

Histone methylases as novel drug targets: developing inhibitors of EZH2

Catherine Baugé, Céline Bazille, Nicolas Girard, Eva Lhuissier, Karim

Boumediene

► To cite this version:

Catherine Baugé, Céline Bazille, Nicolas Girard, Eva Lhuissier, Karim Boumediene. Histone methylases as novel drug targets: developing inhibitors of EZH2. Future Medicinal Chemistry, 2013, 6 (17), pp.1943-65. 10.4155/fmc.14.123 . hal-01147761

HAL Id: hal-01147761 https://hal.science/hal-01147761

Submitted on 29 Aug 2019

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Histone methylases as novel drug targets. Focus on EZH2 inhibition.

Catherine BAUGE^{1,2,#}, Céline BAZILLE^{1,2,3}, Nicolas GIRARD^{1,2}, Eva LHUISSIER^{1,2}, Karim BOUMEDIENE^{1,2}

- ¹ Normandie Univ, France
- ² UNICAEN, EA4652 MILPAT, Caen, France
- ³ Service d'Anatomie Pathologique, CHU, Caen, France

[#] Correspondence and copy request: Catherine Baugé, catherine.bauge@unicaen.fr, EA4652
MILPAT, UFR de médecine, Université de Caen Basse-Normandie, CS14032 Caen cedex 5,
France; tel: +33 231068218; fax: +33 231068224

ABSTRACT

Posttranslational modifications of histones (so-called epigenetic modifications) play a major role in transcriptional control and normal development, and are tightly regulated. Disruption of their control is a frequent event in disease. Particularly, the methylation of lysine 27 on histone H3 (H3K27), induced by the methylase Enhancer of Zeste homolog 2 (EZH2), emerges as a key control of gene expression, and a major regulator of cell physiology. The identification of driver mutations in EZH2 has already led to new prognostic and therapeutic advances, and new classes of potent and specific inhibitors for EZH2 show promising results in preclinical trials. This review examines roles of histone lysine methylases and demetylases in cells, and focuses on the recent knowledge and developments about EZH2.

Key-terms: epigenetic, histone methylation, EZH2, cancerology, tumors, apoptosis, cell death, inhibitor, stem cells, H3K27

Histone modifications and histone code

Epigenetic has been defined as inheritable changes in gene expression that occur without a change in DNA sequence. Key components of epigenetic processes are DNA methylation, histone modifications and variants, non-histone chromatin proteins, small interfering RNA (siRNA) and micro RNA (miRNA). They induce changes in gene expression in modifying accessibility of the eukaryotic transcription machinery to specific genes. In particular, the role of histones as active participants in gene regulation has only recently been appreciated. Histones were discovered in 1884 by Albrecht Kossel. But until the early 1990s, these proteins, which are assembled into nucleosomes, forming beads around which the DNA is wrapped, were considered to be relatively inert scaffolding for packaging the genetic material. It is now known that histones play also a key-role in gene expression regulation,

though post-translational modifications of histone (figure 1). In 2000, the concept of a 'histone code' emerged [1].

The histones' amino-terminal tails extend away from the central core, and are thus available phosphorylation, ADP-ribosylation, for reversible acetylation, methylation, and ubiquitination (figure 2). Histone modifications interact with DNA methylation to mark genes for silencing or transcription. By reading the combinatorial and/or sequential histone modifications that constitute the histone code (table 1), it was thought that it might be possible to predict which gene products will be transcribed and thus determine a cell's RNA repertoire and ultimately its proteome, just as reading the DNA code allows us to predict the encoded protein sequence. However, some gene loci present both histone 3 lysine 4 trimethylation (H3K4me3), associated with transcriptional activation and histone 3 lysine 27 trimethylation (H3K27me3), and linked with repression. These bivalent domains are posited to be poised for either up- or downregulation and to provide an epigenetic blueprint for lineage determination [2], and are usually found in stem cells.

These post-translational modifications (PTM) undergone by histones have a profound effect on the remodeling of chromatin. Two distinct chromatin states can be distinguished: condensed "closed" heterochromatin, and de-condensed "open" euchromatin. The change from transcriptionally silenced heterochromatin to gene expression euchromatin is mediated by posttranslational modifications of histones and uses of distinct histone variants.

Histone lysine methylation

Histone methylation is an epigenetic mark actively studied in recent years. On about 11 000 articles referenced in Pubmed since 1964, more than half of them have been published during the last four years.

The most well-characterized histone methylation appears on lysine [3,4]. Histone lysine methylation occurs primarily on histone H3 at lysines 4, 9, 14, 18, 23, 27, 36 and 79 and on histone H4 at lysine 20 [4–6]. A number of these methylation events have been linked to transcriptional regulation, including those at H3 lysines 4, 36 and 79 (associated with active transcription) and those at H3 lysines 9 and 27 (associated with gene repression and heterochromatin formation) [3,7]. Unlike acetylation and phosphorylation, which in addition to recruit proteins to chromatin can also directly affect chromatin structure by altering the histone charge, lysine methylation does not alter the charge of the residue and is therefore thought to primarily modulate chromatin structure through the recruitment of distinct reader proteins that possess the ability to facilitate transcriptional activation or repression [3,4,6,8].

Lysine residues can be modified with up to three methyl groups (mono-, di- and trimethylation) on the epsilon amine of the side-chain (figure 3). Importantly, reader domains can distinguish between the different methyl states producing distinct functional outcomes [3,4,6,8]. These observations demonstrate the complexity and fine level of control that lysine methylation contributes to chromatin function and transcriptional regulation.

Among activation marks, trimethylation at lysine 4 of histone H3 (H3K4me3) is the prominent methyllysine species at active promoter regions [9–13]. This mark plays a major role in transcription initiation, notably in recruiting the general transcription factors, or in mediating interactions with RNA polymerase associated proteins [6]. H3K36 methylation, meanwhile, primarily exists with the lower methylation states (H3K36me1 and -me2) present near 5' regions and higher methylation states (H3K36me2 and -me3) at the 3' ends of genes [11,14]. The role of H3K36 methylation is also quite diverse and has been shown to be involved in numerous functions including transcription, mRNA splicing, DNA replication and DNA repair [15,16]. Its function that has been most well defined is its role in transcription elongation. Another modification found in gene bodies is methylation of H3K79, however, unlike H3K36 methylation, its role in actively transcribed genes is less clear. It may act as a protection from silencing [6].

At opposite, histone H3 lysine 9 methylation (H3K9) has been correlated with heterochromatin formation and transcriptional repression, making the methylation state of lysine 9 an interesting marker of transcriptional activity. H3K9me3 binds heterochromatin protein 1 (HP1) to constitutive heterochromatin [17]. HP1 is responsible for transcriptional repression and the actual formation and maintenance of heterochromatin. H3K9me2 is a characteristic mark of the inactivated X chromosome (Xi) [18,19]. H3K9 methylation is also involved in cell reprogramming, or cancer. H3K27 methylation is also another epigenetic repressive mark, which plays a major role in a plethora of cellular processes, such as stem cell renewal, cell fate, reprogramming, cancer, inflammation.

Histone arginine methylation

As lysine, arginine on histone can also be methylated. The addition of one or two methyl groups on arginine residues results in three different methylation states: monomethylated, asymmetrically dimethylated or symmetrically dimethylated arginine. The methyl groups are deposited by protein arginine methyltransferases (PRMTs). Histone arginine methylation associates with both active and repressed chromatin states depending on the residue involved and the status of methylation [20]. This process is involved in several cellular processes such as transcription, RNA processing, signal transduction and DNA repair. Besides, it is now clear that there is cross-talk between arginine and lysine methylation: this has been termed "arginine/lysine-methyl/methyl switch" [21,22]

Histone methyltransferases and demethylases

There are currently more than 60 predicted lysine methyltransferases and 30 predicted lysine demethylases in the human genome [23–25].

Histone methyltransferase (HMT) activity towards lysine (and arginine) residues is found in a family of enzymes with a conserved catalytic domain called SET (Suppressor of variegation, Enhancer of Zeste, Trithorax). The human genome encodes 49 SET domain-containing proteins and the histone lysine methyltransferase DOT1L, which does not contain a SET domain (table 2). The importance of HMTs for embryonic development has been demonstrated in numerous mouse knockout studies [26]. In addition, misregulation of HMTs has been linked to diseases or cancer aggressiveness. In particular, the Polycomb group

transcriptional repressor EZH2 (methylase of H3K27), is overexpressed in many different types of cancer [27], and has been proposed as a molecular marker of some cancer progression and metastasis [28–33].

In 2004, the first histone demethylase (HDM) has been discovered, and called LSD1 (lysinespecific demethylase 1). Since, more than 20 demethylases have been identified and characterized (table 3). They belong to either the LSD family or the JmjC family, demonstrating the reversibility of all methylation states at almost all major histone lysine methylation sites (table 3). The identification of these histone demethylases (HDMs) has completely changed our initial view of histone methylation as a permanent, heritable mark [34]. The presence of both histone methyltransferases and demethylases in the same complexes permits modifying of chromatin marks and subsequently switching of transcriptional states from silenced to activated status or vice-versa. Thus, a tight regulation of the expression, activity and recruitment of HMTs and HDMs is necessary. A deregulation of their activity or expression might modify the transcriptional balance, and lead to inappropriate gene expression programs that in turn could induce human disease (table 1 in supplementary material). In particular, the histone methylase EZH2 plays a major role in cell fate and cancer development, and appear now as a promising target for treat some diseases.

Role of the lysine methyltransferase EZH2

The methyltransferase Polycomb Group (PcG) protein Enhancer of zeste homolog 2 (EZH2), also called KMT6, is the catalytic subunit of the Polycomb Repressor Complex 2 (PRC2). Its C-terminal SET domain exhibits methyltransferase activity, leading to repress gene transcription by silencing target genes through methylation of histone H3 on lysine 27 (H3K27me3) [35]. In addition to methylation of H3K27, EZH2 has been shown to methylate cellular proteins and act as a co-activator of steroid hormone receptors [36]. This function is hypothesized to be independent of PRC2 and potentially induced by phosphorylation of EZH2 [36,37]. Besides its ability of methylate H3K27, EZH2 has recently been described to methylate lysine 120 of histone H2B which competes with ubiquitination on this site [38]. EZH2 is post-translationnaly regulate by O-linked N-acetylglucosamine (GlcNAc) transferase (OGT)-mediated O-GlcNAcylation at S75, which stabilizes EZH2 and hence facilitates the formation of H3K27me3 [39].

Unlike other SET domains, the methylase EZH2 is inactive on its own for histone substrates. To be functional, EZH2 need to form the PRC2 complex (figure 4) by interacting with other partners, including embryonic ectoderm development (EED), suppressor of zeste 12 homologue (SUZ12), and RBAP48/RBBP4 [40–43]. Collectively, these proteins regulate vital cellular processes, such as differentiation, cell identity, stem-cell plasticity, and proliferation [44–46]. As a result, aberrations in any PRC2 component can have powerful physiologic consequences on the cell.

