSD1 H3K36 

Acute myeloid leukemia (AML) 
t(5;11)(q32;p15,5); 
tranlocation: NUP98-
NSD1 fusion 

  [127–138]  

Myelodysplastic syndrome t(5,11)(q35;p15,5)   [131,139] 

Beckwith-Wiedemann syndrome intragenic mutations   [140] 

Sotos syndrome 
intragenic mutations; 
5q35 microdeletions 

  [140–173] 

NSD2 H3K36 

glioblastoma multiform (GBM)   overexpression [174] 

hepatocellular carcinoma (HCC)   overexpression [175] 

leukemia   overexpression [176] 

multiple myeloma (MM) 
t(4;14)(p16;q32): altered 
expression of FGFR3, 
NSD2 

  [177,178] 

Various other cancers     [179] 

Wolf-Hirschhorn syndrome     [180] 

NSD3   acute myeloid leukemia (AML) 
t(8;11)(p11,2;p15); 
translocation: NUP98-
NSD3 fusion 

  [181] 

EHMT1 H3K9 

9q subtelomeric deletion 
syndrome / Kleefstra syndrome 

haploinsufficiency of 
EHMT1; microdeletion 
of 9q34.3: intragenic 
mutation 

downregulation [175,182–185] 

breast cancer intragenic mutations   [186] 

medulloblastoma   downregulation [187] 

SETDB1 H3K9 Huntington's disease (HD)   overexpression [188] 

SETDB2   asthma mutation   [189] 

SMYD2 
H3K4 
H3K36 

pediatric acute lymphoblastic 
leukemia 

  overexpression [190] 

esophageal squamous cell 
carcinoma 

  overexpression [191] 

hepatocellular carcinoma (HCC)   overexpression [192]  

SMYD3 H3K4 

breast cancer   overexpression [193,194] 

colorectal cancer   overexpression [195] 

hepatocellular carcinoma (HCC)   overexpression [196] 

SMYD4   
breast cancer   downregulation [197] 

medulloblastoma   downregulation [187] 

PRDM1   

lymphoma 
mutations in PRDM1 
gene, epigenetic 
silencing 

  [198–207] 

lupus erythematosus   overexpression [208–210] 

Crohn's disease intragenic mutation   [211–213] 

PRDM2 H3K9 
breast cancer 

mutations in PRDM2 
gene; promoter DNA 
methylation 

  [186,214,215] 

colorectal cancer (CRC) 
mutations in PRDM2 
gene 

  [216–218] 
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gastric cancer  
mutations in PRDM2 
genes, promoter DNA 
methylation 

  [216,218–221] 

hepatocellular carcinoma (HCC) 
promoter DNA 
methylation 

downregulation [222–226] 

lung cancer   downregulation [215,227] 

neuroblastoma   downregulation [228,229] 

PRDM5   

breast cancer 
promoter DNA 
methylation 

downregulation [230] 

colorectal and gastric cancer 
promoter DNA 
methylation 

downregulation [231] 

liver cancer 
promoter DNA 
methylation 

downregulation [230] 

PRDM8   lafora disease mutation   [232] 

PRDM9 H3K4 azoospermia, infertility mutation   [233–235] 

PRDM12   chronic myeloid leukemia (CML) 
9q microdeletions 
encompassing RRP4 and 
PRDM12 

  [236] 

PRDM14   breast cancer   overexpression [237] 

H
is

to
n

e 
d

em
e

th
yl

as
e 

LSD1 
H3K4 
H3K9 

neuroblastoma   overexpression [238] 

chondrosarcoma, Ewing's 
sarcoma, osteosarcoma   

overexpression [239] 

leukemia   overexpression [238,240–243] 

others cancers   overexpression [238,244–263] 

hypertension   downregulation [264,265] 

JMJD5 H3K36 tumors   overexpression [266] 

KDM2B 
H3K36 
H3K4 

leukemias 
  

overexpression [267] 

PHF8 
H3K9 
H4K20 

 X-linked mental retardation mutation 
  

[268–272] 

JMJD1A H3K9 
Ewing sarcoma   overexpression [273] 

kidney cancer   overexpression [274] 

JMJD3 H3K27 
hodgkin's lymphoma   overexpression [275] 

renal cell carcinoma   overexpression [276] 

UTX H3K27  
Kabuki syndrome mutation   [277–280] 

cancers mutation   [276,281–293] 

JMJD2A 
H3K9 
H3K36 
H1.4K26 

cancers   overexpression [258,294–300] 

JMJD2C 
H3K9 
H3K36 
H1.4K26 

cancers   overexpression [301–304] 

JMJD2B 
H3K9 
H3K36 
H1.4K26 

cancers   overexpression [305–310] 

KDM5B H3K4 melanoma   overexpression [311–315] 
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prostate cancer   overexpression [316] 

breast cancer   overexpression [317–322]  

KDM5C H3K4 
non-syndromic X-linked mental 
retardation 

mutation   [323–333] 

KDM5A H3K4 breast cancer   overexpression [334] 

 3 

 4 

References 5 

1.  Rapin N, Porse BT. Oncogenic fusion proteins expressed in immature hematopoietic 6 

cells fail to recapitulate the transcriptional changes observed in human AML. 7 

Oncogenesis. 3, e106 (2014). 8 

2.  Gao W, Wang T, Wu Y, Liu HX, Li YC, Chen WM. Mixed lineage leukemia-septin 5 9 

fusion transcript in de novo adult acute myeloid leukemia with t(11;22)(q23;q11.2): A 10 

case report. Oncol. Lett. 7(6), 1930–1932 (2014). 11 

3.  Krumbholz M, Jung R, Bradtke J, Reinhardt D, Stachel D, Metzler M. Response 12 

monitoring of infant acute myeloid leukemia treatment by quantification of the tumor 13 

specific MLL-FNBP1 fusion gene. Leuk. Lymphoma. , 1–10 (2014). 14 

4.  Sakamoto K, Imamura T, Yano M, et al. Sensitivity of MLL-rearranged AML cells to all-15 

trans retinoic acid is associated with the level of H3K4me2 in the RARα promoter 16 

region. Blood Cancer J. 4, e205 (2014). 17 

5.  Van der Linden MH, Willekes M, van Roon E, et al. MLL fusion-driven activation of 18 

CDK6 potentiates proliferation in MLL-rearranged infant ALL. Cell Cycle Georget. Tex. 19 

13(5), 834–844 (2014). 20 

6.  Placke T, Faber K, Nonami A, et al. Requirement for CDK6 in MLL-rearranged acute 21 

myeloid leukemia. Blood.  (2014). 22 

7.  Krivtsov AV, Armstrong SA. MLL translocations, histone modifications and leukaemia 23 

stem-cell development. Nat. Rev. Cancer. 7(11), 823–833 (2007). 24 

8.  Dorrance AM, Liu S, Chong A, et al. The Mll partial tandem duplication: differential, 25 

tissue-specific activity in the presence or absence of the wild-type allele. Blood. 26 

112(6), 2508–2511 (2008). 27 

9.  Dorrance AM, Liu S, Yuan W, et al. Mll partial tandem duplication induces aberrant 28 

Hox expression in vivo via specific epigenetic alterations. J. Clin. Invest. 116(10), 2707–29 

2716 (2006). 30 

10.  Whitman SP, Hackanson B, Liyanarachchi S, et al. DNA hypermethylation and 31 

epigenetic silencing of the tumor suppressor gene, SLC5A8, in acute myeloid leukemia 32 

with the MLL partial tandem duplication. Blood. 112(5), 2013–2016 (2008). 33 



 

48 
 

11.  Strom SP, Lozano R, Lee H, et al. De Novo variants in the KMT2A (MLL) gene causing 34 

atypical Wiedemann-Steiner syndrome in two unrelated individuals identified by 35 

clinical exome sequencing. BMC Med. Genet. 15(1), 49 (2014). 36 

12.  Mendelsohn BA, Pronold M, Long R, Smaoui N, Slavotinek AM. Advanced bone age in 37 

a girl with Wiedemann-Steiner syndrome and an exonic deletion in KMT2A (MLL). Am. 38 

J. Med. Genet. A.  (2014). 39 

13.  Jones WD, Dafou D, McEntagart M, et al. De novo mutations in MLL cause 40 

Wiedemann-Steiner syndrome. Am. J. Hum. Genet. 91(2), 358–364 (2012). 41 

14.  Saigo K, Yoshida K, Ikeda R, et al. Integration of hepatitis B virus DNA into the 42 

myeloid/lymphoid or mixed-lineage leukemia (MLL4) gene and rearrangements of 43 

MLL4 in human hepatocellular carcinoma. Hum. Mutat. 29(5), 703–708 (2008). 44 

15.  Wang GG, Song J, Wang Z, et al. Haematopoietic malignancies caused by dysregulation 45 

of a chromatin-binding PHD finger. Nature. 459(7248), 847–851 (2009). 46 

16.  Hannibal MC, Buckingham KJ, Ng SB, et al. Spectrum of MLL2 (ALR) mutations in 110 47 

cases of Kabuki syndrome. Am. J. Med. Genet. A. 155A(7), 1511–1516 (2011). 48 

17.  Ng SB, Bigham AW, Buckingham KJ, et al. Exome sequencing identifies MLL2 mutations 49 

as a cause of Kabuki syndrome. Nat. Genet. 42(9), 790–793 (2010). 50 

18.  Chen C, Liu Y, Rappaport AR, et al. MLL3 is a haploinsufficient 7q tumor suppressor in 51 

acute myeloid leukemia. Cancer Cell. 25(5), 652–665 (2014). 52 

19.  Li W-D, Li Q-R, Xu S-N, et al. Exome sequencing identifies an MLL3 gene germ line 53 

mutation in a pedigree of colorectal cancer and acute myeloid leukemia. Blood. 54 

121(8), 1478–1479 (2013). 55 

20.  Sjöblom T, Jones S, Wood LD, et al. The consensus coding sequences of human breast 56 

and colorectal cancers. Science. 314(5797), 268–274 (2006). 57 

21.  Je EM, Lee SH, Yoo NJ, Lee SH. Mutational and expressional analysis of MLL genes in 58 

gastric and colorectal cancers with microsatellite instability. Neoplasma. 60(2), 188–59 

195 (2013). 60 

22.  Watanabe Y, Castoro RJ, Kim HS, et al. Frequent alteration of MLL3 frameshift 61 

mutations in microsatellite deficient colorectal cancer. PloS One. 6(8), e23320 (2011). 62 

23.  Okada Y, Feng Q, Lin Y, et al. hDOT1L links histone methylation to leukemogenesis. 63 

Cell. 121(2), 167–178 (2005). 64 

24.  Krivtsov AV, Feng Z, Lemieux ME, et al. H3K79 methylation profiles define murine and 65 

human MLL-AF4 leukemias. Cancer Cell. 14(5), 355–368 (2008). 66 

25.  Okada Y, Jiang Q, Lemieux M, Jeannotte L, Su L, Zhang Y. Leukaemic transformation by 67 

CALM-AF10 involves upregulation of Hoxa5 by hDOT1L. Nat. Cell Biol. 8(9), 1017–1024 68 

(2006). 69 



 

49 
 

26.  Van Vlierberghe P, van Grotel M, Tchinda J, et al. The recurrent SET-NUP214 fusion as 70 

a new HOXA activation mechanism in pediatric T-cell acute lymphoblastic leukemia. 71 