EZH2, stem cells and reprogramming

EZH2 plays a central role in stem cells. Recent report showed that Ezh2 is important for establishing ES cell lines from blastocysts [47–49]. Additionally, Ezh2 is required for efficient somatic cell reprogramming by cell fusion and nuclear transfer [49,50]. Ezh2 is abundantly expressed in iPS cells (at a similar level as in ES cells), and Ezh2 knockdown severely impaired iPS cell generation. Proper differentiation of iPS cells and reprogrammation require, thus, Ezh2 [51]. However, once pluripotency is established, Ezh2 knockdown leaves the pluripotent phenotype of iPS cells unaffected [52]. All this indicates that Ezh2 is critical for induction of pluripotency, but once pluripotency is established, Ezh2 is not required anymore. The mechanism of EZH2 in reprogramming is still poorly known, but it has been recently found that Ezh2 impacts on iPS cell generation at least in part through repression of the CDK inhibitor Ink4a/Arf, which represents a major roadblock for iPS cell generation [52]. Furthermore, c-Myc, one of the iPS cell inducing factors, was recently shown to directly regulate the Ezh2 expression and to be required for maintaining high Ezh2 expression in ES cells [53].

The role of EZH2 in reprogramming is, however, unclear. Indeed, in a recent paper[54], Fragola et al. generated iPS cells from MEF with a conditional *Ezh2* knockout allele for the deletion of the catalytic Ezh2 SET domain [54]. Ezh2-deficient iPS cells, obtained using a cell-permeable TAT-Cre recombinase, exhibited a global loss of H3K27me3, and presented a typical iPS cell phenotype, including ES cell-like morphology, growth, and differentiation potential. This result on Ezh2-deficient iPS cells contrasts other papers which showed essential role of EZh2 in reprogramming [51,52]. It might be explain by used methodology, in that Ezh2 inactivation could have occurred after reprogramming.

EZH2 and cell fate

Enhancer of zeste homolog 2 also regulates expression of tissue-specific genes involved in cellular differentiation and developmental programs [35,55–58]. It is involved in differenciation of embroyonic and adult stem cells into several cell lineages (myogenesis, adipogenesis, osteogenesis, neurogenesis, hematopoiesis, lymphopoiesis, epidermal differenciation and hepatogenesis) [59].

For instance, EZH2 was clearly shown to act as a negative regulator of skeletal muscle differentiation favoring the proliferation of myogenic precursors [60–62]. This function results from an EZH2-dependent direct repression of genes related to myogenic differentiation [60] through the H3K27me3 mark deposition on the promoters of myogenic genes [60,63]. EZh2 is expressed early in the myotomal compartment of developing somites and in proliferation satellite cells and is down-regulated in terminally differentiated muscle cells [60]. In skeletal muscle progenitors, EZH2 is, thus, highly expressed and prevents an unscheduled differentiation by repressing muscle-specific gene expression. During the course of their differentiation, EZH2 is downregulated, favoring the expression of muscle specific genes, such as muscle creatine kinase (mCK), myogenin (MyoG), myh, or MyoD [64,65]. Furthermore, the key-role of EZH2 in control of self-renewal and safeguard of the transcriptional identity of skeletal muscle stem cells has been shown using mice with conditional ablation of Ezh2 in satellite cells. These mice have reduced muscle mass and fail to appropriately regenerate. These defects were associated with derepression of genes expressed in nonmuscle cell lineages [66]. Besides, in humans, abnormal expression of Ezh2 is observed in the muscular disorder Duchenne muscular dystrophy [67].

EZH2 was also found to be involved in commitment of mesenchymal stem cells towards osteoblast lineage [68]. Suppression of Ezh2 activity promotes differenciation of human mesenchymal stem cells into osteoblasts. The mechanism might be linked to Runx2 regulation since a striking decrease in Ezh2 mRNA levels has been found to be correlated to a increased Runx2 binding, suggesting that the transcription of Ezh2 is potentially negatively regulated by Runx2 [69]. At contrary, deletion of Ezh2 inhibits adipogenesis, by eliminating H3K27me3 on Wnt promoters and derepressing Wnt expression, which leads to activation of Wnt/b-catenin signaling [70]. These data show that Ezh2 facilitates adipogenesis whereas it suppresses osteogenesis.

EZH2 and immune system

EZH2 plays also a role in immune system, for both T and B cell development. Ezh2 is most abundant at sites of embryonic lymphopoiesis, such as fetal liver and thymus [71].

In B cell progenitors, Ezh2 expression is downregulated during differenciation. It is the highest in pro-B cells and very low in mature recirculating B cells (Su et al., 2002). Up-regulation of Ezh2 in proliferating human germinal center B cells (centroblasts) [72] and mitogen-stimulated lymphocytes [73] suggested an important role for this histone methylase in B cell division and activation. This is further supported by the association of EZH2 with Vav, one of the key regulators of the receptor-mediated signaling in lymphocytes [74]. But the major proof of a critical role for Ezh2 in early B cell development and rearrangement of the immunoglobulin heavy chain gene (Igh) has been established, in 2002, using Cremediated conditional mutagenesis. Ezh2 deficiency leads to diminished generation of pre-B cells and immature B cells in the bone marrow. Defective B cell development cannot be restored by the presence of the wild-type cells in the mixed bone marrow chimeras. The requirement for Ezh2 is development stage–specific: Ezh2 is a key regulator of histone H3 methylation in early B cell progenitors [75].

EZH2 is a master regulator of the germinal center (GC) B-cell phenotype [76]. It represses genes involved in proliferation checkpoints (*e.g. CDKN1A*) and in exit from the GC and terminal differentiation (*e.g. IRF4 and PRDM1*). This function is aberrantly reinforced by mutant EZH2^{Y146N} lymphoma disease alleles [76]. EZH2 also established bivalent chromatin domains at key regulatory loci to transiently suppress GC B-cell differentiation. Beside, EZH2 cooperates with BCL2 to generate GC derived lymphomas [76].

A recent study also established a functional link between this histone methyltransferase EZH2 and transcriptional regulation of lineage-specifying genes in terminally differentiated CD4(+) T cells. EZH2 inactivation specifically enhanced T helper 1 (Th1) and Th2 cell differentiation and plasticity. Ezh2 directly bounds Tbx21 and Gata3 genes, leading to substantial trimethylation at lysine 27 of histone 3 (H3K27me3) at these locus, thereby facilitating correct expression of these primordial genes in differentiating Th1 and Th2 cells. Additionally, Ezh2 deficiency leads to spontaneous generation of a small IFN- γ and Th2 cytokine-producing populations in non-polarizing cultures, and under these conditions, IFN- γ expression was largely dependent on increased expression of the transcription factor

Eomesodermin. Besides, in vivo, in a model of allergic asthma, Ezh2 loss results in exacerbated pathology with a progressive accumulation of memory phenotype Th2 cells [77].

EZH2 and cancer

Among EZH2 roles, its implication in cancer is the most studied: more than 70% of articles referenced in Pubmed for "Ezh2" term, are related to cancer. Alterations in *EZH2* were first discovered in breast and prostate cancer, where amplification and overexpression first implied it may function as an oncogene [28,31]. Since, increasing evidence demonstrates that EZH2 is not only aberrantly expressed in several types of human cancers, but often behaves as a molecular biomarker of poor prognosis [27,28,31,78–84]. The role of EZH2 in cancer development was initially validated both *in vitro* and *in vivo*, with *EZH2* overexpression proving sufficient to drive proliferation in cancer cells and transform primary fibroblasts [27,85].

Overexpression of EZH2 has now been found in a number of human cancers, such as prostate cancers, gastric cancers, breast cancer, renal cancer, colorectal cancer, non small cell lung cancer, squamous cell carcinomas, urothelial carcinomas in addition to synovial sarcomas, chondrosarcoma, lymphomas and melanomas [31,86–91]. EZH2 expression is correlated with aggressiveness, metastasis, and poor prognosis in most of these cancers. Elevated expression of EZH2 has, also, been identified as a marker for breast cancer initiating cells, possibly reflecting its role in maintaining "stemness" [31,92].

In addition, several mutations, located the most often in SET domain leading to increased trimethylation efficiency, have been associated to cancers (table 4) [93–98]. Recurrent mutations of EZH2 have been found in germinal center B-cell like diffuse large B-cell lymphoma, follicular lymphoma, and melanoma [99]. The mutated residues alter the substrate specificity of EZH2 and facilitate the conversion from a dimethylated to a trimethylated state, thus resulting in significantly elevated global H3K27me3 levels [93,98]. The most frequent identified mutation appears on Y641 (mutations Y/F, Y/N, Y/H, Y/C) [98,100,101]. Another mutation has been identify (A677G and A687V) though these mutants are less prevalent in [93,102].

Together this data suggests a causative role for elevated catalytic activity of EZH2 in the development of cancer. The functional consequence of increased EZH2 (either by overexpression or mutations) in cancer tissues includes the silencing of genes that promote differentiation and restrain proliferation.

Nonetheless, a high expression of EZH2 and trimethylation of histone H3 at lysine 27 were sometimes associated with improvements in survival. Thus, increased EZH2 expression is correlated to better overall survival in diffuse large B-cell lymphoma and lung cancer [103,104]. In the same way, a recent report showed that EZH2 serves as a tumor suppressor in myelodysplastic syndromes, which was evidenced by *EZH2* deletions, missense and frameshift mutations [105]. Besides, enhanced trimethylation of H3K27me3 has been correlated with longer overall survival and better prognosis in non-small cell lung cancer, breast, ovarian and pancreatic cancers [106,107].

Mechanistically, EZH2 is usually believed to function predominately as a transcriptional repressor that silences an array of target genes, including more than 200 tumor suppressors [88,108]. EZH2 is identified as a downstream mediator of the retinoblastoma protein (pRB) pathway-E2F pathway which controls multiple key cell-cycle regulators during cell proliferation in normal and cancer cells [27]. Additionally, EZH2 represses the p16, p19 and p15 directly or indirectly which activates the cyclin D-CDK4/6 complex and promotes progression through G1 phase and cell proliferation [109,110]. Furthermore, enforced expression of EZH2 increases cancer cell proliferation, epithelial-mesenchymal transition, metastatic spreading and other oncogenic properties, whereas its depletion inhibited cell proliferation, migration and invasion and induced cell apoptosis and senescence both in vitro and in vivo [87,111,112]. Besides, EZH2 could cause a rise in cell migration and invasion in cancer cells by regulating E-cadherin and MMP [113]. Increasing evidence also suggests that aberrant overexpression of EZH2 could contribute to acquired chemotherapeutic resistance in multiple cancers [114–116].

In addition to its role as a transcriptional repressor, several studies have shown that EZH2 may also function in target gene activation [36,117,118]. Recently, Xu *et al* reported that EZH2 plays an important role in castration-resistant prostate cancer, and its oncogenic function does not depend on silencing but rather on transcriptional induction of its target

genes [36]. Many of these genes were downregulated upon EZH2 knockdown, suggesting that the role of EZH2 as an activator was independent of the PRC2 complex. This function is hypothesized to be induced by phosphorylation of EZH2 [36,37].

Antagonistic relationship between PRC2 and SWI/SNF

Accumulating evidence has suggested that SWI/SNF (SWitch/Sucrose NonFermentable) chromatin-remodeling complex oppose epigenetic silencing by PcG proteins, and functions as a tumor suppressor in some cancers. This SWI/SNF complex is a multi-subunit chromatin remodeling complex that uses the energy of ATP hydrolysis to reposition nucleosomes, thereby regulating access to the DNA and modulating transcription and DNA replication/repair [119].