Blood. 111(9), 4668–4680 (2008). 72 

27.  Evangelou E, Valdes AM, Castano-Betancourt MC, et al. The DOT1L rs12982744 73 

polymorphism is associated with osteoarthritis of the hip with genome-wide statistical 74 

significance in males. Ann. Rheum. Dis. 72(7), 1264–1265 (2013). 75 

28.  Castaño Betancourt MC, Cailotto F, Kerkhof HJ, et al. Genome-wide association and 76 

functional studies identify the DOT1L gene to be involved in cartilage thickness and 77 

hip osteoarthritis. Proc. Natl. Acad. Sci. U. S. A. 109(21), 8218–8223 (2012). 78 

29.  Bracken AP, Pasini D, Capra M, Prosperini E, Colli E, Helin K. EZH2 is downstream of 79 

the pRB-E2F pathway, essential for proliferation and amplified in cancer. EMBO J. 80 

22(20), 5323–5335 (2003). 81 

30.  Collett K, Eide GE, Arnes J, et al. Expression of enhancer of zeste homologue 2 is 82 

significantly associated with increased tumor cell proliferation and is a marker of 83 

aggressive breast cancer. Clin. Cancer Res. Off. J. Am. Assoc. Cancer Res. 12(4), 1168–84 

1174 (2006). 85 

31.  Friedman JM, Jones PA, Liang G. The tumor suppressor microRNA-101 becomes an 86 

epigenetic player by targeting the polycomb group protein EZH2 in cancer. Cell Cycle 87 

Georget. Tex. 8(15), 2313–2314 (2009). 88 

32.  Arisan S, Buyuktuncer ED, Palavan-Unsal N, Caşkurlu T, Cakir OO, Ergenekon E. 89 

Increased expression of EZH2, a polycomb group protein, in bladder carcinoma. Urol. 90 

Int. 75(3), 252–257 (2005). 91 

33.  Raman JD, Mongan NP, Tickoo SK, Boorjian SA, Scherr DS, Gudas LJ. Increased 92 

expression of the polycomb group gene, EZH2, in transitional cell carcinoma of the 93 

bladder. Clin. Cancer Res. Off. J. Am. Assoc. Cancer Res. 11(24 Pt 1), 8570–8576 (2005). 94 

34.  Wang H, Albadine R, Magheli A, et al. Increased EZH2 protein expression is associated 95 

with invasive urothelial carcinoma of the bladder. Urol. Oncol. 30(4), 428–433 (2012). 96 

35.  Hinz S, Kempkensteffen C, Christoph F, et al. Expression of the polycomb group 97 

protein EZH2 and its relation to outcome in patients with urothelial carcinoma of the 98 

bladder. J. Cancer Res. Clin. Oncol. 134(3), 331–336 (2008). 99 

36.  Weikert S, Christoph F, Köllermann J, et al. Expression levels of the EZH2 polycomb 100 

transcriptional repressor correlate with aggressiveness and invasive potential of 101 

bladder carcinomas. Int. J. Mol. Med. 16(2), 349–353 (2005). 102 

37.  Kleer CG, Cao Q, Varambally S, et al. EZH2 is a marker of aggressive breast cancer and 103 

promotes neoplastic transformation of breast epithelial cells. Proc. Natl. Acad. Sci. U. 104 

S. A. 100(20), 11606–11611 (2003). 105 



 

50 
 

38.  Bachmann IM, Halvorsen OJ, Collett K, et al. EZH2 expression is associated with high 106 

proliferation rate and aggressive tumor subgroups in cutaneous melanoma and 107 

cancers of the endometrium, prostate, and breast. J. Clin. Oncol. Off. J. Am. Soc. Clin. 108 

Oncol. 24(2), 268–273 (2006). 109 

39.  Mimori K, Ogawa K, Okamoto M, Sudo T, Inoue H, Mori M. Clinical significance of 110 

enhancer of zeste homolog 2 expression in colorectal cancer cases. Eur. J. Surg. Oncol. 111 

J. Eur. Soc. Surg. Oncol. Br. Assoc. Surg. Oncol. 31(4), 376–380 (2005). 112 

40.  Wang J, Ma Z-B, Li K, Guo G-H. Association between EZH2 polymorphisms and 113 

colorectal cancer risk in Han Chinese population. Med. Oncol. Northwood Lond. Engl. 114 

31(3), 874 (2014). 115 

41.  Tamagawa H, Oshima T, Numata M, et al. Global histone modification of H3K27 116 

correlates with the outcomes in patients with metachronous liver metastasis of 117 

colorectal cancer. Eur. J. Surg. Oncol. J. Eur. Soc. Surg. Oncol. Br. Assoc. Surg. Oncol. 118 

39(6), 655–661 (2013). 119 

42.  Fornaro L, Crea F, Masi G, et al. EZH2 polymorphism and benefit from bevacizumab in 120 

colorectal cancer: another piece to the puzzle. Ann. Oncol. Off. J. Eur. Soc. Med. Oncol. 121 

ESMO. 23(5), 1370–1371 (2012). 122 

43.  Crea F, Fornaro L, Paolicchi E, et al. An EZH2 polymorphism is associated with clinical 123 

outcome in metastatic colorectal cancer patients. Ann. Oncol. Off. J. Eur. Soc. Med. 124 

Oncol. ESMO. 23(5), 1207–1213 (2012). 125 

44.  Wang C-G, Ye Y-J, Yuan J, Liu F-F, Zhang H, Wang S. EZH2 and STAT6 expression 126 

profiles are correlated with colorectal cancer stage and prognosis. World J. 127 

Gastroenterol. WJG. 16(19), 2421–2427 (2010). 128 

45.  Fluge Ø, Gravdal K, Carlsen E, et al. Expression of EZH2 and Ki-67 in colorectal cancer 129 

and associations with treatment response and prognosis. Br. J. Cancer. 101(8), 1282–130 

1289 (2009). 131 

46.  Guo L, Yang T-F, Liang S-C, Guo J-X, Wang Q. Role of EZH2 protein expression in gastric 132 

carcinogenesis among Asians: a meta-analysis. Tumour Biol. J. Int. Soc. 133 

Oncodevelopmental Biol. Med.  (2014). 134 

47.  He L-J, Cai M-Y, Xu G-L, et al. Prognostic significance of overexpression of EZH2 and 135 

H3k27me3 proteins in gastric cancer. Asian Pac. J. Cancer Prev. APJCP. 13(7), 3173–136 

3178 (2012). 137 

48.  Lee H, Yoon SO, Jeong WY, Kim HK, Kim A, Kim B. Immunohistochemical analysis of 138 

polycomb group protein expression in advanced gastric cancer. Hum. Pathol. 43(10), 139 

1704–1710 (2012). 140 

49.  Zhou Y, Du W-D, Wu Q, et al. EZH2 genetic variants affect risk of gastric cancer in the 141 

Chinese Han population. Mol. Carcinog.  (2012). 142 



 

51 
 

50.  Cai GH, Wang K, Miao Q, Peng YS, Chen XY. Expression of polycomb protein EZH2 in 143 

multi-stage tissues of gastric carcinogenesis. J. Dig. Dis. 11(2), 88–93 (2010). 144 

51.  Choi JH, Song YS, Yoon JS, Song KW, Lee YY. Enhancer of zeste homolog 2 expression is 145 

associated with tumor cell proliferation and metastasis in gastric cancer. APMIS Acta 146 

Pathol. Microbiol. Immunol. Scand. 118(3), 196–202 (2010). 147 

52.  Mattioli E, Vogiatzi P, Sun A, et al. Immunohistochemical analysis of pRb2/p130, VEGF, 148 

EZH2, p53, p16(INK4A), p27(KIP1), p21(WAF1), Ki-67 expression patterns in gastric 149 

cancer. J. Cell. Physiol. 210(1), 183–191 (2007). 150 

53.  Matsukawa Y, Semba S, Kato H, Ito A, Yanagihara K, Yokozaki H. Expression of the 151 

enhancer of zeste homolog 2 is correlated with poor prognosis in human gastric 152 

cancer. Cancer Sci. 97(6), 484–491 (2006). 153 

54.  Hung S-Y, Lin H-H, Yeh K-T, Chang J-G. Histone-modifying genes as biomarkers in 154 

hepatocellular carcinoma. Int. J. Clin. Exp. Pathol. 7(5), 2496–2507 (2014). 155 

55.  Yu Y-L, Su K-J, Hsieh Y-H, et al. Effects of EZH2 polymorphisms on susceptibility to and 156 

pathological development of hepatocellular carcinoma. PloS One. 8(9), e74870 (2013). 157 

56.  Hajósi-Kalcakosz S, Dezső K, Bugyik E, et al. Enhancer of zeste homologue 2 (EZH2) is a 158 

reliable immunohistochemical marker to differentiate malignant and benign hepatic 159 

tumors. Diagn. Pathol. 7, 86 (2012). 160 

57.  Cai M-Y, Tong Z-T, Zheng F, et al. EZH2 protein: a promising immunomarker for the 161 

detection of hepatocellular carcinomas in liver needle biopsies. Gut. 60(7), 967–976 162 

(2011). 163 

58.  Cai M-Y, Hou J-H, Rao H-L, et al. High expression of H3K27me3 in human 164 

hepatocellular carcinomas correlates closely with vascular invasion and predicts worse 165 

prognosis in patients. Mol. Med. Camb. Mass. 17(1-2), 12–20 (2011). 166 

59.  Sudo T, Utsunomiya T, Mimori K, et al. Clinicopathological significance of EZH2 mRNA 167 

expression in patients with hepatocellular carcinoma. Br. J. Cancer. 92(9), 1754–1758 168 

(2005). 169 

60.  Berg T, Thoene S, Yap D, et al. A transgenic mouse model demonstrating the 170 

oncogenic role of mutations in the polycomb-group gene EZH2 in lymphomagenesis. 171 

Blood. 123(25), 3914–3924 (2014). 172 

61.  Guo S, Chan JKC, Iqbal J, et al. EZH2 Mutations in Follicular Lymphoma from Different 173 

Ethnic Groups and Associated Gene Expression Alterations. Clin. Cancer Res. Off. J. 174 

Am. Assoc. Cancer Res. 20(12), 3078–3086 (2014). 175 

62.  Okosun J, Bödör C, Wang J, et al. Integrated genomic analysis identifies recurrent 176 

mutations and evolution patterns driving the initiation and progression of follicular 177 

lymphoma. Nat. Genet. 46(2), 176–181 (2014). 178 



 

52 
 

63.  Parry M, Rose-Zerilli MJJ, Gibson J, et al. Whole exome sequencing identifies novel 179 

recurrently mutated genes in patients with splenic marginal zone lymphoma. PloS 180 

One. 8(12), e83244 (2013). 181 

64.  Lee HJ, Shin DH, Kim KB, et al. Polycomb protein EZH2 expression in diffuse large B-cell 182 

lymphoma is associated with better prognosis in patients treated with rituximab, 183 

cyclophosphamide, doxorubicin, vincristine and prednisone. Leuk. Lymphoma.  (2014). 184 

65.  Shiogama S, Yoshiba S, Soga D, Motohashi H, Shintani S. Aberrant expression of EZH2 185 

is associated with pathological findings and P53 alteration. Anticancer Res. 33(10), 186 

4309–4317 (2013). 187 

66.  Bödör C, Grossmann V, Popov N, et al. EZH2 mutations are frequent and represent an 188 

early event in follicular lymphoma. Blood. , blood–2013–04–496893 (2013). 189 

67.  Abd Al Kader L, Oka T, Takata K, et al. In aggressive variants of non-Hodgkin 190 

lymphomas, Ezh2 is strongly expressed and polycomb repressive complex PRC1.4 191 

dominates over PRC1.2. Virchows Arch. Int. J. Pathol. 463(5), 697–711 (2013). 192 

68.  Heyn H, Esteller M. EZH2: an epigenetic gatekeeper promoting lymphomagenesis. 193 

Cancer Cell. 23(5), 563–565 (2013). 194 

69.  Saieg MA, Geddie WR, Boerner SL, Bailey D, Crump M, da Cunha Santos G. EZH2 and 195 

CD79B mutational status over time in B-cell non-Hodgkin lymphomas detected by 196 

high-throughput sequencing using minimal samples. Cancer Cytopathol. 121(7), 377–197 

386 (2013). 198 

70.  Guo S-Q, Zhang Y-Z. Overexpression of enhancer of zests homolog 2 in lymphoma. 199 

Chin. Med. J. (Engl.). 125(20), 3735–3739 (2012). 200 

71.  Chen J, Li J, Han Q, et al. Enhancer of zeste homolog 2 is overexpressed and 201 

contributes to epigenetic inactivation of p21 and phosphatase and tensin homolog in 202 

B-cell acute lymphoblastic leukemia. Exp. Biol. Med. Maywood NJ. 237(9), 1110–1116 203 

(2012). 204 

72.  Majer CR, Jin L, Scott MP, et al. A687V EZH2 is a gain-of-function mutation found in 205 

lymphoma patients. FEBS Lett. 586(19), 3448–3451 (2012). 206 

73.  Simon C, Chagraoui J, Krosl J, et al. A key role for EZH2 and associated genes in mouse 207 

and human adult T-cell acute leukemia. Genes Dev. 26(7), 651–656 (2012). 208 

74.  McCabe MT, Graves AP, Ganji G, et al. Mutation of A677 in histone methyltransferase 209 

EZH2 in human B-cell lymphoma promotes hypertrimethylation of histone H3 on 210 

lysine 27 (H3K27). Proc. Natl. Acad. Sci. U. S. A. 109(8), 2989–2994 (2012). 211 

75.  Ntziachristos P, Tsirigos A, Van Vlierberghe P, et al. Genetic inactivation of the 212 

polycomb repressive complex 2 in T cell acute lymphoblastic leukemia. Nat. Med. 213 

18(2), 298–301 (2012). 214 



 

53 
 

76.  Ryan RJH, Nitta M, Borger D, et al. EZH2 codon 641 mutations are common in BCL2-215 

rearranged germinal center B cell lymphomas. PloS One. 6(12), e28585 (2011). 216 

77.  Capello D, Gloghini A, Martini M, et al. Mutations of CD79A, CD79B and EZH2 genes in 217 

immunodeficiency-related non-Hodgkin lymphomas. Br. J. Haematol. 152(6), 777–780 218 

(2011). 219 

78.  Bödör C, O’Riain C, Wrench D, et al. EZH2 Y641 mutations in follicular lymphoma. 220 

Leukemia. 25(4), 726–729 (2011). 221 

79.  Sasaki D, Imaizumi Y, Hasegawa H, et al. Overexpression of Enhancer of zeste homolog 222 

2 with trimethylation of lysine 27 on histone H3 in adult T-cell leukemia/lymphoma as 223 

a target for epigenetic therapy. Haematologica. 96(5), 712–719 (2011). 224 

80.  Park SW, Chung NG, Eom HS, Yoo NJ, Lee SH. Mutational analysis of EZH2 codon 641 in 225 

non-Hodgkin lymphomas and leukemias. Leuk. Res. 35(1), e6–7 (2011). 226 

81.  Morin RD, Johnson NA, Severson TM, et al. Somatic mutations altering EZH2 (Tyr641) 227 

in follicular and diffuse large B-cell lymphomas of germinal-center origin. Nat. Genet. 228 

42(2), 181–185 (2010). 229 

82.  Visser HP, Gunster MJ, Kluin-Nelemans HC, et al. The Polycomb group protein EZH2 is 230 

upregulated in proliferating, cultured human mantle cell lymphoma. Br. J. Haematol. 231 

112(4), 950–958 (2001). 232 

83.  Muto T, Sashida G, Oshima M, et al. Concurrent loss of Ezh2 and Tet2 cooperates in 233 

the pathogenesis of myelodysplastic disorders. J. Exp. Med. 210(12), 2627–2639 234 

(2013). 235 

84.  Wang J, Ai X, Gale RP, et al. TET2, ASXL1 and EZH2 mutations in Chinese with 236 

myelodysplastic syndromes. Leuk. Res. 37(3), 305–311 (2013). 237 

85.  Shih AH, Abdel-Wahab O, Patel JP, Levine RL. The role of mutations in epigenetic 238 

regulators in myeloid malignancies. Nat. Rev. Cancer. 12(9), 599–612 (2012). 239 

86.  Puda A, Milosevic JD, Berg T, et al. Frequent deletions of JARID2 in leukemic 240 

transformation of chronic myeloid malignancies. Am. J. Hematol. 87(3), 245–250 241 

(2012). 242 

87.  Zhang S-J, Abdel-Wahab O. Disordered epigenetic regulation in the pathophysiology of 243 

myeloproliferative neoplasms. Curr. Hematol. Malig. Rep. 7(1), 34–42 (2012). 244 

88.  Reuther GW. Recurring mutations in myeloproliferative neoplasms alter epigenetic 245 

regulation of gene expression. Am. J. Cancer Res. 1(6), 752–762 (2011). 246 

89.  Vainchenker W, Delhommeau F, Constantinescu SN, Bernard OA. New mutations and 247 

pathogenesis of myeloproliferative neoplasms. Blood. 118(7), 1723–1735 (2011). 248 

90.  Abdel-Wahab O. Genetics of the myeloproliferative neoplasms. Curr. Opin. Hematol. 249 

18(2), 117–123 (2011). 250 



 

54 
 

91.  Tefferi A, Abdel-Wahab O, Cervantes F, et al. Mutations with epigenetic effects in 251 

myeloproliferative neoplasms and recent progress in treatment: Proceedings from the 252 

5th International Post-ASH Symposium. Blood Cancer J. 1, e7 (2011). 253 

92.  Venneti S, Le P, Martinez D, et al. Malignant rhabdoid tumors express stem cell 254 

factors, which relate to the expression of EZH2 and Id proteins. Am. J. Surg. Pathol. 255 

35(10), 1463–1472 (2011). 256 

93.  Alimova I, Birks DK, Harris PS, et al. Inhibition of EZH2 suppresses self-renewal and 257 

induces radiation sensitivity in atypical rhabdoid teratoid tumor cells. Neuro-Oncol.  258 

(2012). 259 

94.  Knutson SK, Warholic NM, Wigle TJ, et al. Durable tumor regression in genetically 260 

altered malignant rhabdoid tumors by inhibition of methyltransferase EZH2. Proc. 261 

Natl. Acad. Sci. U. S. A. 110(19), 7922–7927 (2013). 262 

95.  Wilson BG, Wang X, Shen X, et al. Epigenetic antagonism between polycomb and 263 

SWI/SNF complexes during oncogenic transformation. Cancer Cell. 18(4), 316–328 264 

(2010). 265 

96.  Tiffen J, Gallagher SJ, Hersey P. EZH2: An emerging role in melanoma biology and 266 

strategies for targeted therapy. Pigment Cell Melanoma Res.  (2014). 267 

97.  Asangani IA, Harms PW, Dodson L, et al. Genetic and epigenetic loss of microRNA-31 268 

leads to feed-forward expression of EZH2 in melanoma. Oncotarget. 3(9), 1011–1025 269 

(2012). 270 

98.  Holling TM, Bergevoet MWT, Wilson L, et al. A role for EZH2 in silencing of IFN-gamma 271 

inducible MHC2TA transcription in uveal melanoma. J. Immunol. Baltim. Md 1950. 272 

179(8), 5317–5325 (2007). 273 

99.  McHugh JB, Fullen DR, Ma L, Kleer CG, Su LD. Expression of polycomb group protein 274 

EZH2 in nevi and melanoma. J. Cutan. Pathol. 34(8), 597–600 (2007). 275 

100.  Vieira FQ, Costa-Pinheiro P, Ramalho-Carvalho J, et al. Deregulated expression of 276 

selected histone methylases and demethylases in prostate carcinoma. Endocr. Relat. 277 

Cancer. 21(1), 51–61 (2014). 278 

101.  Li K, Liu C, Zhou B, et al. Role of EZH2 in the Growth of Prostate Cancer Stem Cells 279 

Isolated from LNCaP Cells. Int. J. Mol. Sci. 14(6), 11981–11993 (2013). 280 

102.  Deb G, Thakur VS, Gupta S. Multifaceted role of EZH2 in breast and prostate 281 

tumorigenesis: epigenetics and beyond. Epigenetics Off. J. DNA Methylation Soc. 8(5), 282 

464–476 (2013). 283 

103.  Yang YA, Yu J. EZH2, an epigenetic driver of prostate cancer. Protein Cell. 4(5), 331–284 

341 (2013). 285 

104.  Xu K, Wu ZJ, Groner AC, et al. EZH2 Oncogenic Activity in Castration Resistant Prostate 286 

Cancer Cells is Polycomb-Independent. Science. 338(6113), 1465–1469 (2012). 287 



 

55 
 

105.  Ribarska T, Bastian K-M, Koch A, Schulz WA. Specific changes in the expression of 288 

imprinted genes in prostate cancer--implications for cancer progression and 289 

epigenetic regulation. Asian J. Androl. 14(3), 436–450 (2012). 290 

106.  Ugolkov AV, Eisengart LJ, Luan C, Yang XJ. Expression analysis of putative stem cell 291 

markers in human benign and malignant prostate. The Prostate. 71(1), 18–25 (2011). 292 

107.  Karanikolas BDW, Figueiredo ML, Wu L. Comprehensive evaluation of the role of EZH2 293 

in the growth, invasion, and aggression of a panel of prostate cancer cell lines. The 294 

Prostate. 70(6), 675–688 (2010). 295 

108.  Karanikolas BDW, Figueiredo ML, Wu L. Polycomb group protein enhancer of zeste 2 is 296 

an oncogene that promotes the neoplastic transformation of a benign prostatic 297 

epithelial cell line. Mol. Cancer Res. MCR. 7(9), 1456–1465 (2009). 298 

109.  Hoffmann MJ, Engers R, Florl AR, Otte AP, Muller M, Schulz WA. Expression changes in 299 

EZH2, but not in BMI-1, SIRT1, DNMT1 or DNMT3B are associated with DNA 300 

methylation changes in prostate cancer. Cancer Biol. Ther. 6(9), 1403–1412 (2007). 301 

110.  Cho KS, Oh HY, Lee EJ, Hong SJ. Identification of enhancer of zeste homolog 2 302 

expression in peripheral circulating tumor cells in metastatic prostate cancer patients: 303 

a preliminary study. Yonsei Med. J. 48(6), 1009–1014 (2007). 304 

111.  Yu J, Yu J, Rhodes DR, et al. A polycomb repression signature in metastatic prostate 305 

cancer predicts cancer outcome. Cancer Res. 67(22), 10657–10663 (2007). 306 

112.  Cooper CS, Campbell C, Jhavar S. Mechanisms of Disease: biomarkers and molecular 307 

targets from microarray gene expression studies in prostate cancer. Nat. Clin. Pract. 308 

Urol. 4(12), 677–687 (2007). 309 

113.  Laitinen S, Martikainen PM, Tolonen T, Isola J, Tammela TLJ, Visakorpi T. EZH2, Ki-67 310 

and MCM7 are prognostic markers in prostatectomy treated patients. Int. J. Cancer J. 311 

Int. Cancer. 122(3), 595–602 (2008). 312 

114.  Bryant RJ, Cross NA, Eaton CL, Hamdy FC, Cunliffe VT. EZH2 promotes proliferation 313 

and invasiveness of prostate cancer cells. The Prostate. 67(5), 547–556 (2007). 314 