The activity of SWI/SNF complex can be counteracted by PcG proteins [120,121]. This antagonistic relationship between SWI/SNF components and PcG proteins were first uncovered via genetic studies in *Drosophila*. In 1988, mutations in core components of the SWI/SNF complex were found to suppress defects in body segment identity conferred by mutations in PcG proteins [122]. Latter, in 90's year, it was discovered that the SWI/SNF complex promotes *Hox* gene activation during embryogenesis, while PcG proteins maintain their repression [123,124]. SWI/SNF is also capable of displacing PcG proteins from the INK4a/ARF locus [125].

Furthermore, there seems to be a balanced function between SWI/SNF and PcG. Accumulating evidence raises the possibility that the antagonistic relationship between these two complexes plays important roles in preventing tumor formation in mammals. Intriguingly, while PcG proteins are frequently overexpressed in cancers, specific inactivating mutations of SWI/SNF complex have been identified in several human cancers [126]. The most compelling case has been that of *SMARCB1* (SNF5), which was discovered to be homozygously inactivated in nearly all rhabdoid tumors (a rare pediatric malignancy) [127]. Interestingly, *SMARCB1*-heterozygous mice develop sarcomas that closely resemble human rhabdoid tumors [128]. Tumorigenesis can be completely suppressed by tissue-specific codeletion of *EZH2*, suggesting an antagonistic interaction between PRC2 and SWI/SNF [129].

EZH2 inhibitors

As described above, most findings have established that EZH2 functions as an important oncogenic biomarker for cancer initiation and progression, thus leading to the hypothesis that blocking EZH2 expression/activity and its downstream signaling cascade may represent a promising strategy for novel anticancer treatment. That's why several groups have developed small-molecule inhibitors of EZH2 [130]. Over the past few years, several potent inhibitors of EZH2, with various selectivities, have been discovered and demonstrated promising preclinical results (figure 5, table 5).

DZNep as an indirect inhibitor

The first EZH2 inhibitor which was described is a cyclopentanyl analog of 3-deazaadenosine, called 3-Deazaneplanocin A (DZNep). It is a cyclopentanyl analog of 3-deazaadenosine that potently inhibits the activity of S-adenosylhomocysteine hydrolase (SAH), resulting in cellular accumulation of (SAH) which in turn represses the S-adenosyl-L-methionine-dependent histone lysine methyltransferase activities [143] (figure 5). Initially studied for its antiviral proprieties, recent findings indicate that DZNep is a chromatin-remodeling compound that induces degradation of cellular PRC2 proteins including EZH2 and concomitant removal of H3K27me3 mark [79,132].

Disruption of EZH2 by DZNep leads to the reactivation of the epigenetically silenced targets. This induces apoptosis, inhibits cell invasion and enhances chemotherapeutic sensitivity in tumoral cells, but not in normal and untransformed cells at tumor-inhibiting doses [79]. As DZNep has minimal toxicity *in vivo* [144], it may be a promising drug candidate for anticancer treatment. That's why, it has been widely examined as a possible epigenetic therapeutic agent for the treatment of various cancers, including lung cancer [145], gastric cancer [146], myeloma [133], acute myeloid leukemia [132], lymphoma [147], but also chondrosarcoma [91]. DZNep-induced inhibition of EZH2 dramatically diminished the number and self-renewal capacity of cancer cells with tumor-initiating properties and significantly decreased tumor xenograft growth and improved survival [134,148].

DZNep selectively induced apoptosis in cancer cells but not in normal cells by preferential reactivation of genes repressed by PRC2 including the apoptosis effector FBOX32 [79]. EZH2

depletion induced not only cell cycle arrest and apoptosis, but also cell senescence. EZH2 decrease triggered simultaneous remarkable gains of two senescence-associated regulators p16 and p21. These data suggest that DZNep exerts its anticancer roles partially through inducing cell apoptosis and senescence and inhibiting cell proliferation [149]. Interestingly, DZNep also reduces tumoral cell migration and invasion, in part through upregulating E-cadherin [150].

These findings suggested DZNep may be a promising therapeutic agent for cancer treatment through multiple mechanisms. Besides its antitumoral role, DZNep has been reported to modulate allogeneic T cell responses and may represent a novel therapeutic approach for treatment of graft *versus* host disease [151]. DZNep also promotes erythroid differentiation of K562 cells, presumably through a mechanism that is not directly related to EZH2 inhibition [152], suggesting that this inhibitor may also be exploited for therapeutic applications for hematological diseases, including anemia.

SAM-competitive inhibitor

Because DZNep is not totally specific to EZH2, significant efforts have been made over the past few years to obtain compounds that are potent and highly selective for EZH2 (table 6) [99,138,140,141,153]. To identify inhibitors of EZH2 methyltransferase activity, high-throughput biochemical screening experiments have been performed. Although the structure of the EZH2 active site has not yet been determined, the conserved SET domain architecture predicts two essential binding pockets: one for the SAM methyl donor and another for the Lys27 substrate. Because more than 50 SET domain proteins have been identified in humans thus far, the selectivity of the inhibitors is crucial for minimizing off-target effects [154]. From the end of 2012, several SAM-competitive inhibitors were announced with promising preclinical results [153] (figure 5, table 6).

The compound EPZ005687 has a *K*_i value of 24 nmol/L and is over 500-fold more selective for EZH2 versus 15 other PMTs and 50-fold more selective for EZH2 versus the closely related enzyme EZH1 [138]. Interestingly, EPZ005687 can also inhibit H3K27 methylation induced by the EZH2 mutants Y646 and A682, and it has been shown to selectively kill lymphoma cells that are heterozygous for one of these EZH2 mutations, with minimal effect on the proliferation of wild-type cells [138]. Another EZH2 inhibitor developed by Epizyme Inc. is EPZ-6438 (also called E7438). It shares similar in vitro properties (i.e. mechanism of action,

specificity, and cellular activity) as EPZ005687, but it demonstrates significantly improved pharmacokinetic properties, including good oral bioavailability in animals. Interestingly, oral dosing of EPZ-6438 leads to potent in vivo target inhibition and antitumor activity in a SMARCB1-deleted malignant rhabdoid tumor xenograft model (21). The ability of EPZ-6438 to reduce global H3K27Me3 levels was further demonstrated in several other human lymphoma cell lines, including lines expressing either wild-type or mutant EZH2. This compound is currently under study in a phase 1/2 trial as a single agent in subjects with advanced solid tumors or with B cell lymphomas. The primary goal of the phase 1 trial is to establish the safety and define the maximal tolerated dose of the drug.

EI1, another inhibitor of EZH2, was developed by Novartis [140] and shows very good selectivity with a low *K*_i value (approximately 13 nmol/L). Loss of the H3K27 methylation function and activation of PRC2 target genes have been observed in EI1-treated cells. EI1 is equally active against both wild type and the Y646 mutant form of EZH2, and the inhibition of the EZH2 Y646 mutant in B-cell lymphomas decreases the H3K27 methylation level genome-wide and activates PRC2 target genes, leading to decreased proliferation, cell cycle arrest, and apoptosis [140].

Another EZH2 inhibitor is GSK126 (developed by GlaxoSmithKline), which has a *K*_i of 0.5–3 nmol/L [99]. The selectivity of GSK126 for EZH2 is more than 1000-fold higher than its selectivity for 20 other human methyltransferases containing SET or non-SET domains, and it is over 150-fold more selective for EZH2 than for EZH1. McCabe *et al.* showed that the compound GSK126 decreased global methylation at H3K27 and reactivated silenced PRC2 target genes in EZH2-mutant diffuse large B-cell lymphoma (DLBCL) cell lines [99]. Furthermore, this compound effectively inhibited the proliferation of the EZH2-mutant DLBCL cells, and suppressed tumor growth in a mouse xenograft model.

UNC1999, an analogue of GSK126, is the first orally bioavailable inhibitor that has high *in vitro* potency against wild type and mutant EZH2 over a broad range of epigenetic and non-epigenetic targets. As GSK126, UNC1999 potently reduced H3K27me3 levels in cells (IC_{50} <50 nmol/L) and selectively killed DLBCL cell lines harboring the Y646N mutation [141]. However, UNC1999 shows less selectivity for EZH1 than the inhibitors mentioned above.

Stabilized α-helix of EZH2 (SAH-EZH2)

Most recently, Kim *et al.* developed a peptide called stabilized α -helix of EZH2 (SAH-EZH2), which inhibits EZH2 inhibition by a different mechanism from previous inhibitors [142]. SAH-EZH2 selectively disrupts the contact between EZH2 and EED, another subunit in the PRC2 complex, whereas the other EZH2 inhibitors target the HMT catalytic domain (figure 5). As in the case of GSK126, SAH-EZH2 decreases the H3K27 trimethylation level, resulting in growth arrest of PRC2-dependent MLL-AF9 leukemia cells (table 6).

Future perspective

Due to frequent activation of *EZH2* in cancers, these new targeted therapies hold exciting promise in the clinic. Indeed, as discusses above, several reports have shown that genetic silencing and pharmacologic inhibition of EZH2 induced cell apoptosis, inhibited cell invasion and tumor angiogenesis, ultimately suppressed cancer growth and progression [155,156]. More importantly, given the advantages of specific chemical compounds including convenient to use and reversible nature of epigenetic modifications behind carcinogenesis, administration of small molecules targeting EZH2 seems to be a plausible and appealing way as a novel anti-cancer strategy [157]. However, the down-regulation of the EZH2 causes the hepatocytes to become more susceptible to lipid accumulation and inflammation. Significantly, from a translational point of view, because EZH2 inhibitors are potential and promising drugs useful in the treatment of various types of cancer, the patients who will be eventually treated with them should be monitored for the induction of non-alcoholic fatty liver disease (NAFLD) as a potential side effect [158].

Executive summary

- Histone modifications and histone code: Post-translational modifications of histone play a major role in transcriptional control and normal development, and are tightly regulated (histone code).

- Role of the lysine methyltransferase EZH2:

* H3K27 methylation is a major epigenetic mark, related to gene silencing, and its control by HMTs (EZH2) and HDMs (JMJD3 and UTX) is a major regulator of cell physiology (reprogrammation, cell differentiation, immune system, cancers...).

* EZH2 is overexpressed or mutated in numerous types of cancers.

- EZH2 inhibitors: EZH2 inhibitors are promising anticancer drugs

Defined key-terms

- 1) A current search of the PubMed database for the term 'epigenetic' returns more than 33 000 papers, with about half of them published during the past 4 years, marking an explosion of research efforts on this topic. Striking is the diversity of biological processes that are described in these articles, including fundamental aspects of development, cell fate or reprogramming in diverse organisms, as well as basic mechanisms of transcriptional control or DNA damage repair. Thus, epigenetic, through the modulation of genetic information, plays roles in fundamental life processes, such as cell proliferation, cell development, cell fate, or decision between cell survival and cell death.
- 2) EZH2 (Enhancer of Zeste Drosophila Homolog 2) was initially cloned in 1996. This genes located on human chromosome 21 encodes a histone methyltransferase and constitutes the catalytic component of the polycomb repressive complex-2 (PRC2). EZH2 specifically methylates the histone H3 at lysine-27 (H3K27). It plays a major role in a plethora of biological processes, including development, cell fate or reprogramming, as well as regulation of immune system or cancers.

Acknowledgements

Researchs of the authors are supported by Cancéropole Nord-Ouest, Conseil Régional de Basse-Normandie, La Ligue Contre le Cancer, and Société Française de Rhumathologie (SFR). NG is a recipient of a fellowship from Conseil regional de Basse-Normandie.