115.  Van Leenders GJLH, Dukers D, Hessels D, et al. Polycomb-group oncogenes EZH2, 315 

BMI1, and RING1 are overexpressed in prostate cancer with adverse pathologic and 316 

clinical features. Eur. Urol. 52(2), 455–463 (2007). 317 

116.  Berezovska OP, Glinskii AB, Yang Z, Li X-M, Hoffman RM, Glinsky GV. Essential role for 318 

activation of the Polycomb group (PcG) protein chromatin silencing pathway in 319 

metastatic prostate cancer. Cell Cycle Georget. Tex. 5(16), 1886–1901 (2006). 320 

117.  Saramäki OR, Tammela TLJ, Martikainen PM, Vessella RL, Visakorpi T. The gene for 321 

polycomb group protein enhancer of zeste homolog 2 (EZH2) is amplified in late-stage 322 

prostate cancer. Genes. Chromosomes Cancer. 45(7), 639–645 (2006). 323 



 

56 
 

118.  Bachmann N, Hoegel J, Haeusler J, et al. Mutation screen and association study of 324 

EZH2 as a susceptibility gene for aggressive prostate cancer. The Prostate. 65(3), 252–325 

259 (2005). 326 

119.  Ogata R, Matsueda S, Yao A, Noguchi M, Itoh K, Harada M. Identification of polycomb 327 

group protein enhancer of zeste homolog 2 (EZH2)-derived peptides immunogenic in 328 

HLA-A24+ prostate cancer patients. The Prostate. 60(4), 273–281 (2004). 329 

120.  Sellers WR, Loda M. The EZH2 polycomb transcriptional repressor--a marker or mover 330 

of metastatic prostate cancer? Cancer Cell. 2(5), 349–350 (2002). 331 

121.  Varambally S, Dhanasekaran SM, Zhou M, et al. The polycomb group protein EZH2 is 332 

involved in progression of prostate cancer. Nature. 419(6907), 624–629 (2002). 333 

122.  Girard N, Bazille C, Lhuissier E, et al. 3-Deazaneplanocin A (DZNep), an Inhibitor of the 334 

Histone Methyltransferase EZH2, Induces Apoptosis and Reduces Cell Migration in 335 

Chondrosarcoma Cells. PLoS ONE [Internet]. 9(5) (2014). Available from: 336 

http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4031152/. 337 

123.  Li Z, Xu L, Tang N, et al. The polycomb group protein EZH2 inhibits lung cancer cell 338 

growth by repressing the transcription factor Nrf2. FEBS Lett.  (2014). 339 

124.  Tatton-Brown K, Murray A, Hanks S, et al. Weaver syndrome and EZH2 mutations: 340 

Clarifying the clinical phenotype. Am. J. Med. Genet. A. 161A(12), 2972–2980 (2013). 341 

125.  Tatton-Brown K, Hanks S, Ruark E, et al. Germline mutations in the oncogene EZH2 342 

cause Weaver syndrome and increased human height. Oncotarget. 2(12), 1127–1133 343 

(2011). 344 

126.  Gibson WT, Hood RL, Zhan SH, et al. Mutations in EZH2 cause Weaver syndrome. Am. 345 

J. Hum. Genet. 90(1), 110–118 (2012). 346 

127.  Thanasopoulou A, Tzankov A, Schwaller J. Potent cooperation between the NUP98-347 

NSD1 fusion and FLT3-ITD mutation in acute myeloid leukemia induction. 348 

Haematologica.  (2014). 349 

128.  Akiki S, Dyer SA, Grimwade D, et al. NUP98-NSD1 fusion in association with FLT3-ITD 350 

mutation identifies a prognostically relevant subgroup of pediatric acute myeloid 351 

leukemia patients suitable for monitoring by real time quantitative PCR. Genes. 352 

Chromosomes Cancer. 52(11), 1053–1064 (2013). 353 

129.  Shiba N, Ichikawa H, Taki T, et al. NUP98-NSD1 gene fusion and its related gene 354 

expression signature are strongly associated with a poor prognosis in pediatric acute 355 

myeloid leukemia. Genes. Chromosomes Cancer. 52(7), 683–693 (2013). 356 

130.  Fasan A, Haferlach C, Alpermann T, Kern W, Haferlach T, Schnittger S. A rare but 357 

specific subset of adult AML patients can be defined by the cytogenetically cryptic 358 

NUP98-NSD1 fusion gene. Leukemia. 27(1), 245–248 (2013). 359 



 

57 
 

131.  Thol F, Kölking B, Hollink IHI, et al. Analysis of NUP98/NSD1 translocations in adult 360 

AML and MDS patients. Leukemia. 27(3), 750–754 (2013). 361 

132.  Hollink IHIM, van den Heuvel-Eibrink MM, Arentsen-Peters STCJM, et al. NUP98/NSD1 362 

characterizes a novel poor prognostic group in acute myeloid leukemia with a distinct 363 

HOX gene expression pattern. Blood. 118(13), 3645–3656 (2011). 364 

133.  Petit A, Radford I, Waill M-C, Romana S, Berger R. NUP98-NSD1 fusion by insertion in 365 

acute myeloblastic leukemia. Cancer Genet. Cytogenet. 180(1), 43–46 (2008). 366 

134.  Wang T-F, Horsley SW, Lee K-F, Chu S-C, Li C-C, Kao R-H. Translocation between 367 

chromosome 5q35 and chromosome 11q13-- an unusual cytogenetic finding in a 368 

primary refractory acute myeloid leukemia. Clin. Lab. Haematol. 28(3), 160–163 369 

(2006). 370 

135.  Cerveira N, Correia C, Dória S, et al. Frequency of NUP98-NSD1 fusion transcript in 371 

childhood acute myeloid leukaemia. Leukemia. 17(11), 2244–2247 (2003). 372 

136.  Casas S, Aventín A, Nomdedéu J, Sierra J. Cryptic t(5;11)(q35;p15.5) in adult de novo 373 

acute myelocytic leukemia with normal karyotype. Cancer Genet. Cytogenet. 145(2), 374 

183 (2003). 375 

137.  Panarello C, Rosanda C, Morerio C. Cryptic translocation t(5;11)(q35;p15.5) with 376 

involvement of the NSD1 and NUP98 genes without 5q deletion in childhood acute 377 

myeloid leukemia. Genes. Chromosomes Cancer. 35(3), 277–281 (2002). 378 

138.  Jaju RJ, Fidler C, Haas OA, et al. A novel gene, NSD1, is fused to NUP98 in the 379 

t(5;11)(q35;p15.5) in de novo childhood acute myeloid leukemia. Blood. 98(4), 1264–380 

1267 (2001). 381 

139.  Ishikawa M, Yagasaki F, Okamura D, et al. A novel gene, ANKRD28 on 3p25, is fused 382 

with NUP98 on 11p15 in a cryptic 3-way translocation of t(3;5;11)(p25;q35;p15) in an 383 

adult patient with myelodysplastic syndrome/acute myelogenous leukemia. Int. J. 384 

Hematol. 86(3), 238–245 (2007). 385 

140.  Baujat G, Rio M, Rossignol S, et al. Paradoxical NSD1 mutations in Beckwith-386 

Wiedemann syndrome and 11p15 anomalies in Sotos syndrome. Am. J. Hum. Genet. 387 

74(4), 715–720 (2004). 388 

141.  Park SH, Lee JE, Sohn YB, Ko JM. First identified Korean family with Sotos syndrome 389 

caused by a novel intragenic mutation in NSD1. Ann. Clin. Lab. Sci. 44(2), 228–231 390 

(2014). 391 

142.  Kılıç E, Utine GE, Boduroğlu K. A case of Sotos syndrome with 5q35 microdeletion and 392 

novel clinical findings. Turk. J. Pediatr. 55(2), 207–209 (2013). 393 

143.  Dikow N, Maas B, Gaspar H, et al. The phenotypic spectrum of duplication 5q35.2-394 

q35.3 encompassing NSD1: is it really a reversed Sotos syndrome? Am. J. Med. Genet. 395 

A. 161(9), 2158–2166 (2013). 396 



 

58 
 

144.  Rosenfeld JA, Kim KH, Angle B, et al. Further Evidence of Contrasting Phenotypes 397 

Caused by Reciprocal Deletions and Duplications: Duplication of NSD1 Causes Growth 398 

Retardation and Microcephaly. Mol. Syndromol. 3(6), 247–254 (2013). 399 

145.  Sohn YB, Lee CG, Ko JM, et al. Clinical and genetic spectrum of 18 unrelated Korean 400 

patients with Sotos syndrome: frequent 5q35 microdeletion and identification of four 401 

novel NSD1 mutations. J. Hum. Genet. 58(2), 73–77 (2013). 402 

146.  Hirai N, Matsune K, Ohashi H. Craniofacial and oral features of Sotos syndrome: 403 

differences in patients with submicroscopic deletion and mutation of NSD1 gene. Am. 404 

J. Med. Genet. A. 155A(12), 2933–2939 (2011). 405 

147.  Kasnauskiene J, Cimbalistiene L, Ciuladaite Z, et al. De novo 5q35.5 duplication with 406 

clinical presentation of Sotos syndrome. Am. J. Med. Genet. A. 155A(10), 2501–2507 407 

(2011). 408 

148.  Fickie MR, Lapunzina P, Gentile JK, et al. Adults with Sotos syndrome: review of 21 409 

adults with molecularly confirmed NSD1 alterations, including a detailed case report 410 

of the oldest person. Am. J. Med. Genet. A. 155A(9), 2105–2111 (2011). 411 

149.  Nicita F, Tarani L, Spalice A, et al. Novel missense mutation (L1917P) involving sac-412 

domain of NSD1 gene in a patient with Sotos syndrome. J. Genet. 90(1), 147–150 413 

(2011). 414 

150.  Piccione M, Consiglio V, Di Fiore A, et al. Deletion of NSD1 exon 14 in Sotos syndrome: 415 

first description. J. Genet. 90(1), 119–123 (2011). 416 

151.  Fryssira H, Drossatou P, Sklavou R, Barambouti F, Manolaki N. Two cases of Sotos 417 

syndrome with novel mutations of the NSD1 gene. Genet. Couns. Geneva Switz. 21(1), 418 

53–59 (2010). 419 

152.  Berdasco M, Ropero S, Setien F, et al. Epigenetic inactivation of the Sotos overgrowth 420 

syndrome gene histone methyltransferase NSD1 in human neuroblastoma and glioma. 421 

Proc. Natl. Acad. Sci. U. S. A. 106(51), 21830–21835 (2009). 422 

153.  Kotilainen J, Pohjola P, Pirinen S, Arte S, Nieminen P. Premolar hypodontia is a 423 

common feature in Sotos syndrome with a mutation in the NSD1 gene. Am. J. Med. 424 

Genet. A. 149A(11), 2409–2414 (2009). 425 

154.  Fagali C, Kok F, Nicola P, et al. MLPA analysis in 30 Sotos syndrome patients revealed 426 

one total NSD1 deletion and two partial deletions not previously reported. Eur. J. Med. 427 

Genet. 52(5), 333–336 (2009). 428 

155.  Zechner U, Kohlschmidt N, Kempf O, et al. Familial Sotos syndrome caused by a novel 429 

missense mutation, C2175S, in NSD1 and associated with normal intelligence, insulin 430 

dependent diabetes, bronchial asthma, and lipedema. Eur. J. Med. Genet. 52(5), 306–431 

310 (2009). 432 



 