References

- Strahl BD, Allis CD. The language of covalent histone modifications. *Nature*. 403(6765), 41–45 (2000).).** This article is one of the first paper about the concept "histone code".
- 2. Marks H, Kalkan T, Menafra R, *et al.* The Transcriptional and Epigenomic Foundations of Ground State Pluripotency. *Cell*. 149(3), 590–604 (2012).

- 3. Bannister AJ, Kouzarides T. Regulation of chromatin by histone modifications. *Cell Res.* 21(3), 381–395 (2011).
- 4. Black JC, Van Rechem C, Whetstine JR. Histone lysine methylation dynamics: establishment, regulation, and biological impact. *Mol. Cell*. 48(4), 491–507 (2012). * This is an excellent review about the discovery, characterization and regulation of the KMTs and KDMs.
- 5. Tan M, Luo H, Lee S, *et al.* Identification of 67 histone marks and histone lysine crotonylation as a new type of histone modification. *Cell.* 146(6), 1016–1028 (2011).
- Wozniak GG, Strahl BD. Hitting the "mark": Interpreting lysine methylation in the context of active transcription. *Biochim. Biophys. Acta BBA Gene Regul. Mech.* [Internet]. Available from: http://www.sciencedirect.com/science/article/pii/S1874939914000534.
- 7. Berger SL. The complex language of chromatin regulation during transcription. *Nature*. 447(7143), 407–412 (2007).
- 8. Taverna SD, Li H, Ruthenburg AJ, Allis CD, Patel DJ. How chromatin-binding modules interpret histone modifications: lessons from professional pocket pickers. *Nat. Struct. Mol. Biol.* 14(11), 1025–1040 (2007).
- 9. Bernstein BE, Kamal M, Lindblad-Toh K, *et al.* Genomic maps and comparative analysis of histone modifications in human and mouse. *Cell*. 120(2), 169–181 (2005).
- 10. Schubeler D, MacAlpine DM, Scalzo D, *et al.* The histone modification pattern of active genes revealed through genome-wide chromatin analysis of a higher eukaryote. *Genes Dev.* 18(11), 1263–1271 (2004).
- 11. Pokholok DK, Harbison CT, Levine S, *et al.* Genome-wide map of nucleosome acetylation and methylation in yeast. *Cell*. 122(4), 517–527 (2005).
- 12. Santos-Rosa H, Schneider R, Bannister AJ, *et al.* Active genes are tri-methylated at K4 of histone H3. *Nature*. 419(6905), 407–411 (2002).
- 13. Strahl BD, Ohba R, Cook RG, Allis CD. Methylation of histone H3 at lysine 4 is highly conserved and correlates with transcriptionally active nuclei in Tetrahymena. *Proc. Natl. Acad. Sci. U. S. A.* 96(26), 14967–14972 (1999).
- 14. Rao B, Shibata Y, Strahl BD, Lieb JD. Dimethylation of Histone H3 at Lysine 36 Demarcates Regulatory and Nonregulatory Chromatin Genome-Wide. *Mol. Cell. Biol.* 25(21), 9447–9459 (2005).
- 15. Wagner EJ, Carpenter PB. Understanding the language of Lys36 methylation at histone H3. *Nat. Rev. Mol. Cell Biol.* 13(2), 115–126 (2012).
- 16. Lee J-S, Shilatifard A. A site to remember: H3K36 methylation a mark for histone deacetylation. *Mutat. Res.* 618(1-2), 130–134 (2007).

- 17. Lehnertz B, Ueda Y, Derijck AAHA, *et al.* Suv39h-mediated histone H3 lysine 9 methylation directs DNA methylation to major satellite repeats at pericentric heterochromatin. *Curr. Biol. CB.* 13(14), 1192–1200 (2003).
- 18. Rougeulle C, Chaumeil J, Sarma K, *et al.* Differential histone H3 Lys-9 and Lys-27 methylation profiles on the X chromosome. *Mol. Cell. Biol.* 24(12), 5475–5484 (2004).
- 19. Escamilla-Del-Arenal M, da Rocha ST, Spruijt CG, *et al.* Cdyl, a new partner of the inactive X chromosome and potential reader of H3K27me3 and H3K9me2. *Mol. Cell. Biol.* 33(24), 5005–5020 (2013).
- Molina-Serrano D, Schiza V, Kirmizis A. Cross-talk among epigenetic modifications: lessons from histone arginine methylation. *Biochem. Soc. Trans.* 41(3), 751–759 (2013).
- 21. Migliori V, Phalke S, Bezzi M, Guccione E. Arginine/lysine-methyl/methyl switches: biochemical role of histone arginine methylation in transcriptional regulation. *Epigenomics*. 2(1), 119–137 (2010).
- 22. Lorenzo AD, Bedford MT. Histone Arginine Methylation. *FEBS Lett.* 585(13), 2024–2031 (2011).
- 23. Petrossian TC, Clarke SG. Uncovering the Human Methyltransferasome. *Mol. Cell. Proteomics*. 10(1), M110.000976 (2011).
- 24. Greer EL, Shi Y. Histone methylation: a dynamic mark in health, disease and inheritance. *Nat. Rev. Genet.* 13(5), 343–357 (2012).
- 25. Kooistra SM, Helin K. Molecular mechanisms and potential functions of histone demethylases. *Nat. Rev. Mol. Cell Biol.* 13(5), 297–311 (2012).
- 26. Hublitz P, Albert M, Peters AHFM. Mechanisms of transcriptional repression by histone lysine methylation. *Int. J. Dev. Biol.* 53(2-3), 335–354 (2009).
- 27. Bracken AP, Pasini D, Capra M, Prosperini E, Colli E, Helin K. EZH2 is downstream of the pRB-E2F pathway, essential for proliferation and amplified in cancer. *EMBO J.* 22(20), 5323–5335 (2003).
- 28. Varambally S, Dhanasekaran SM, Zhou M, *et al.* The polycomb group protein EZH2 is involved in progression of prostate cancer. *Nature*. 419(6907), 624–629 (2002). ** This paper is the first to identify the role of EZH2 in cancer.
- 29. Collett K, Eide GE, Arnes J, *et al.* Expression of enhancer of zeste homologue 2 is significantly associated with increased tumor cell proliferation and is a marker of aggressive breast cancer. *Clin. Cancer Res. Off. J. Am. Assoc. Cancer Res.* 12(4), 1168–1174 (2006).
- 30. Bachmann IM, Halvorsen OJ, Collett K, *et al.* EZH2 expression is associated with high proliferation rate and aggressive tumor subgroups in cutaneous melanoma and

cancers of the endometrium, prostate, and breast. J. Clin. Oncol. Off. J. Am. Soc. Clin. Oncol. 24(2), 268–273 (2006).

- 31. Kleer CG, Cao Q, Varambally S, *et al.* EZH2 is a marker of aggressive breast cancer and promotes neoplastic transformation of breast epithelial cells. *Proc. Natl. Acad. Sci. U. S. A.* 100(20), 11606–11611 (2003).
- 32. Weikert S, Christoph F, Köllermann J, *et al.* Expression levels of the EZH2 polycomb transcriptional repressor correlate with aggressiveness and invasive potential of bladder carcinomas. *Int. J. Mol. Med.* 16(2), 349–353 (2005).
- 33. Albert M, Helin K. Histone methyltransferases in cancer. *Semin. Cell Dev. Biol.* 21(2), 209–220 (2010).
- 34. Agger K, Christensen J, Cloos PAC, Helin K. The emerging functions of histone demethylases. *Curr. Opin. Genet. Dev.* 18(2), 159–168 (2008).
- 35. Kirmizis A, Bartley SM, Kuzmichev A, *et al.* Silencing of human polycomb target genes is associated with methylation of histone H3 Lys 27. *Genes Dev.* 18(13), 1592–1605 (2004).
- 36. Xu K, Wu ZJ, Groner AC, *et al.* EZH2 Oncogenic Activity in Castration Resistant Prostate Cancer Cells is Polycomb-Independent. *Science*. 338(6113), 1465–1469 (2012).
- 37. Kim E, Kim M, Woo D-H, *et al.* Phosphorylation of EZH2 activates STAT3 signaling via STAT3 methylation and promotes tumorigenicity of glioblastoma stem-like cells. *Cancer Cell.* 23(6), 839–852 (2013).
- 38. Kogure M, Takawa M, Saloura V, *et al.* The Oncogenic Polycomb Histone Methyltransferase EZH2 Methylates Lysine 120 on Histone H2B and Competes Ubiquitination. *Neoplasia N. Y. N.* 15(11), 1251–1261 (2013).
- 39. Chu C-S, Lo P-W, Yeh Y-H, *et al.* O-GlcNAcylation regulates EZH2 protein stability and function. *Proc. Natl. Acad. Sci. U. S. A.* 111(4), 1355–1360 (2014).
- 40. Cao R, Zhang Y. SUZ12 is required for both the histone methyltransferase activity and the silencing function of the EED-EZH2 complex. *Mol. Cell*. 15(1), 57–67 (2004).
- 41. Pasini D, Bracken AP, Jensen MR, Lazzerini Denchi E, Helin K. Suz12 is essential for mouse development and for EZH2 histone methyltransferase activity. *EMBO J.* 23(20), 4061–4071 (2004).
- 42. Sewalt RG, van der Vlag J, Gunster MJ, *et al.* Characterization of interactions between the mammalian polycomb-group proteins Enx1/EZH2 and EED suggests the existence of different mammalian polycomb-group protein complexes. *Mol. Cell. Biol.* 18(6), 3586–3595 (1998).
- 43. Denisenko O, Shnyreva M, Suzuki H, Bomsztyk K. Point mutations in the WD40 domain of Eed block its interaction with Ezh2. *Mol. Cell. Biol.* 18(10), 5634–5642 (1998).