59 
 

156.  Ellison J. Gene symbol: NSD1. Disease: Sotos syndrome. Hum. Genet. 124(3), 311 433 

(2008). 434 

157.  Mochizuki J, Saitsu H, Mizuguchi T, et al. Alu-related 5q35 microdeletions in Sotos 435 

syndrome. Clin. Genet. 74(4), 384–391 (2008). 436 

158.  Malan V, De Blois MC, Prieur M, et al. Sotos syndrome caused by a paracentric 437 

inversion disrupting the NSD1 gene. Clin. Genet. 73(1), 89–91 (2008). 438 

159.  Saugier-Veber P, Bonnet C, Afenjar A, et al. Heterogeneity of NSD1 alterations in 116 439 

patients with Sotos syndrome. Hum. Mutat. 28(11), 1098–1107 (2007). 440 

160.  Tei S, Tsuneishi S, Matsuo M. The first Japanese familial Sotos syndrome with a novel 441 

mutation of the NSD1 gene. Kobe J. Med. Sci. 52(1-2), 1–8 (2006). 442 

161.  Kanemoto N, Kanemoto K, Nishimura G, et al. Nevo syndrome with an NSD1 deletion: 443 

a variant of Sotos syndrome? Am. J. Med. Genet. A. 140(1), 70–73 (2006). 444 

162.  Douglas J, Tatton-Brown K, Coleman K, et al. Partial NSD1 deletions cause 5% of Sotos 445 

syndrome and are readily identifiable by multiplex ligation dependent probe 446 

amplification. J. Med. Genet. 42(9), e56 (2005). 447 

163.  Faravelli F. NSD1 mutations in Sotos syndrome. Am. J. Med. Genet. C Semin. Med. 448 

Genet. 137C(1), 24–31 (2005). 449 

164.  Tatton-Brown K, Douglas J, Coleman K, et al. Genotype-phenotype associations in 450 

Sotos syndrome: an analysis of 266 individuals with NSD1 aberrations. Am. J. Hum. 451 

Genet. 77(2), 193–204 (2005). 452 

165.  Cecconi M, Forzano F, Milani D, et al. Mutation analysis of the NSD1 gene in a group of 453 

59 patients with congenital overgrowth. Am. J. Med. Genet. A. 134(3), 247–253 454 

(2005). 455 

166.  Melchior L, Schwartz M, Duno M. dHPLC screening of the NSD1 gene identifies nine 456 

novel mutations--summary of the first 100 Sotos syndrome mutations. Ann. Hum. 457 

Genet. 69(Pt 2), 222–226 (2005). 458 

167.  Kamimura J, Endo Y, Kurotaki N, et al. Identification of eight novel NSD1 mutations in 459 

Sotos syndrome. J. Med. Genet. 40(11), e126 (2003). 460 

168.  Türkmen S, Gillessen-Kaesbach G, Meinecke P, et al. Mutations in NSD1 are 461 

responsible for Sotos syndrome, but are not a frequent finding in other overgrowth 462 

phenotypes. Eur. J. Hum. Genet. EJHG. 11(11), 858–865 (2003). 463 

169.  Rio M, Clech L, Amiel J, et al. Spectrum of NSD1 mutations in Sotos and Weaver 464 

syndromes. J. Med. Genet. 40(6), 436–440 (2003). 465 

170.  Nagai T, Matsumoto N, Kurotaki N, et al. Sotos syndrome and haploinsufficiency of 466 

NSD1: clinical features of intragenic mutations and submicroscopic deletions. J. Med. 467 

Genet. 40(4), 285–289 (2003). 468 



 

60 
 

171.  Höglund P, Kurotaki N, Kytölä S, Miyake N, Somer M, Matsumoto N. Familial Sotos 469 

syndrome is caused by a novel 1 bp deletion of the NSD1 gene. J. Med. Genet. 40(1), 470 

51–54 (2003). 471 

172.  Douglas J, Hanks S, Temple IK, et al. NSD1 mutations are the major cause of Sotos 472 

syndrome and occur in some cases of Weaver syndrome but are rare in other 473 

overgrowth phenotypes. Am. J. Hum. Genet. 72(1), 132–143 (2003). 474 

173.  Kurotaki N, Imaizumi K, Harada N, et al. Haploinsufficiency of NSD1 causes Sotos 475 

syndrome. Nat. Genet. 30(4), 365–366 (2002). 476 

174.  Li J, Yin C, Okamoto H, et al. Identification of a novel proliferation-related protein, 477 

WHSC1 4a, in human gliomas. Neuro-Oncol. 10(1), 45–51 (2008). 478 

175.  Kleefstra T, Brunner HG, Amiel J, et al. Loss-of-function mutations in euchromatin 479 

histone methyl transferase 1 (EHMT1) cause the 9q34 subtelomeric deletion 480 

syndrome. Am. J. Hum. Genet. 79(2), 370–377 (2006). 481 

176.  Jaffe JD, Wang Y, Chan HM, et al. Global chromatin profiling reveals NSD2 mutations in 482 

pediatric acute lymphoblastic leukemia. Nat. Genet. 45(11), 1386–1391 (2013). 483 

177.  Huang Z, Wu H, Chuai S, et al. NSD2 is recruited through its PHD domain to oncogenic 484 

gene loci to drive multiple myeloma. Cancer Res. 73(20), 6277–6288 (2013). 485 

178.  Keats JJ, Maxwell CA, Taylor BJ, et al. Overexpression of transcripts originating from 486 

the MMSET locus characterizes all t(4;14)(p16;q32)-positive multiple myeloma 487 

patients. Blood. 105(10), 4060–4069 (2005). 488 

179.  Kassambara A, Klein B, Moreaux J. MMSET is overexpressed in cancers: link with 489 

tumor aggressiveness. Biochem. Biophys. Res. Commun. 379(4), 840–845 (2009). 490 

180.  Nimura K, Ura K, Shiratori H, et al. A histone H3 lysine 36 trimethyltransferase links 491 

Nkx2-5 to Wolf-Hirschhorn syndrome. Nature. 460(7252), 287–291 (2009). 492 

181.  Rosati R, La Starza R, Veronese A, et al. NUP98 is fused to the NSD3 gene in acute 493 

myeloid leukemia associated with t(8;11)(p11.2;p15). Blood. 99(10), 3857–3860 494 

(2002). 495 

182.  Kleefstra T, van Zelst-Stams WA, Nillesen WM, et al. Further clinical and molecular 496 

delineation of the 9q subtelomeric deletion syndrome supports a major contribution 497 

of EHMT1 haploinsufficiency to the core phenotype. J. Med. Genet. 46(9), 598–606 498 

(2009). 499 

183.  Kleefstra T, Smidt M, Banning MJG, et al. Disruption of the gene Euchromatin Histone 500 

Methyl Transferase1 (Eu-HMTase1) is associated with the 9q34 subtelomeric deletion 501 

syndrome. J. Med. Genet. 42(4), 299–306 (2005). 502 

184.  Rump A, Hildebrand L, Tzschach A, Ullmann R, Schrock E, Mitter D. A mosaic maternal 503 

splice donor mutation in the EHMT1 gene leads to aberrant transcripts and to 504 

Kleefstra syndrome in the offspring. Eur. J. Hum. Genet. EJHG. 21(8), 887–890 (2013). 505 



 

61 
 

185.  Nillesen WM, Yntema HG, Moscarda M, et al. Characterization of a novel transcript of 506 

the EHMT1 gene reveals important diagnostic implications for Kleefstra syndrome. 507 

Hum. Mutat. 32(7), 853–859 (2011). 508 

186.  Cebrian A, Pharoah PD, Ahmed S, et al. Genetic variants in epigenetic genes and 509 

breast cancer risk. Carcinogenesis. 27(8), 1661–1669 (2006). 510 

187.  Northcott PA, Nakahara Y, Wu X, et al. Multiple recurrent genetic events converge on 511 

control of histone lysine methylation in medulloblastoma. Nat. Genet. 41(4), 465–472 512 

(2009). 513 

188.  Ryu H, Lee J, Hagerty SW, et al. ESET/SETDB1 gene expression and histone H3 (K9) 514 

trimethylation in Huntington’s disease. Proc. Natl. Acad. Sci. U. S. A. 103(50), 19176–515 

19181 (2006). 516 

189.  Zhang Y, Leaves NI, Anderson GG, et al. Positional cloning of a quantitative trait locus 517 

on chromosome 13q14 that influences immunoglobulin E levels and asthma. Nat. 518 

Genet. 34(2), 181–186 (2003). 519 

190.  Sakamoto LHT, Andrade RV de, Felipe MSS, Motoyama AB, Pittella Silva F. SMYD2 is 520 

highly expressed in pediatric acute lymphoblastic leukemia and constitutes a bad 521 

prognostic factor. Leuk. Res. 38(4), 496–502 (2014). 522 

191.  Komatsu S, Imoto I, Tsuda H, et al. Overexpression of SMYD2 relates to tumor cell 523 

proliferation and malignant outcome of esophageal squamous cell carcinoma. 524 

Carcinogenesis. 30(7), 1139–1146 (2009). 525 

192.  Skawran B, Steinemann D, Weigmann A, et al. Gene expression profiling in 526 

hepatocellular carcinoma: upregulation of genes in amplified chromosome regions. 527 

Mod. Pathol. Off. J. U. S. Can. Acad. Pathol. Inc. 21(5), 505–516 (2008). 528 

193.  Hamamoto R, Silva FP, Tsuge M, et al. Enhanced SMYD3 expression is essential for the 529 

growth of breast cancer cells. Cancer Sci. 97(2), 113–118 (2006). 530 

194.  Frank B, Hemminki K, Wappenschmidt B, et al. Variable number of tandem repeats 531 

polymorphism in the SMYD3 promoter region and the risk of familial breast cancer. 532 

Int. J. Cancer J. Int. Cancer. 118(11), 2917–2918 (2006). 533 

195.  Gaedcke J, Grade M, Jung K, et al. Mutated KRAS results in overexpression of DUSP4, a 534 

MAP-kinase phosphatase, and SMYD3, a histone methyltransferase, in rectal 535 

carcinomas. Genes. Chromosomes Cancer. 49(11), 1024–1034 (2010). 536 

196.  Hamamoto R, Furukawa Y, Morita M, et al. SMYD3 encodes a histone 537 

methyltransferase involved in the proliferation of cancer cells. Nat. Cell Biol. 6(8), 538 

731–740 (2004). 539 

197.  Hu L, Zhu YT, Qi C, Zhu Y-J. Identification of Smyd4 as a potential tumor suppressor 540 

gene involved in breast cancer development. Cancer Res. 69(9), 4067–4072 (2009). 541 



 

62 
 

198.  Boi M, Rinaldi A, Kwee I, et al. PRDM1/BLIMP1 is commonly inactivated in anaplastic 542 

large T-cell lymphoma. Blood. 122(15), 2683–2693 (2013). 543 

199.  Best T, Li D, Skol AD, et al. Variants at 6q21 implicate PRDM1 in the etiology of 544 

therapy-induced second malignancies after Hodgkin’s lymphoma. Nat. Med. 17(8), 545 

941–943 (2011). 546 

200.  Song Y, Cao Z, Li L, Zhang H-T, Zhang X. Blimp-1 protein and Hans classification on 547 

prognosis of diffuse large B-cell lymphoma and their interrelation. Chin. J. Cancer. 548 

29(9), 781–786 (2010). 549 

201.  Nie K, Zhang T, Allawi H, et al. Epigenetic down-regulation of the tumor suppressor 550 

gene PRDM1/Blimp-1 in diffuse large B cell lymphomas: a potential role of the 551 

microRNA let-7. Am. J. Pathol. 177(3), 1470–1479 (2010). 552 

202.  Courts C, Montesinos-Rongen M, Brunn A, et al. Recurrent inactivation of the PRDM1 553 

gene in primary central nervous system lymphoma. J. Neuropathol. Exp. Neurol. 67(7), 554 