- 44. Margueron R, Reinberg D. The Polycomb complex PRC2 and its mark in life. *Nature*. 469(7330), 343–349 (2011).
- 45. Shih AH, Abdel-Wahab O, Patel JP, Levine RL. The role of mutations in epigenetic regulators in myeloid malignancies. *Nat. Rev. Cancer.* 12(9), 599–612 (2012).
- 46. Sparmann A, van Lohuizen M. Polycomb silencers control cell fate, development and cancer. *Nat. Rev. Cancer*. 6(11), 846–856 (2006).
- 47. O'Carroll D, Erhardt S, Pagani M, Barton SC, Surani MA, Jenuwein T. The polycombgroup gene Ezh2 is required for early mouse development. *Mol. Cell. Biol.* 21(13), 4330–4336 (2001).
- 48. Shen X, Liu Y, Hsu Y-J, *et al.* EZH1 mediates methylation on histone H3 lysine 27 and complements EZH2 in maintaining stem cell identity and executing pluripotency. *Mol. Cell.* 32(4), 491–502 (2008).
- 49. Pereira CF, Piccolo FM, Tsubouchi T, *et al.* ESCs require PRC2 to direct the successful reprogramming of differentiated cells toward pluripotency. *Cell Stem Cell.* 6(6), 547–556 (2010).
- 50. Zhang M, Wang F, Kou Z, Zhang Y, Gao S. Defective chromatin structure in somatic cell cloned mouse embryos. *J. Biol. Chem.* 284(37), 24981–24987 (2009).
- 51. Villasante A, Piazzolla D, Li H, Gomez-Lopez G, Djabali M, Serrano M. Epigenetic regulation of Nanog expression by Ezh2 in pluripotent stem cells. *Cell Cycle Georget. Tex.* 10(9), 1488–1498 (2011).
- 52. Ding X, Wang X, Sontag S, *et al.* The Polycomb Protein Ezh2 Impacts on iPS Cell Generation. *Stem Cells Dev.*, 131210220315000 (2013).
- 53. Neri F, Zippo A, Krepelova A, Cherubini A, Rocchigiani M, Oliviero S. Myc regulates the transcription of the PRC2 gene to control the expression of developmental genes in embryonic stem cells. *Mol. Cell. Biol.* 32(4), 840–851 (2012).
- 54. Fragola G, Germain P-L, Laise P, *et al.* Cell reprogramming requires silencing of a core subset of polycomb targets. *PLoS Genet.* 9(2), e1003292 (2013).
- 55. Müller J, Hart CM, Francis NJ, *et al.* Histone methyltransferase activity of a Drosophila Polycomb group repressor complex. *Cell*. 111(2), 197–208 (2002).
- 56. Czermin B, Melfi R, McCabe D, Seitz V, Imhof A, Pirrotta V. Drosophila enhancer of Zeste/ESC complexes have a histone H3 methyltransferase activity that marks chromosomal Polycomb sites. *Cell*. 111(2), 185–196 (2002).
- 57. Cao R, Wang L, Wang H, *et al.* Role of histone H3 lysine 27 methylation in Polycombgroup silencing. *Science*. 298(5595), 1039–1043 (2002). ** This paper shows that polycomb and H3K27me3 is associated to gene silencing.

- 58. Kuzmichev A, Jenuwein T, Tempst P, Reinberg D. Different EZH2-containing complexes target methylation of histone H1 or nucleosomal histone H3. *Mol. Cell*. 14(2), 183–193 (2004).
- 59. Chen Y-H, Hung M-C, Li L-Y. EZH2: a pivotal regulator in controlling cell differentiation. *Am. J. Transl. Res.* 4(4), 364–375 (2012).
- 60. Caretti G, Di Padova M, Micales B, Lyons GE, Sartorelli V. The Polycomb Ezh2 methyltransferase regulates muscle gene expression and skeletal muscle differentiation. *Genes Dev.* 18(21), 2627–2638 (2004).
- 61. Juan AH, Kumar RM, Marx JG, Young RA, Sartorelli V. Mir-214-dependent regulation of the polycomb protein Ezh2 in skeletal muscle and embryonic stem cells. *Mol. Cell*. 36(1), 61–74 (2009).
- 62. Wong CF, Tellam RL. MicroRNA-26a targets the histone methyltransferase Enhancer of Zeste homolog 2 during myogenesis. *J. Biol. Chem.* 283(15), 9836–9843 (2008).
- 63. Palacios D, Mozzetta C, Consalvi S, *et al.* TNF/p38α/polycomb signaling to Pax7 locus in satellite cells links inflammation to the epigenetic control of muscle regeneration. *Cell Stem Cell.* 7(4), 455–469 (2010).
- 64. Marchesi I, Fiorentino FP, Rizzolio F, Giordano A, Bagella L. The ablation of EZH2 uncovers its crucial role in rhabdomyosarcoma formation. *Cell Cycle Georget. Tex.* 11(20), 3828–3836 (2012).
- 65. Woodhouse S, Pugazhendhi D, Brien P, Pell JM. Ezh2 maintains a key phase of muscle satellite cell expansion but does not regulate terminal differentiation. *J. Cell Sci.* 126(Pt 2), 565–579 (2013).
- 66. Juan AH, Derfoul A, Feng X, *et al.* Polycomb EZH2 controls self-renewal and safeguards the transcriptional identity of skeletal muscle stem cells. *Genes Dev.* 25(8), 789–794 (2011).
- 67. Acharyya S, Sharma SM, Cheng AS, *et al.* TNF Inhibits Notch-1 in Skeletal Muscle Cells by Ezh2 and DNA Methylation Mediated Repression: Implications in Duchenne Muscular Dystrophy. *PLoS ONE*. 5(8), e12479 (2010).
- 68. Wei Y, Chen Y-H, Li L-Y, *et al.* CDK1-dependent phosphorylation of EZH2 suppresses methylation of H3K27 and promotes osteogenic differentiation of human mesenchymal stem cells. *Nat. Cell Biol.* 13(1), 87–94 (2011).
- 69. Wu H, Whitfield TW, Gordon JA, *et al.* Genomic occupancy of Runx2 with global expression profiling identifies a novel dimension to control of osteoblastogenesis. *Genome Biol.* 15(3), R52 (2014).
- 70. Wang L, Jin Q, Lee J-E, Su I, Ge K. Histone H3K27 methyltransferase Ezh2 represses Wnt genes to facilitate adipogenesis. *Proc. Natl. Acad. Sci. U. S. A.* 107(16), 7317–7322 (2010).

- 71. Hobert O, Sures I, Ciossek T, Fuchs M, Ullrich A. Isolation and developmental expression analysis of Enx-1, a novel mouse Polycomb group gene. *Mech. Dev.* 55(2), 171–184 (1996).
- 72. Raaphorst FM, van Kemenade FJ, Blokzijl T, *et al.* Coexpression of BMI-1 and EZH2 polycomb group genes in Reed-Sternberg cells of Hodgkin's disease. *Am. J. Pathol.* 157(3), 709–715 (2000).
- 73. Fukuyama T, Otsuka T, Shigematsu H, *et al.* Proliferative involvement of ENX-1, a putative human polycomb group gene, in haematopoietic cells. *Br. J. Haematol.* 108(4), 842–847 (2000).
- 74. Hobert O, Jallal B, Ullrich A. Interaction of Vav with ENX-1, a putative transcriptional regulator of homeobox gene expression. *Mol. Cell. Biol.* 16(6), 3066–3073 (1996).
- 75. Su I-H, Basavaraj A, Krutchinsky AN, *et al.* Ezh2 controls B cell development through histone H3 methylation and Igh rearrangement. *Nat. Immunol.* 4(2), 124–131 (2003).
- 76. Beguelin W, Popovic R, Teater M, *et al.* EZH2 is required for germinal center formation and somatic EZH2 mutations promote lymphoid transformation. *Cancer Cell.* 23(5), 677–692 (2013).
- 77. Tumes DJ, Onodera A, Suzuki A, *et al.* The polycomb protein Ezh2 regulates differentiation and plasticity of CD4(+) T helper type 1 and type 2 cells. *Immunity*. 39(5), 819–832 (2013).
- 78. Raaphorst FM, Meijer CJLM, Fieret E, *et al.* Poorly differentiated breast carcinoma is associated with increased expression of the human polycomb group EZH2 gene. *Neoplasia N. Y. N.* 5(6), 481–488 (2003).
- 79. Tan J, Yang X, Zhuang L, *et al.* Pharmacologic disruption of Polycomb-repressive complex 2-mediated gene repression selectively induces apoptosis in cancer cells. *Genes Dev.* 21(9), 1050 –1063 (2007). ** This article is the first to demonstrate that DZNep, an inhibitor of EZH2, induces apoptosis in tumoral cells.
- 80. Suvà M-L, Riggi N, Janiszewska M, *et al.* EZH2 Is Essential for Glioblastoma Cancer Stem Cell Maintenance. *Cancer Res.* 69(24), 9211–9218 (2009).
- 81. Kodach LL, Jacobs RJ, Heijmans J, *et al.* The role of EZH2 and DNA methylation in the silencing of the tumour suppressor RUNX3 in colorectal cancer. *Carcinogenesis*. 31(9), 1567–1575 (2010).
- 82. Takawa M, Masuda K, Kunizaki M, *et al.* Validation of the histone methyltransferase EZH2 as a therapeutic target for various types of human cancer and as a prognostic marker. *Cancer Sci.* 102(7), 1298–1305 (2011).
- 83. Varambally S, Cao Q, Mani R-S, *et al.* Genomic loss of microRNA-101 leads to overexpression of histone methyltransferase EZH2 in cancer. *Science*. 322(5908), 1695–1699 (2008).

- 84. Wagener N, Macher-Goeppinger S, Pritsch M, *et al.* Enhancer of zeste homolog 2 (EZH2) expression is an independent prognostic factor in renal cell carcinoma. *BMC Cancer*. 10, 524 (2010).
- 85. Croonquist PA, Van Ness B. The polycomb group protein enhancer of zeste homolog 2 (EZH 2) is an oncogene that influences myeloma cell growth and the mutant ras phenotype. *Oncogene*. 24(41), 6269–6280 (2005).
- 86. Yu J, Yu J, Rhodes DR, *et al.* A polycomb repression signature in metastatic prostate cancer predicts cancer outcome. *Cancer Res.* 67(22), 10657–10663 (2007).
- 87. Chase A, Cross NCP. Aberrations of EZH2 in Cancer. *Clin. Cancer Res.* 17(9), 2613–2618 (2011).
- 88. Simon JA, Lange CA. Roles of the EZH2 histone methyltransferase in cancer epigenetics. *Mutat. Res.* 647(1-2), 21–29 (2008).
- 89. Velichutina I, Shaknovich R, Geng H, *et al.* EZH2-mediated epigenetic silencing in germinal center B cells contributes to proliferation and lymphomagenesis. *Blood*. 116(24), 5247–5255 (2010).
- 90. Sellers WR, Loda M. The EZH2 polycomb transcriptional repressor--a marker or mover of metastatic prostate cancer? *Cancer Cell*. 2(5), 349–350 (2002).
- 91. Girard N, Bazille C, Lhuissier E, *et al.* 3-Deazaneplanocin A (DZNep), an Inhibitor of the Histone Methyltransferase EZH2, Induces Apoptosis and Reduces Cell Migration in Chondrosarcoma Cells. *PLoS ONE* [Internet]. 9(5) (2014). Available from: http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4031152/.
- 92. Kunju LP, Cookingham C, Toy KA, Chen W, Sabel MS, Kleer CG. EZH2 and ALDH-1 mark breast epithelium at risk for breast cancer development. *Mod. Pathol. Off. J. U. S. Can. Acad. Pathol. Inc.* 24(6), 786–793 (2011).
- 93. McCabe MT, Graves AP, Ganji G, *et al.* Mutation of A677 in histone methyltransferase EZH2 in human B-cell lymphoma promotes hypertrimethylation of histone H3 on lysine 27 (H3K27). *Proc. Natl. Acad. Sci. U. S. A.* 109(8), 2989–2994 (2012).
- 94. Morin RD, Mendez-Lago M, Mungall AJ, *et al.* Frequent mutation of histone-modifying genes in non-Hodgkin lymphoma. *Nature*. 476(7360), 298–303 (2011).
- 95. Pasqualucci L, Trifonov V, Fabbri G, *et al.* Analysis of the coding genome of diffuse large B-cell lymphoma. *Nat. Genet.* 43(9), 830–837 (2011).
- Sneeringer CJ, Scott MP, Kuntz KW, et al. Coordinated activities of wild-type plus mutant EZH2 drive tumor-associated hypertrimethylation of lysine 27 on histone H3 (H3K27) in human B-cell lymphomas. Proc. Natl. Acad. Sci. U. S. A. 107(49), 20980– 20985 (2010).

- 97. Wigle TJ, Knutson SK, Jin L, *et al.* The Y641C mutation of EZH2 alters substrate specificity for histone H3 lysine 27 methylation states. *FEBS Lett.* 585(19), 3011–3014 (2011).
- 98. Yap DB, Chu J, Berg T, *et al.* Somatic mutations at EZH2 Y641 act dominantly through a mechanism of selectively altered PRC2 catalytic activity, to increase H3K27 trimethylation. *Blood.* 117(8), 2451–2459 (2011).
- 99. McCabe MT, Ott HM, Ganji G, *et al.* EZH2 inhibition as a therapeutic strategy for lymphoma with EZH2-activating mutations. *Nature*. 492(7427), 108–112 (2012).
- 100. Bödör C, Grossmann V, Popov N, *et al.* EZH2 mutations are frequent and represent an early event in follicular lymphoma. *Blood.*, blood–2013–04–496893 (2013).
- 101. Bödör C, O'Riain C, Wrench D, et al. EZH2 Y641 mutations in follicular lymphoma. *Leukemia*. 25(4), 726–729 (2011).
- 102. Majer CR, Jin L, Scott MP, *et al.* A687V EZH2 is a gain-of-function mutation found in lymphoma patients. *FEBS Lett.* 586(19), 3448–3451 (2012).
- 103. Lee HJ, Shin DH, Kim KB, *et al.* Polycomb protein EZH2 expression in diffuse large B-cell lymphoma is associated with better prognosis in patients treated with rituximab, cyclophosphamide, doxorubicin, vincristine and prednisone. *Leuk. Lymphoma*. (2014).
- 104. Li Z, Xu L, Tang N, *et al.* The polycomb group protein EZH2 inhibits lung cancer cell growth by repressing the transcription factor Nrf2. *FEBS Lett.* (2014).
- 105. Nikoloski G, Langemeijer SMC, Kuiper RP, *et al.* Somatic mutations of the histone methyltransferase gene EZH2 in myelodysplastic syndromes. *Nat. Genet.* 42(8), 665–667 (2010).
- 106. Chen X, Song N, Matsumoto K, *et al.* High expression of trimethylated histone H3 at lysine 27 predicts better prognosis in non-small cell lung cancer. *Int. J. Oncol.* 43(5), 1467–1480 (2013).
- 107. Wei Y, Xia W, Zhang Z, *et al.* Loss of Trimethylation at Lysine 27 of Histone H3 Is a Predictor of Poor Outcome in Breast, Ovarian, and Pancreatic Cancers. *Mol. Carcinog.* 47(9), 701–706 (2008).
- 108. Chang C-J, Hung M-C. The role of EZH2 in tumour progression. *Br. J. Cancer*. 106(2), 243–247 (2012).
- 109. Zhong J, Min L, Huang H, *et al.* EZH2 regulates the expression of p16 in the nasopharyngeal cancer cells. *Technol. Cancer Res. Treat.* 12(3), 269–274 (2013).
- 110. Kheradmand Kia S, Solaimani Kartalaei P, Farahbakhshian E, Pourfarzad F, von Lindern M, Verrijzer CP. EZH2-dependent chromatin looping controls INK4a and INK4b, but not ARF, during human progenitor cell differentiation and cellular senescence. *Epigenetics Chromatin*. 2(1), 16 (2009).

- 111. Ferraro A, Mourtzoukou D, Kosmidou V, *et al.* EZH2 is regulated by ERK/AKT and targets integrin alpha2 gene to control Epithelial-Mesenchymal Transition and anoikis in colon cancer cells. *Int. J. Biochem. Cell Biol.* 45(2), 243–254 (2013).
- Smits M, Nilsson J, Mir SE, *et al.* miR-101 is down-regulated in glioblastoma resulting in EZH2-induced proliferation, migration, and angiogenesis. *Oncotarget*. 1(8), 710–720 (2011).
- 113. Shin YJ, Kim J-H. The role of EZH2 in the regulation of the activity of matrix metalloproteinases in prostate cancer cells. *PloS One*. 7(1), e30393 (2012).
- 114. Ougolkov AV, Bilim VN, Billadeau DD. Regulation of Pancreatic Tumor Cell Proliferation and Chemoresistance by the Histone Methyltransferase EZH2. *Clin. Cancer Res. Off. J. Am. Assoc. Cancer Res.* 14(21), 6790–6796 (2008).
- 115. Zhang Y, Liu G, Lin C, Liao G, Tang B. Silencing the EZH2 gene by RNA interference reverses the drug resistance of human hepatic multidrug-resistant cancer cells to 5-Fu. *Life Sci.* 92(17-19), 896–902 (2013).
- 116. Hu S, Yu L, Li Z, *et al.* Overexpression of EZH2 contributes to acquired cisplatin resistance in ovarian cancer cells in vitro and in vivo. *Cancer Biol. Ther.* 10(8), 788–795 (2010).
- 117. Lee ST, Li Z, Wu Z, *et al.* Context-specific regulation of NF-κB target gene expression by EZH2 in breast cancers. *Mol. Cell.* 43(5), 798–810 (2011).
- 118. Shi B, Liang J, Yang X, *et al.* Integration of estrogen and Wnt signaling circuits by the polycomb group protein EZH2 in breast cancer cells. *Mol. Cell. Biol.* 27(14), 5105–5119 (2007).
- 119. Wilson BG, Roberts CWM. SWI/SNF nucleosome remodellers and cancer. *Nat. Rev. Cancer*. 11(7), 481–492 (2011).
- 120. Shao Z, Raible F, Mollaaghababa R, *et al.* Stabilization of chromatin structure by PRC1, a Polycomb complex. *Cell*. 98(1), 37–46 (1999).
- 121. Francis NJ, Saurin AJ, Shao Z, Kingston RE. Reconstitution of a functional core polycomb repressive complex. *Mol. Cell*. 8(3), 545–556 (2001).
- 122. Kennison JA, Tamkun JW. Dosage-dependent modifiers of polycomb and antennapedia mutations in Drosophila. *Proc. Natl. Acad. Sci. U. S. A.* 85(21), 8136–8140 (1988).
- 123. Tamkun JW, Deuring R, Scott MP, *et al.* brahma: a regulator of Drosophila homeotic genes structurally related to the yeast transcriptional activator SNF2/SWI2. *Cell*. 68(3), 561–572 (1992).
- 124. Kennison JA. The Polycomb and trithorax group proteins of Drosophila: transregulators of homeotic gene function. *Annu. Rev. Genet.* 29, 289–303 (1995).

- 125. Kia SK, Gorski MM, Giannakopoulos S, Verrijzer CP. SWI/SNF mediates polycomb eviction and epigenetic reprogramming of the INK4b-ARF-INK4a locus. *Mol. Cell. Biol.* 28(10), 3457–3464 (2008).
- 126. Shain AH, Pollack JR. The spectrum of SWI/SNF mutations, ubiquitous in human cancers. *PloS One*. 8(1), e55119 (2013).
- 127. Versteege I, Sévenet N, Lange J, *et al.* Truncating mutations of hSNF5/INI1 in aggressive paediatric cancer. *Nature*. 394(6689), 203–206 (1998).
- 128. Roberts CW, Galusha SA, McMenamin ME, Fletcher CD, Orkin SH. Haploinsufficiency of Snf5 (integrase interactor 1) predisposes to malignant rhabdoid tumors in mice. *Proc. Natl. Acad. Sci. U. S. A.* 97(25), 13796–13800 (2000).
- 129. Wilson BG, Wang X, Shen X, *et al.* Epigenetic antagonism between polycomb and SWI/SNF complexes during oncogenic transformation. *Cancer Cell.* 18(4), 316–328 (2010).
- 130. Verma SK, Knight SD. Recent progress in the discovery of small-molecule inhibitors of the HMT EZH2 for the treatment of cancer. *Future Med. Chem.* 5(14), 1661–1670 (2013).
- 131. Miranda TB, Cortez CC, Yoo CB, *et al.* DZNep Is a Global Histone Methylation Inhibitor that Reactivates Developmental Genes Not Silenced by DNA Methylation. *Mol. Cancer Ther.* 8(6), 1579–1588 (2009).
- 132. Fiskus W, Wang Y, Sreekumar A, *et al.* Combined epigenetic therapy with the histone methyltransferase EZH2 inhibitor 3-deazaneplanocin A and the histone deacetylase inhibitor panobinostat against human AML cells. *Blood.* 114(13), 2733–2743 (2009).
- Xie Z, Bi C, Cheong LL, et al. Determinants of Sensitivity to DZNep Induced Apoptosis in Multiple Myeloma Cells. PLoS ONE [Internet]. 6(6) (2011). Available from: http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3123372/.
- 134. Chiba T, Suzuki E, Negishi M, *et al.* 3-Deazaneplanocin A is a promising therapeutic agent for the eradication of tumor-initiating hepatocellular carcinoma cells. *Int. J. Cancer.* 130(11), 2557–2567 (2012).
- 135. Van Aller GS, Pappalardi MB, Ott HM, *et al.* Long residence time inhibition of EZH2 in activated polycomb repressive complex 2. *ACS Chem. Biol.* 9(3), 622–629 (2014).
- 136. Amatangelo MD, Garipov A, Li H, Conejo-Garcia JR, Speicher DW, Zhang R. Threedimensional culture sensitizes epithelial ovarian cancer cells to EZH2 methyltransferase inhibition. *Cell Cycle Georget. Tex.* 12(13), 2113–2119 (2013).
- 137. Verma SK, Tian X, LaFrance LV, *et al.* Identification of Potent, Selective, Cell-Active Inhibitors of the Histone Lysine Methyltransferase EZH2. *ACS Med. Chem. Lett.* 3(12), 1091–1096 (2012).

- 138. Knutson SK, Wigle TJ, Warholic NM, *et al.* A selective inhibitor of EZH2 blocks H3K27 methylation and kills mutant lymphoma cells. *Nat. Chem. Biol.* 8(11), 890–896 (2012).
- 139. Knutson SK, Kawano S, Minoshima Y, *et al.* Selective inhibition of EZH2 by EPZ-6438 leads to potent antitumor activity in EZH2-mutant non-Hodgkin lymphoma. *Mol. Cancer Ther.* 13(4), 842–854 (2014).
- 140. Qi W, Chan H, Teng L, *et al.* Selective inhibition of Ezh2 by a small molecule inhibitor blocks tumor cells proliferation. *Proc. Natl. Acad. Sci. U. S. A.* 109(52), 21360–21365 (2012).
- 141. Konze KD, Ma A, Li F, *et al.* An orally bioavailable chemical probe of the Lysine Methyltransferases EZH2 and EZH1. *ACS Chem. Biol.* 8(6), 1324–1334 (2013).
- 142. Kim W, Bird GH, Neff T, *et al.* Targeted disruption of the EZH2-EED complex inhibits EZH2-dependent cancer. *Nat. Chem. Biol.* 9(10), 643–650 (2013).
- 143. Glazer RI, Hartman KD, Knode MC, *et al.* 3-Deazaneplanocin: a new and potent inhibitor of S-adenosylhomocysteine hydrolase and its effects on human promyelocytic leukemia cell line HL-60. *Biochem. Biophys. Res. Commun.* 135(2), 688–694 (1986).
- 144. Bray M, Driscoll J, Huggins JW. Treatment of lethal Ebola virus infection in mice with a single dose of an S-adenosyl-L-homocysteine hydrolase inhibitor. *Antiviral Res.* 45(2), 135–147 (2000).
- 145. Kikuchi J, Takashina T, Kinoshita I, *et al.* Epigenetic therapy with 3-deazaneplanocin A, an inhibitor of the histone methyltransferase EZH2, inhibits growth of non-small cell lung cancer cells. *Lung Cancer Amst. Neth.* 78(2), 138–143 (2012).
- 146. Cheng LL, Itahana Y, Lei ZD, *et al.* TP53 genomic status regulates sensitivity of gastric cancer cells to the histone methylation inhibitor 3-deazaneplanocin A (DZNep). *Clin. Cancer Res. Off. J. Am. Assoc. Cancer Res.* 18(15), 4201–4212 (2012).
- 147. Fiskus W, Rao R, Balusu R, *et al.* Superior Efficacy of a Combined Epigenetic Therapy against Human Mantle Cell Lymphoma Cells. *Clin. Cancer Res.* 18(22), 6227–6238 (2012).
- 148. Benoit YD, Witherspoon MS, Laursen KB, *et al.* Pharmacological inhibition of polycomb repressive complex-2 activity induces apoptosis in human colon cancer stem cells. *Exp. Cell Res.* 319(10), 1463–1470 (2013).
- 149. Li Z, Wang Y, Qiu J, *et al.* The polycomb group protein EZH2 is a novel therapeutic target in tongue cancer. *Oncotarget*. 4(12), 2532–2549 (2013).
- 150. Liu L, Xu Z, Zhong L, *et al.* EZH2 promotes tumor cell migration and invasion via epigenetic repression of E-cadherin in renal cell carcinoma. *BJU Int.* (2014).