720–727 (2008). 555 

203.  Tam W, Gomez M, Nie K. Significance of PRDM1beta expression as a prognostic 556 

marker in diffuse large B-cell lymphomas. Blood. 111(4), 2488–2489; author reply 557 

2489–2490 (2008). 558 

204.  Tate G, Hirayama-Ohashi Y, Kishimoto K, Mitsuya T. Novel BLIMP1/PRDM1 gene 559 

mutations in B-cell lymphoma. Cancer Genet. Cytogenet. 172(2), 151–153 (2007). 560 

205.  Garcia J-F, Roncador G, García J-F, et al. PRDM1/BLIMP-1 expression in multiple B and 561 

T-cell lymphoma. Haematologica. 91(4), 467–474 (2006). 562 

206.  Tam W, Gomez M, Chadburn A, Lee JW, Chan WC, Knowles DM. Mutational analysis of 563 

PRDM1 indicates a tumor-suppressor role in diffuse large B-cell lymphomas. Blood. 564 

107(10), 4090–4100 (2006). 565 

207.  Pasqualucci L, Compagno M, Houldsworth J, et al. Inactivation of the PRDM1/BLIMP1 566 

gene in diffuse large B cell lymphoma. J. Exp. Med. 203(2), 311–317 (2006). 567 

208.  Luo J, Niu X, Liu H, Zhang M, Chen M, Deng S. Up-regulation of transcription factor 568 

Blimp1 in systemic lupus erythematosus. Mol. Immunol. 56(4), 574–582 (2013). 569 

209.  Zhou X, Lu X, Lv J, et al. Genetic association of PRDM1-ATG5 intergenic region and 570 

autophagy with systemic lupus erythematosus in a Chinese population. Ann. Rheum. 571 

Dis. 70(7), 1330–1337 (2011). 572 

210.  Gateva V, Sandling JK, Hom G, et al. A large-scale replication study identifies TNIP1, 573 

PRDM1, JAZF1, UHRF1BP1 and IL10 as risk loci for systemic lupus erythematosus. Nat. 574 

Genet. 41(11), 1228–1233 (2009). 575 

211.  Ellinghaus D, Zhang H, Zeissig S, et al. Association between variants of PRDM1 and 576 

NDP52 and Crohn’s disease, based on exome sequencing and functional studies. 577 

Gastroenterology. 145(2), 339–347 (2013). 578 



 

63 
 

212.  Cleynen I, González JR, Figueroa C, et al. Genetic factors conferring an increased 579 

susceptibility to develop Crohn’s disease also influence disease phenotype: results 580 

from the IBDchip European Project. Gut. 62(11), 1556–1565 (2013). 581 

213.  Fransen K, Mitrovic M, van Diemen CC, et al. Limited evidence for parent-of-origin 582 

effects in inflammatory bowel disease associated loci. PloS One. 7(9), e45287 (2012). 583 

214.  Abbondanza C, De Rosa C, D’Arcangelo A, et al. Identification of a functional estrogen-584 

responsive enhancer element in the promoter 2 of PRDM2 gene in breast cancer cell 585 

lines. J. Cell. Physiol. 227(3), 964–975 (2012). 586 

215.  Du Y, Carling T, Fang W, Piao Z, Sheu JC, Huang S. Hypermethylation in human cancers 587 

of the RIZ1 tumor suppressor gene, a member of a histone/protein methyltransferase 588 

superfamily. Cancer Res. 61(22), 8094–8099 (2001). 589 

216.  Sakurada K, Furukawa T, Kato Y, Kayama T, Huang S, Horii A. RIZ, the retinoblastoma 590 

protein interacting zinc finger gene, is mutated in genetically unstable cancers of the 591 

pancreas, stomach, and colorectum. Genes. Chromosomes Cancer. 30(2), 207–211 592 

(2001). 593 

217.  Chadwick RB, Jiang GL, Bennington GA, et al. Candidate tumor suppressor RIZ is 594 

frequently involved in colorectal carcinogenesis. Proc. Natl. Acad. Sci. U. S. A. 97(6), 595 

2662–2667 (2000). 596 

218.  Piao Z, Fang W, Malkhosyan S, et al. Frequent frameshift mutations of RIZ in sporadic 597 

gastrointestinal and endometrial carcinomas with microsatellite instability. Cancer 598 

Res. 60(17), 4701–4704 (2000). 599 

219.  Pan K-F, Lu Y-Y, Liu W-G, Zhang L, You W-C. Detection of frameshift mutations of RIZ in 600 

gastric cancers with microsatellite instability. World J. Gastroenterol. WJG. 10(18), 601 

2719–2722 (2004). 602 

220.  Oshimo Y, Oue N, Mitani Y, et al. Frequent epigenetic inactivation of RIZ1 by promoter 603 

hypermethylation in human gastric carcinoma. Int. J. Cancer J. Int. Cancer. 110(2), 604 

212–218 (2004). 605 

221.  Tokumaru Y, Nomoto S, Jerónimo C, et al. Biallelic inactivation of the RIZ1 gene in 606 

human gastric cancer. Oncogene. 22(44), 6954–6958 (2003). 607 

222.  Nishida N, Kudo M, Nagasaka T, Ikai I, Goel A. Characteristic patterns of altered DNA 608 

methylation predict emergence of human hepatocellular carcinoma. Hepatol. Baltim. 609 

Md. 56(3), 994–1003 (2012). 610 

223.  Zhang C, Li H, Wang Y, et al. Epigenetic inactivation of the tumor suppressor gene RIZ1 611 

in hepatocellular carcinoma involves both DNA methylation and histone 612 

modifications. J. Hepatol. 53(5), 889–895 (2010). 613 



 

64 
 

224.  Piao GH, Piao WH, He Y, Zhang HH, Wang GQ, Piao Z. Hyper-methylation of RIZ1 614 

tumor suppressor gene is involved in the early tumorigenesis of hepatocellular 615 

carcinoma. Histol. Histopathol. 23(10), 1171–1175 (2008). 616 

225.  Fang W, Piao Z, Buyse IM, et al. Preferential loss of a polymorphic RIZ allele in human 617 

hepatocellular carcinoma. Br. J. Cancer. 84(6), 743–747 (2001). 618 

226.  Fang W, Piao Z, Simon D, Sheu JC, Huang S. Mapping of a minimal deleted region in 619 

human hepatocellular carcinoma to 1p36.13-p36.23 and mutational analysis of the RIZ 620 

(PRDM2) gene localized to the region. Genes. Chromosomes Cancer. 28(3), 269–275 621 

(2000). 622 

227.  Tan S-X, Hu R-C, Liu J-J, Tan Y-L, Liu W-E. Methylation of PRDM2, PRDM5 and PRDM16 623 

genes in lung cancer cells. Int. J. Clin. Exp. Pathol. 7(5), 2305–2311 (2014). 624 

228.  Geli J, Kiss N, Kogner P, Larsson C. Suppression of RIZ in biologically unfavourable 625 

neuroblastomas. Int. J. Oncol. 37(5), 1323–1330 (2010). 626 

229.  Hoebeeck J, Michels E, Pattyn F, et al. Aberrant methylation of candidate tumor 627 

suppressor genes in neuroblastoma. Cancer Lett. 273(2), 336–346 (2009). 628 

230.  Deng Q, Huang S. PRDM5 is silenced in human cancers and has growth suppressive 629 

activities. Oncogene. 23(28), 4903–4910 (2004). 630 

231.  Watanabe Y, Toyota M, Kondo Y, et al. PRDM5 identified as a target of epigenetic 631 

silencing in colorectal and gastric cancer. Clin. Cancer Res. Off. J. Am. Assoc. Cancer 632 

Res. 13(16), 4786–4794 (2007). 633 

232.  Turnbull J, Girard J-M, Lohi H, et al. Early-onset Lafora body disease. Brain J. Neurol. 634 

135(Pt 9), 2684–2698 (2012). 635 

233.  He X-J, Ruan J, Du W-D, et al. PRDM9 gene polymorphism may not be associated with 636 

defective spermatogenesis in the Chinese Han population. Syst. Biol. Reprod. Med. 637 

59(1), 38–41 (2013). 638 

234.  Irie S, Tsujimura A, Miyagawa Y, et al. Single-nucleotide polymorphisms of the PRDM9 639 

(MEISETZ) gene in patients with nonobstructive azoospermia. J. Androl. 30(4), 426–640 

431 (2009). 641 

235.  Miyamoto T, Koh E, Sakugawa N, et al. Two single nucleotide polymorphisms in 642 

PRDM9 (MEISETZ) gene may be a genetic risk factor for Japanese patients with 643 

azoospermia by meiotic arrest. J. Assist. Reprod. Genet. 25(11-12), 553–557 (2008). 644 

236.  Reid AG, Nacheva EP. A potential role for PRDM12 in the pathogenesis of chronic 645 

myeloid leukaemia with derivative chromosome 9 deletion. Leukemia. 18(1), 178–180 646 

(2004). 647 

237.  Nishikawa N, Toyota M, Suzuki H, et al. Gene amplification and overexpression of 648 

PRDM14 in breast cancers. Cancer Res. 67(20), 9649–9657 (2007). 649 



 

65 
 

238.  Schulte JH, Lim S, Schramm A, et al. Lysine-specific demethylase 1 is strongly 650 

expressed in poorly differentiated neuroblastoma: implications for therapy. Cancer 651 

Res. 69(5), 2065–2071 (2009). 652 

239.  Bennani-Baiti IM, Machado I, Llombart-Bosch A, Kovar H. Lysine-specific demethylase 653 

1 (LSD1/KDM1A/AOF2/BHC110) is expressed and is an epigenetic drug target in 654 

chondrosarcoma, Ewing’s sarcoma, osteosarcoma, and rhabdomyosarcoma. Hum. 655 

Pathol. 43(8), 1300–1307 (2012). 656 

240.  Harris WJ, Huang X, Lynch JT, et al. The histone demethylase KDM1A sustains the 657 

oncogenic potential of MLL-AF9 leukemia stem cells. Cancer Cell. 21(4), 473–487 658 

(2012). 659 

241.  Binda C, Valente S, Romanenghi M, et al. Biochemical, structural, and biological 660 

evaluation of tranylcypromine derivatives as inhibitors of histone demethylases LSD1 661 

and LSD2. J. Am. Chem. Soc. 132(19), 6827–6833 (2010). 662 

242.  Li Y, Deng C, Hu X, et al. Dynamic interaction between TAL1 oncoprotein and LSD1 663 

regulates TAL1 function in hematopoiesis and leukemogenesis. Oncogene. 31(48), 664 

5007–5018 (2012). 665 

243.  Fiskus W, Sharma S, Shah B, et al. Highly effective combination of LSD1 (KDM1A) 666 

antagonist and pan-histone deacetylase inhibitor against human AML cells. Leukemia.  667 

(2014). 668 

244.  Sankar S, Theisen ER, Bearss J, et al. Reversible LSD1 inhibition interferes with global 669 

EWS/ETS transcriptional activity and impedes Ewing sarcoma tumor growth. Clin. 670 