- 151. He S, Wang J, Kato K, *et al.* Inhibition of histone methylation arrests ongoing graft-versus-host disease in mice by selectively inducing apoptosis of alloreactive effector T cells. *Blood*. 119(5), 1274–1282 (2012).
- 152. Fujiwara T, Saitoh H, Inoue A, *et al.* 3-Deazaneplanocin A (DZNep), an Inhibitor of S-Adenosylmethionine-dependent Methyltransferase, Promotes Erythroid Differentiation. *J. Biol. Chem.* 289(12), 8121–8134 (2014).
- 153. Tan J, Yan Y, Wang X, Jiang Y, Xu HE. EZH2: biology, disease, and structure-based drug discovery. *Acta Pharmacol. Sin.* 35(2), 161–174 (2014).
- 154. Copeland RA, Solomon ME, Richon VM. Protein methyltransferases as a target class for drug discovery. *Nat. Rev. Drug Discov.* 8(9), 724–732 (2009).
- 155. Crea F, Hurt EM, Mathews LA, *et al.* Pharmacologic disruption of Polycomb Repressive Complex 2 inhibits tumorigenicity and tumor progression in prostate cancer. *Mol. Cancer.* 10, 40 (2011).
- 156. Chen Y, Lin MC, Yao H, *et al.* Lentivirus-mediated RNA interference targeting enhancer of zeste homolog 2 inhibits hepatocellular carcinoma growth through down-regulation of stathmin. *Hepatol. Baltim. Md.* 46(1), 200–208 (2007).
- 157. Crea F, Fornaro L, Bocci G, et al. EZH2 inhibition: targeting the crossroad of tumor invasion and angiogenesis. *Cancer Metastasis Rev.* 31(3-4), 753–761 (2012).
- 158. Vella S, Gnani D, Crudele A, *et al.* EZH2 down-regulation exacerbates lipid accumulation and inflammation in vitro and in vivo NAFLD. *Int. J. Mol. Sci.* 14(12), 24154–24168 (2013).

Figures

Figure 1: Schema of nucleosome organization

The fundamental DNA packing unit is known as a nucleosome. Each nucleosome is about 11nm in diameter. The DNA double helix wraps around a central core of eight histone protein molecules (an octamer containing 2 H2A, 2 H2B, 2 H3 and 2 H4) to form a single nucleosome. The N-terminal "tail" of these histones can undergo post-translational modifications (acetylation, methylation or phosphorylation).

Figure 2: Schematic representation of major histone modifications

Histone modifications mainly occur on the N-terminal tails of histones but also on the Cterminal tails and globular domains. The major modifications shown include acetylation (A), methylation (M), phosphorylation (P) and ubiquitination (U).

Figure 3: Methyl group transfer reaction on lysine

The lysine amino group of the substrate histone polypeptide engages in a SN2 reaction with the activated co-factor *S*-adenosyl-L-methionine (SAM), resulting in the formation of an *N*-methylated lysine and *S*-adenosyl-L-homocysteine (SAH).

Figure 4: Schematic representation of PRC2 complex.

(A) Domain organizations of each subunit in the human PRC2 complex.

Domain "1", binding region for PHF1 in human cells; domain "2", binding region for SUZ12; CXC, cysteine-rich domain; SANT, domain that allows chromatin remodeling protein to interact with histones; SET, catalytic domain of EZH2; VEFS, VRN2-EMF2-FIS2-SUZ12 domain; WD, WD-40 domain; WDB, WD-40 binding domain; Zn, Zn-finger region.

(B) The subunits of human PRC2 complexes, their interactions, and shematic function of PRC2 are shown.

Figure 5: Modes of inhibition of PRC2.

Three types of inhibitors are indicated: DZNep as an SAH hydrolase inhibitor, **S**AM competitive inhibitors, and SAH-EZH2 peptides as disrupters of the contact between EZH2 and EED.

<u>Tables</u>

Table 1: The histone code.¹

	Methylation				
	Mono-methylation	di-methylation	tri-methylation	Acetylation	Ubiquitination
H2AK119	-	-	-	-	repression
H2BK5	activation	-	repression	-	-
НЗК4	activation	activation	activation	-	-
НЗК9	activation	repression	repression	activation	-
H3K14	-	-	-	activation	-
H3K18	-	-	-	activation	-
H3K27	activation	repression	repression	activation	-
H3K36	repression	activation	activation	-	-
H3K56	-	-	-	activation	-
Н3К79	activation	activation	activation repression	-	-
H4K12	-	-	-	activation	-
H4K20	activation		repression	-	-

¹ For each post-translational modification, the known functional association on gene transcription is shown. By reading the combinatorial and/or sequential histone modifications that constitute the histone code, it may be possible to predict which gene products will be transcribed. However, this code is controversial, since some gene loci present marks both associated with transcriptional activation and linked with repression. These bivalent domains are posited to be poised for either up- or downregulation and to provide an epigenetic blueprint for lineage determination, and are usually found in stem cells.
Table 2: Histone target substrates and domain structure of histone lysine methyltransferases.²

	Synonyms	Protein structure	Histone substrates
	MLL, KMT2A	- 	H3K4me1/2/3
	MLL2, KMT2D	+++++++++++++++++++++++++++++++++++++++	H3K4me1/2/3
	SETD1A, SET1A, KMT2F		H3K4me1/2/3
	SET1D1B, SET1B, KMT2G		H3K4me1/2/3
	MLL4, KMT2B		H3K4me1/2/3
	MLL3, HALR, KMT2C	+ **** +*** +*** +/+	H3K4me1/2/3
	EZH2, KTM6A, KTM6		H3K27me2/3
	EZH1, KTM6B		H3K27me2/3
	NSD2, WHSC1, MMSET	-	H3K36me3
	NSD3, WHSC1L		
With	NSD1, KMT3B		H3K36me2/3
SE I domain	SET2, HYPB, SETD2	<mark>_</mark>	H3K36me3
uomani	ASH1L		H3K4me3
	SUV39H1, KTM1A	+++	H3K9me2/3
	SUV39H2, KTM1B	+++	H3K9me2/3
	EHMT2, G9A		H3K9me1/2
	EHMT1, GLP1		H3K9me1/2
	SETDB1, ESET		H3K9me2/3
	SETDB2, CLL8		
	SETMAR		
	SETD8, PR-SET7		H4K20me1
	SMYD4		
	MLL5, KMT2E		
	SETD5		

² For each protein, the official name as well as the most commonly used synonyms, the histone target substrates and domain structure are provided.

SET: Suppressor of variegation, Enhancer of Zeste, Trithorax domain; pre/post-SET: cysteinerich motifs found adjacent to a subset of SET domains; PHD: plant homeodomain zinc finger; ANK: ankyrin repeats; AT hook: A/T DNA binding motif; C2H2 Znf: C2H2-type zinc finger; HMG: high mobility group; SANT: SWI3, ADA2, N-CoR and TFIIIB DNA-binding domain; CxxC: CxxC zinc finger; MBD: methyl CpG binding domain.

		SETD7, SET7/9			H3K4me1
		SETD4			
		SUV4-20H1, KMT5B			H4K20me2/3
		SUV4-20H2, KMT5C			H4K20me2/3
	SMYD5 SETD3				
		SETD6		- <mark></mark>	
		SMYD1, KMT3D			
SMYD2, KMT3C					H3K36me2
					Н3К4
		SMYD3, KMT3E		· -	H3K4me2/3
		PRMD1, BLIMP1			
		PRDM14			
	PRDM9, MEISETZ				H3K4me3
PRDM11, PFM8		PRDM11, PFM8			
PRDM4, PFM1		PRDM4, PFM1			
	PRDM15, PFM15				
		PRDM6, PFM3		—— <mark>—</mark> ———	
		PRDM12, PFM9			
		PRDM5, PFM2		•	
		PRDM8, PFM5			
		PRDM13, PFM10			
		PRDM3, PDS1-EVI1	- <mark></mark>		
		PRDM6, MEL1, PFM3			
		PRDM2, RIZ1, KMT8	-	* ***	НЗК9
W	ithout				
de	omain	DOTIL, NIVIT4			115175
	SET	bromo		C2H2 Zr	nf CxxC
ł	pre-SET	chromo	ANK	HMG	MBD
	pre-SET	PHD	AT hook	SANT	- DOT

Table 3: Histone target substrates and domain structure of histone lysine

demethyltransferases.³

	Synonyms	Protein structure	Histone substrates	Other substrates
	LSD1, KDM1A,	SWIRM Amine oxidase	H3K4me1, H3K4me2	p53, E2F1,
LSD	AOF2, BHC110	Spacer region	H3K9me1, H3K9me2	DNMT1
demethylases	LSD2, KDM1B, AOF1		H3K4me1, H3K4me2	
	JMJD7	-UMJC		
	HIF1AN			
	HSPBAP1			
	JMJD5, KDM8		H3K36me2	
	JMJD4			
	JMJD6, PSR,		H3R2	
JMJC	PTDSR		H4R3	
demethylases	JMJD8	— D		
	FBXL10,	CXXCI PHD FBOX	H3K36me1, H3K36me2	
	JHDM1B, KDM2B		H3K4me3	
	FBXL11, JHDM1A, KDM2A		H3K36me1, H3K36me2	NFkB (p65)
	KIAA1718,	A	H3K9me1, H3K9me2	
	JHDM1D		H3K27me1, H3K27me2	
	PHF8, JHDM1F	0-	H3K9me1, H3K9me2	

³ For each protein, the official name as well as the most commonly used synonyms, the histone target specificities and domain structure are provided. Structural domains are annotated.