Cancer Res. Off. J. Am. Assoc. Cancer Res.  (2014). 671 

245.  Miura S, Maesawa C, Shibazaki M, et al. Immunohistochemistry for histone h3 lysine 9 672 

methyltransferase and demethylase proteins in human melanomas. Am. J. 673 

Dermatopathol. 36(3), 211–216 (2014). 674 

246.  Ding D, Liu X, Guo S-W. Overexpression of lysine-specific demethylase 1 in ovarian 675 

endometriomas and its inhibition reduces cellular proliferation, cell cycle progression, 676 

and invasiveness. Fertil. Steril. 101(3), 740–749 (2014). 677 

247.  Konovalov S, Garcia-Bassets I. Analysis of the levels of lysine-specific demethylase 1 678 

(LSD1) mRNA in human ovarian tumors and the effects of chemical LSD1 inhibitors in 679 

ovarian cancer cell lines. J. Ovarian Res. 6(1), 75 (2013). 680 

248.  Kong L, Zhang G, Wang X, Zhou J, Hou S, Cui W. Immunohistochemical expression of 681 

RBP2 and LSD1 in papillary thyroid carcinoma. Romanian J. Morphol. Embryol. Rev. 682 

Roum. Morphol. Embryol. 54(3), 499–503 (2013). 683 

249.  Huang Z, Li S, Song W, et al. Lysine-specific demethylase 1 (LSD1/KDM1A) contributes 684 

to colorectal tumorigenesis via activation of the Wnt/β-catenin pathway by down-685 

regulating Dickkopf-1 (DKK1) [corrected]. PloS One. 8(7), e70077 (2013). 686 



 

66 
 

250.  Ding J, Zhang Z-M, Xia Y, et al. LSD1-mediated epigenetic modification contributes to 687 

proliferation and metastasis of colon cancer. Br. J. Cancer. 109(4), 994–1003 (2013). 688 

251.  Yu Y, Wang B, Zhang K, et al. High expression of lysine-specific demethylase 1 689 

correlates with poor prognosis of patients with esophageal squamous cell carcinoma. 690 

Biochem. Biophys. Res. Commun. 437(2), 192–198 (2013). 691 

252.  Liu J, Liu F-Y, Tong Z-Q, et al. Lysine-specific demethylase 1 in breast cancer cells 692 

contributes to the production of endogenous formaldehyde in the metastatic bone 693 

cancer pain model of rats. PloS One. 8(3), e58957 (2013). 694 

253.  Kashyap V, Ahmad S, Nilsson EM, et al. The lysine specific demethylase-1 695 

(LSD1/KDM1A) regulates VEGF-A expression in prostate cancer. Mol. Oncol. 7(3), 555–696 

566 (2013). 697 

254.  Jie D, Zhongmin Z, Guoqing L, et al. Positive expression of LSD1 and negative 698 

expression of E-cadherin correlate with metastasis and poor prognosis of colon 699 

cancer. Dig. Dis. Sci. 58(6), 1581–1589 (2013). 700 

255.  Zhao Z-K, Yu H-F, Wang D-R, et al. Overexpression of lysine specific demethylase 1 701 

predicts worse prognosis in primary hepatocellular carcinoma patients. World J. 702 

Gastroenterol. WJG. 18(45), 6651–6656 (2012). 703 

256.  Serce N, Gnatzy A, Steiner S, Lorenzen H, Kirfel J, Buettner R. Elevated expression of 704 

LSD1 (Lysine-specific demethylase 1) during tumour progression from pre-invasive to 705 

invasive ductal carcinoma of the breast. BMC Clin. Pathol. 12, 13 (2012). 706 

257.  Lv T, Yuan D, Miao X, et al. Over-expression of LSD1 promotes proliferation, migration 707 

and invasion in non-small cell lung cancer. PloS One. 7(4), e35065 (2012). 708 

258.  Kauffman EC, Robinson BD, Downes MJ, et al. Role of androgen receptor and 709 

associated lysine-demethylase coregulators, LSD1 and JMJD2A, in localized and 710 

advanced human bladder cancer. Mol. Carcinog. 50(12), 931–944 (2011). 711 

259.  Hayami S, Kelly JD, Cho H-S, et al. Overexpression of LSD1 contributes to human 712 

carcinogenesis through chromatin regulation in various cancers. Int. J. Cancer J. Int. 713 

Cancer. 128(3), 574–586 (2011). 714 

260.  Suikki HE, Kujala PM, Tammela TLJ, van Weerden WM, Vessella RL, Visakorpi T. 715 

Genetic alterations and changes in expression of histone demethylases in prostate 716 

cancer. The Prostate. 70(8), 889–898 (2010). 717 

261.  Lim S, Janzer A, Becker A, et al. Lysine-specific demethylase 1 (LSD1) is highly 718 

expressed in ER-negative breast cancers and a biomarker predicting aggressive 719 

biology. Carcinogenesis. 31(3), 512–520 (2010). 720 

262.  Magerl C, Ellinger J, Braunschweig T, et al. H3K4 dimethylation in hepatocellular 721 

carcinoma is rare compared with other hepatobiliary and gastrointestinal carcinomas 722 



 

67 
 

and correlates with expression of the methylase Ash2 and the demethylase LSD1. 723 

Hum. Pathol. 41(2), 181–189 (2010). 724 

263.  Zhu Q, Liu C, Ge Z, et al. Lysine-specific demethylase 1 (LSD1) Is required for the 725 

transcriptional repression of the telomerase reverse transcriptase (hTERT) gene. PloS 726 

One. 3(1), e1446 (2008). 727 

264.  Krug AW, Tille E, Sun B, et al. Lysine-specific demethylase-1 modifies the age effect on 728 

blood pressure sensitivity to dietary salt intake. Age Dordr. Neth. 35(5), 1809–1820 729 

(2013). 730 

265.  Pojoga LH, Williams JS, Yao TM, et al. Histone demethylase LSD1 deficiency during 731 

high-salt diet is associated with enhanced vascular contraction, altered NO-cGMP 732 

relaxation pathway, and hypertension. Am. J. Physiol. Heart Circ. Physiol. 301(5), 733 

H1862–1871 (2011). 734 

266.  Hsia DA, Tepper CG, Pochampalli MR, et al. KDM8, a H3K36me2 histone demethylase 735 

that acts in the cyclin A1 coding region to regulate cancer cell proliferation. Proc. Natl. 736 

Acad. Sci. U. S. A. 107(21), 9671–9676 (2010). 737 

267.  He J, Nguyen AT, Zhang Y. KDM2b/JHDM1b, an H3K36me2-specific demethylase, is 738 

required for initiation and maintenance of acute myeloid leukemia. Blood. 117(14), 739 

3869–3880 (2011). 740 

268.  Qiu J, Shi G, Jia Y, et al. The X-linked mental retardation gene PHF8 is a histone 741 

demethylase involved in neuronal differentiation. Cell Res. 20(8), 908–918 (2010). 742 

269.  Kleine-Kohlbrecher D, Christensen J, Vandamme J, et al. A functional link between the 743 

histone demethylase PHF8 and the transcription factor ZNF711 in X-linked mental 744 

retardation. Mol. Cell. 38(2), 165–178 (2010). 745 

270.  Loenarz C, Ge W, Coleman ML, et al. PHF8, a gene associated with cleft lip/palate and 746 

mental retardation, encodes for an Nepsilon-dimethyl lysine demethylase. Hum. Mol. 747 

Genet. 19(2), 217–222 (2010). 748 

271.  Abidi FE, Miano MG, Murray JC, Schwartz CE. A novel mutation in the PHF8 gene is 749 

associated with X-linked mental retardation with cleft lip/cleft palate. Clin. Genet. 750 

72(1), 19–22 (2007). 751 

272.  Laumonnier F, Holbert S, Ronce N, et al. Mutations in PHF8 are associated with X 752 

linked mental retardation and cleft lip/cleft palate. J. Med. Genet. 42(10), 780–786 753 

(2005). 754 

273.  Parrish JK, Sechler M, Winn RA, Jedlicka P. The histone demethylase KDM3A is a 755 

microRNA-22-regulated tumor promoter in Ewing Sarcoma. Oncogene.  (2013). 756 

274.  Guo X, Lu J, Wang Y, Gui Y, Duan X, Cai Z. Ascorbate antagonizes nickel ion to regulate 757 

JMJD1A expression in kidney cancer cells. Acta Biochim. Biophys. Sin. 44(4), 330–338 758 

(2012). 759 



 

68 
 

275.  Anderton JA, Bose S, Vockerodt M, et al. The H3K27me3 demethylase, KDM6B, is 760 

induced by Epstein-Barr virus and over-expressed in Hodgkin’s Lymphoma. Oncogene 761 

[Internet].  (2011). Available from: http://www.ncbi.nlm.nih.gov/pubmed/21242977. 762 

276.  Shen Y, Guo X, Wang Y, et al. Expression and significance of histone H3K27 763 

demethylases in renal cell carcinoma. BMC Cancer. 12, 470 (2012). 764 

277.  Banka S, Lederer D, Benoit V, et al. Novel KDM6A (UTX) mutations and a clinical and 765 

molecular review of the X-linked Kabuki syndrome (KS2). Clin. Genet.  (2014). 766 

278.  Miyake N, Koshimizu E, Okamoto N, et al. MLL2 and KDM6A mutations in patients 767 

with Kabuki syndrome. Am. J. Med. Genet. A. 161(9), 2234–2243 (2013). 768 

279.  Miyake N, Mizuno S, Okamoto N, et al. KDM6A point mutations cause Kabuki 769 

syndrome. Hum. Mutat. 34(1), 108–110 (2013). 770 

280.  Lederer D, Grisart B, Digilio MC, et al. Deletion of KDM6A, a histone demethylase 771 

interacting with MLL2, in three patients with Kabuki syndrome. Am. J. Hum. Genet. 772 

90(1), 119–124 (2012). 773 

281.  Gossage L, Murtaza M, Slatter AF, et al. Clinical and pathological impact of VHL, 774 

PBRM1, BAP1, SETD2, KDM6A, and JARID1c in clear cell renal cell carcinoma. Genes. 775 

Chromosomes Cancer. 53(1), 38–51 (2014). 776 

282.  Paolicchi E, Crea F, Farrar WL, Green JE, Danesi R. Histone lysine demethylases in 777 

breast cancer. Crit. Rev. Oncol. Hematol. 86(2), 97–103 (2013). 778 

283.  Dubuc AM, Remke M, Korshunov A, et al. Aberrant patterns of H3K4 and H3K27 779 

histone lysine methylation occur across subgroups in medulloblastoma. Acta 780 

Neuropathol. (Berl.). 125(3), 373–384 (2013). 781 

284.  Liu J, Lee W, Jiang Z, et al. Genome and transcriptome sequencing of lung cancers 782 

reveal diverse mutational and splicing events. Genome Res. 22(12), 2315–2327 (2012). 783 

285.  Jones DTW, Jäger N, Kool M, et al. Dissecting the genomic complexity underlying 784 

medulloblastoma. Nature. 488(7409), 100–105 (2012). 785 

286.  Murati A, Brecqueville M, Devillier R, Mozziconacci M-J, Gelsi-Boyer V, Birnbaum D. 786 

Myeloid malignancies: mutations, models and management. BMC Cancer. 12, 304 787 

(2012). 788 

287.  Robinson G, Parker M, Kranenburg TA, et al. Novel mutations target distinct 789 

subgroups of medulloblastoma. Nature. 488(7409), 43–48 (2012). 790 

288.  McDevitt MA. Clinical applications of epigenetic markers and epigenetic profiling in 791 

myeloid malignancies. Semin. Oncol. 39(1), 109–122 (2012). 792 

289.  Muramatsu H, Makishima H, Maciejewski JP. Chronic myelomonocytic leukemia and 793 

atypical chronic myeloid leukemia: novel pathogenetic lesions. Semin. Oncol. 39(1), 794 

67–73 (2012). 795 



 

69 
 

290.  Jankowska AM, Makishima H, Tiu RV, et al. Mutational spectrum analysis of chronic 796 

myelomonocytic leukemia includes genes associated with epigenetic regulation: UTX, 797 

EZH2, and DNMT3A. Blood. 118(14), 3932–3941 (2011). 798 

291.  Gui Y, Guo G, Huang Y, et al. Frequent mutations of chromatin remodeling genes in 799 

transitional cell carcinoma of the bladder. Nat. Genet. 43(9), 875–878 (2011). 800 

292.  Wartman LD, Larson DE, Xiang Z, et al. Sequencing a mouse acute promyelocytic 801 

leukemia genome reveals genetic events relevant for disease progression. J. Clin. 802 

Invest. 121(4), 1445–1455 (2011). 803 

293.  Van Haaften G, Dalgliesh GL, Davies H, et al. Somatic mutations of the histone H3K27 804 

demethylase, UTX, in human cancer. Nat. Genet. 41(5), 521–523 (2009). 805 

294.  Li L-L, Xue A-M, Li B-X, et al. JMJD2A contributes to breast cancer progression through 806 

transcriptional repression of the tumor suppressor ARHI. Breast Cancer Res. BCR. 807 

16(3), R56 (2014). 808 

295.  Wang H-L, Liu M-M, Ma X, et al. Expression and effects of JMJD2A histone 809 

demethylase in endometrial carcinoma. Asian Pac. J. Cancer Prev. APJCP. 15(7), 3051–810 

3056 (2014). 811 

296.  Hu C-E, Liu Y-C, Zhang H-D, Huang G-J. JMJD2A predicts prognosis and regulates cell 812 

growth in human gastric cancer. Biochem. Biophys. Res. Commun. 449(1), 1–7 (2014). 813 

297.  Li B-X, Li J, Luo C-L, et al. Expression of JMJD2A in infiltrating duct carcinoma was 814 

markedly higher than fibroadenoma, and associated with expression of ARHI, p53 and 815 

ER in infiltrating duct carcinoma. Indian J. Exp. Biol. 51(3), 208–217 (2013). 816 

298.  Berry WL, Janknecht R. KDM4/JMJD2 histone demethylases: epigenetic regulators in 817 

cancer cells. Cancer Res. 73(10), 2936–2942 (2013). 818 

299.  Kogure M, Takawa M, Cho H-S, et al. Deregulation of the histone demethylase JMJD2A 819 

is involved in human carcinogenesis through regulation of the G(1)/S transition. 820 

Cancer Lett. 336(1), 76–84 (2013). 821 

300.  Berry WL, Shin S, Lightfoot SA, Janknecht R. Oncogenic features of the JMJD2A histone 822 

demethylase in breast cancer. Int. J. Oncol. 41(5), 1701–1706 (2012). 823 

301.  Hong Q, Yu S, Yang Y, Liu G, Shao Z. A polymorphism in JMJD2C alters the cleavage by 824 

caspase-3 and the prognosis of human breast cancer. Oncotarget.  (2014). 825 

302.  Luo W, Chang R, Zhong J, Pandey A, Semenza GL. Histone demethylase JMJD2C is a 826 

coactivator for hypoxia-inducible factor 1 that is required for breast cancer 827 

progression. Proc. Natl. Acad. Sci. U. S. A. 109(49), E3367–3376 (2012). 828 

303.  Vinatzer U, Gollinger M, Müllauer L, Raderer M, Chott A, Streubel B. Mucosa-829 

associated lymphoid tissue lymphoma: novel translocations including rearrangements 830 

of ODZ2, JMJD2C, and CNN3. Clin. Cancer Res. Off. J. Am. Assoc. Cancer Res. 14(20), 831 

6426–6431 (2008). 832 



 

70 
 

304.  Rui L, Emre NCT, Kruhlak MJ, et al. Cooperative epigenetic modulation by cancer 833 

amplicon genes. Cancer Cell. 18(6), 590–605 (2010). 834 

305.  Kim T-D, Fuchs JR, Schwartz E, et al. Pro-growth role of the JMJD2C histone 835 

demethylase in HCT-116 colon cancer cells and identification of curcuminoids as 836 

JMJD2 inhibitors. Am. J. Transl. Res. 6(3), 236–247 (2014). 837 

306.  Li W, Zhao L, Zang W, et al. Histone demethylase JMJD2B is required for tumor cell 838 

proliferation and survival and is overexpressed in gastric cancer. Biochem. Biophys. 839 

Res. Commun. 416(3-4), 372–378 (2011). 840 

307.  Toyokawa G, Cho H-S, Iwai Y, et al. The histone demethylase JMJD2B plays an essential 841 

role in human carcinogenesis through positive regulation of cyclin-dependent kinase 842 

6. Cancer Prev. Res. Phila. Pa. 4(12), 2051–2061 (2011). 843 

308.  Pryor JG, Brown-Kipphut BA, Iqbal A, Scott GA. Microarray comparative genomic 844 

hybridization detection of copy number changes in desmoplastic melanoma and 845 

malignant peripheral nerve sheath tumor. Am. J. Dermatopathol. 33(8), 780–785 846 

(2011). 847 

309.  Shi L, Sun L, Li Q, et al. Histone demethylase JMJD2B coordinates H3K4/H3K9 848 

methylation and promotes hormonally responsive breast carcinogenesis. Proc. Natl. 849 

Acad. Sci. U. S. A. 108(18), 7541–7546 (2011). 850 

310.  Kawazu M, Saso K, Tong KI, et al. Histone demethylase JMJD2B functions as a co-factor 851 

of estrogen receptor in breast cancer proliferation and mammary gland development. 852 

PloS One. 6(3), e17830 (2011). 853 

311.  Kuźbicki L, Lange D, Strączyńska-Niemiec A, Chwirot BW. JARID1B expression in human 854 

melanoma and benign melanocytic skin lesions. Melanoma Res. 23(1), 8–12 (2013). 855 

312.  Radberger P, Radberger A, Bykov VJN, Seregard S, Economou MA. JARID1B protein 856 

expression and prognostic implications in uveal melanoma. Invest. Ophthalmol. Vis. 857 

Sci. 53(8), 4442–4449 (2012). 858 

313.  Held M, Bosenberg M. A role for the JARID1B stem cell marker for continuous 859 

melanoma growth. Pigment Cell Melanoma Res. 23(4), 481–483 (2010). 860 

314.  Roesch A, Fukunaga-Kalabis M, Schmidt EC, et al. A temporarily distinct subpopulation 861 

of slow-cycling melanoma cells is required for continuous tumor growth. Cell. 141(4), 862 

583–594 (2010). 863 

315.  Roesch A, Mueller AM, Stempfl T, Moehle C, Landthaler M, Vogt T. RBP2-H1/JARID1B 864 

is a transcriptional regulator with a tumor suppressive potential in melanoma cells. 865 

Int. J. Cancer J. Int. Cancer. 122(5), 1047–1057 (2008). 866 

316.  Xiang Y, Zhu Z, Han G, et al. JARID1B is a histone H3 lysine 4 demethylase up-regulated 867 

in prostate cancer. Proc. Natl. Acad. Sci. U. S. A. 104(49), 19226–19231 (2007). 868 



 

71 
 

317.  Mitra D, Das PM, Huynh FC, Jones FE. Jumonji/ARID1 B (JARID1B) protein promotes 869 

breast tumor cell cycle progression through epigenetic repression of microRNA let-7e. 870 

J. Biol. Chem. 286(47), 40531–40535 (2011). 871 

318.  Catchpole S, Spencer-Dene B, Hall D, et al. PLU-1/JARID1B/KDM5B is required for 872 

embryonic survival and contributes to cell proliferation in the mammary gland and in 873 

ER+ breast cancer cells. Int. J. Oncol. 38(5), 1267–1277 (2011). 874 

319.  Izawa A, Kobayashi D, Nasu S, et al. Relevance of c-erbB2, PLU-1 and survivin mRNA 875 

expression to diagnostic assessment of breast cancer. Anticancer Res. 22(5), 2965–876 

2969 (2002). 877 

320.  Madsen B, Tarsounas M, Burchell JM, Hall D, Poulsom R, Taylor-Papadimitriou J. PLU-878 

1, a transcriptional repressor and putative testis-cancer antigen, has a specific 879 

expression and localisation pattern during meiosis. Chromosoma. 112(3), 124–132 880 

(2003). 881 

321.  Yamane K, Tateishi K, Klose RJ, et al. PLU-1 is an H3K4 demethylase involved in 882 

transcriptional repression and breast cancer cell proliferation. Mol. Cell. 25(6), 801–883 

812 (2007). 884 

322.  Barrett A, Santangelo S, Tan K, et al. Breast cancer associated transcriptional repressor 885 

PLU-1/JARID1B interacts directly with histone deacetylases. Int. J. Cancer J. Int. Cancer. 886 

121(2), 265–275 (2007). 887 

323.  Jensen LR, Amende M, Gurok U, et al. Mutations in the JARID1C gene, which is 888 

involved in transcriptional regulation and chromatin remodeling, cause X-linked 889 

mental retardation. Am. J. Hum. Genet. 76(2), 227–236 (2005). 890 

324.  Tzschach A, Lenzner S, Moser B, et al. Novel JARID1C/SMCX mutations in patients with 891 

X-linked mental retardation. Hum. Mutat. 27(4), 389 (2006). 892 

325.  Santos C, Rodriguez-Revenga L, Madrigal I, Badenas C, Pineda M, Milà M. A novel 893 

mutation in JARID1C gene associated with mental retardation. Eur. J. Hum. Genet. 894 

EJHG. 14(5), 583–586 (2006). 895 

326.  Tahiliani M, Mei P, Fang R, et al. The histone H3K4 demethylase SMCX links REST 896 

target genes to X-linked mental retardation. Nature. 447(7144), 601–605 (2007). 897 

327.  Iwase S, Lan F, Bayliss P, et al. The X-linked mental retardation gene SMCX/JARID1C 898 

defines a family of histone H3 lysine 4 demethylases. Cell. 128(6), 1077–1088 (2007). 899 

328.  Abidi FE, Holloway L, Moore CA, et al. Mutations in JARID1C are associated with X-900 

linked mental retardation, short stature and hyperreflexia. J. Med. Genet. 45(12), 787–901 

793 (2008). 902 

329.  Abidi F, Holloway L, Moore CA, et al. Novel human pathological mutations. Gene 903 

symbol: JARID1C. Disease: mental retardation, X-linked. Hum. Genet. 125(3), 345 904 

(2009). 905 



 

72 
 

330.  Rujirabanjerd S, Nelson J, Tarpey PS, et al. Identification and characterization of two 906 

novel JARID1C mutations: suggestion of an emerging genotype-phenotype correlation. 907 

Eur. J. Hum. Genet. EJHG. 18(3), 330–335 (2010). 908 

331.  Jensen LR, Bartenschlager H, Rujirabanjerd S, et al. A distinctive gene expression 909 

fingerprint in mentally retarded male patients reflects disease-causing defects in the 910 

histone demethylase KDM5C. PathoGenetics. 3(1), 2 (2010). 911 

332.  Santos-Rebouças CB, Fintelman-Rodrigues N, Jensen LR, et al. A novel nonsense 912 

mutation in KDM5C/JARID1C gene causing intellectual disability, short stature and 913 

speech delay. Neurosci. Lett. 498(1), 67–71 (2011). 914 

333.  Ounap K, Puusepp-Benazzouz H, Peters M, et al. A novel c.2T > C mutation of the 915 

KDM5C/JARID1C gene in one large family with X-linked intellectual disability. Eur. J. 916 

Med. Genet. 55(3), 178–184 (2012). 917 

334.  Hou J, Wu J, Dombkowski A, et al. Genomic amplification and a role in drug-resistance 918 

for the KDM5A histone demethylase in breast cancer. Am. J. Transl. Res. 4(3), 247–256 919 

(2012). 920 

  921 



 

73 
 

 922 

 923 