ARID: AT-rich interacting domain:amine oxidase: amine oxidase domain; C5HC2: C5HC2 zincfinger domain; CXXC: CXXC zinc-finger domain; DNMT1: DNA methyltransferase 1; FBOX: Fbox domain; FBXL: F-box and Leu-rich repeat protein; HIF1AN: hypoxia-inducible factor 1A inhibitor; HR: hairless domain; HSPBAP1: heat chock protein-associated protein 1; JARID: Jumonji domain-ARID-containing protein; JMJC: Jumonji C domain; LRR: Leu-rich repeat domain; LSD: Lys-specific demethylase; MINA: MYC induced nuclear antigen; NFkB: nuclear factor kB; NO66: nucleolar protein 66; PHD: plant homeodomain; SWIRM: Swi3p Rsc8p and Moira domain; TPR: tetratricopeptide domain; TUDOR: Tudor domain; UTX: ubiquitously transcribed X chromosome tetratricopeptide repeat protein; UTY: ubiquitously transcribed Y chromosome tetratricopeptide repeat protein.

		H4K20me1	
PHF2, JHDM1E	0	H3K9me2	ARID5B
HR			
КDМ3В			
JMJD1A, JHDM2A, TSGA, KDM3A		H3K9me1, H3K9me2	
JMJD1C			
JMJD3, KDM6B	_	H3K27me2, H3K27me3	
UTX, KDM6A		H3K27me2, H3K27me3	
UTY			
		H3K9me2, H3K9me3	
JMJD2A,		H3K36me2, H3K36me3	
JHUIVISA, KUIVI4A	•	H1.4K26me2, H1.4K26me3	
JMJD2C,		H3K9me2, H3K9me3	
JHDM3C, GASC1,	0	H3K36me2, H3K36me3	
KDM4C		H1.4K26me2, H1.4K26me3	
		H3K9me2, H3K9me3	
IHDM3B KDM4B JMJD5R	0.000-	H3K36me2, H3K36me3	
		H1.4K26me2, H1.4K26me3	
JMJD2D,		H3K9me2, H3K9me3	
JHDM3D,	0- 	H3K36me2, H3K36me3	
KDM4D		H1.4K26me2, H1.4K26me3	
JARID1B, PLU1, KDM5B		H3K4me2, H3K4me3	
JARID1C, SMCX, KDM5C	4CD-00-CD-00	H3K4me2, H3K4me3	
JARID1D, SMCY, KDM5D	10-0-0-0	H3K4me2, H3K4me3	
JARID1A, RBP2, KDM5A	0-0-0-0	H3K4me2, H3K4me3	
JARID2			
MINA			
NOCC	-	H3K4me2, H3K4me3	
ססטאו		H3K36me2, H3K36me3	

Table 4: Association between EZH2 mutations and disease.⁴

Mutated domain	Mutation	Phenotype				
	H530N	Acute myeloid leukemia				
	C547fs	Acute myeloid leukemia				
CXC domain	Q553X	Acute myeloid leukemia				
(503-605)	C571Y	Myelofibrosis				
(503-605)	C576W	Myelodysplastic syndrome, myeloproliferative neoplasms				
	P577L	Early T-cell precursor acute lymphoblastic leukaemia				
	R583X	Chronic myelomonocytic leukemia				
	V626M	Werner syndrome				
	K639E	Werner syndrome				
	Y646N, H, F, C	Diffuse large B-cell lymphoma				
	1651F	Early T-cell precursor acute lymphoblastic leukaemia				
	V662fs	Myelodysplastic syndrome				
	D644E	Atypical Chronic Myeloid Leukemia, Myelodysplastic syndrome, myeloproliferative neoplasms				
	D664V	Werner syndrome				
	D664fs	Acute megakaryoblastic leukemia				
	N673S	Chronic myelomonocytic leukemia				
SET domain	L647V	Myelodysplastic syndrome, Acute myeloid leukemia				
(612-727)	N675K	Refractory Cytopenia with Multilineage Dysplasia				
	V679E	Myelofibrosis				
	A682G	Lymphoma,				
	A682T	Werner syndrome, neuroblastoma				
	A682V	Acute myeloid leukemia				
	R684C	Werner syndrome, Myelofibrosis				
	R684H	Early T-cell precursor acute lymphoblastic leukaemia				
	K685fs	Chronic myelomonocytic leukemia				
	R690H	Refractory Cytopenia with Multilineage Dysplasia, Chronic myelomonocytic leukemia				
	R690C	Myelodysplastic syndrome				

⁴ EZH2 mutations identified in association with disease are annotated below with the disease-associated with each mutation, the nature of the mutation, and the structural domain involved. The sequence is numbered in accordance with EZH2 isoform A and the numbering for some mutations has been transposed from the original references so that all mutations can be referred to relative to the same sequence. (Abbreviations: fs, frameshift; X, nonsense).

	A692V	Diffuse large B-cell lymphoma
	N693T	Acute Myelomonocytic Leukemia
	N693Y	Early T-cell precursor acute lymphoblastic leukaemia, Myelofibrosis
	H694Y	Werner syndrome
	H694R	Chronic myelomonocytic leukemia
	S695L	Werner syndrome, Early T-cell precursor acute lymphoblastic leukaemia
	1727fs	Myelodysplastic/myeloproliferative neoplasm, unclassifiable
	F728fs	Early T-cell precursor acute lymphoblastic leukaemia
	Y731X	Chronic myelomonocytic leukemia
Other domain	Y733fs	Myelodysplastic syndrome
other domain	Y733X	Werner syndrome
	Y741C	Werner syndrome
	V742ins	Acute myeloid leukemia
	V742D	Early T-cell precursor acute lymphoblastic leukaemia
	1744fs	Acute myeloid leukemia
	E745K	Werner syndrome, lymphoma
	E745fs	Acute myeloid leukemia

Structure	Compount	Mechanism and potency	Selectivity toward EZH2	Highest clinical status	Reférences
	DZNep	SAH hydrolase inhibitor	non selective	preclinical	[79,131– 134]
HN NH O NH O NH O NH O NH O	GSK126	SAM- competive inhibitor of PRC2, Ki = 0,5-3 nM	> 1000-fold over 20 other HMTs; over EZH1	preclinical	[99,135]
	GSK343	SAM- competive inhibitor of PRC2, Ki = 0,5-3 nM	IC50 = 4nM and is over 1000-fold selective for other HMTs except EZH1 (60- fold selectivity)	preclinical	[136,137]
	EPZ005687	SAM- competive inhibitor of PRC2, Ki = 24 nM	> 500-fold over 15 other HMTs; about 50-fold over EZH1	preclinical	[138]
	EPZ-6438	SAM- competive inhibitor of PRC2, Ki = 0,5-3 nM IC50 = 11 nM	35-fold selectivity versus EZH1 ; >4,500- fold selectivity relative to 14 other HMTs	phase I/II	[139]

Table 5: Chemical structures and biochemical data for small-molecule inhibitors of EZH2

	El1	SAM- competitive inhibitor of PRC2 IC50=15 nM; Ki=13 nM		preclinical	[140]
	UNC1999	SAM- competitive inhibitor of PRC2 IC50=2-15 nM; Ki=13 nM	over 1000-fold selective for other HMTs except EZH1 (22- fold selectivity).	preclinical	[141]
Peptide: FSSNRXKILXRTQILNQEWKQRRIQPV	stabilized a-helix of EZH2 peptide (SAH- EZH2)	Hydrocarbon- stapled peptide that mimics the a- helical EED- dinding domain of EZH2, disrupting the EZH2– EED complex	not selective for EZH1	preclinical	[142]

1 Supplementary material

2 Table 1: List of histone lysine methyltransferases and demethylases linked to disease. ¹

	Gene	histone substrate	Disease	Genetic/epigenetic aberration	Aberrant expression	References
-		1121/4	Leukemia (AML, ALL, MLL)	> 50 different MLL fusions		[1-7]
	IVILL	H3K4	Acute myeloid leukemia (AML)	MLL-PTD		[8–10]
			Wiedemann-Steiner syndrome	intragenic mutations		[11–13]
	MLL2		Hepatocellular carninoma (HCC)	Hepatitis B virus integration into MLL2 : HBx-MLL2 fusion		[14]
		НЗК4	Acute myeloid leukemia (AML) (mice)	NUP98-JARID1A		[15]
			Kabuki syndrome 1 (KABUK1)	intragenic mutations		[16,17]
	MIIZ	<u>цэкл</u>	Leukemia			[18,19]
	IVILLS	1131(4	Colorectal cancer	Intragenic mutations		[19–22]
			Leukemia (AML, ALL)	MLL-AF10 fusion, MLL- AF4 fusion		[23,24]
	DOT1L	H3K79	T cell acute lymphoblastic leukemia (T-ALL)	CALM-AF10 fusion, SET- NUP214 fusion		[25,26]
			Osteoarthritis	intragenic mutations		[27,28]
			Bladder carcinoma		overexpression	[29–36]
			Breast cancer		overexpression	[29,30,37,38]
			Colorectal cancer		overexpression	[29,39–45]
			Gastric cancer		overexpression	[46–53]
			Hepatocellular carcinoma		overexpression	[54–59]
			Lymphoma	Intragenic mutations	overexpression downregulation	[60–82] [64]
ase			Myeloproliferative neoplasms	Intragenic mutations		[83–91]
ansfera	EZH2	H3K27	Rhabdoid tumors	Intragenic mutations; Mutations of opposing		[92–94]
hyl tra				chromatin modifying complex SWI-SNF		[95]
net			Melanoma		overexpression	[38,96–99]
ne r			Prostate cancer		overexpression	[100–121]
lysiı			chondrosarcoma		overexpression	[122]
ne			lung cancer		downregulation	[123]
sto			Various other cancers		overexpression	[29,38]
hi			Weaver syndrome	Intragenic mutations		[124–126]

¹ However, in many cases the molecular mechanisms of disease development are not well understood yet, and it remains to be shown whether misregulation of these HMTs contributes to disease initiation or progression.

		Acute myeloid leukemia (AML)	t(5;11)(q32;p15,5); tranlocation: NUP98- NSD1 fusion		[127–138]
NSD1	Н3К36	Myelodysplastic syndrome	t(5,11)(q35;p15,5)		[131,139]
		Beckwith-Wiedemann syndrome	intragenic mutations		[140]
		Sotos syndrome	intragenic mutations; 5q35 microdeletions		[140–173]
		glioblastoma multiform (GBM)		overexpression	[174]
		hepatocellular carcinoma (HCC)		overexpression	[175]
		leukemia		overexpression	[176]
NSD2	H3K36	multiple myeloma (MM)	t(4;14)(p16;q32): altered expression of FGFR3, NSD2		[177,178]
		Various other cancers			[179]
		Wolf-Hirschhorn syndrome			[180]
NSD3		acute myeloid leukemia (AML)	t(8;11)(p11,2;p15); translocation: NUP98- NSD3 fusion		[181]
EHMT1	НЗК9	9q subtelomeric deletion syndrome / Kleefstra syndrome	haploinsufficiency of EHMT1; microdeletion of 9q34.3: intragenic mutation	downregulation	[175,182–185]
		breast cancer	intragenic mutations		[186]
		medulloblastoma		downregulation	[187]
SETDB1	H3K9	Huntington's disease (HD)		overexpression	[188]
SETDB2		asthma	mutation		[189]
		pediatric acute lymphoblastic leukemia		overexpression	[190]
SMYD2	H3K4 H3K36	esophageal squamous cell carcinoma		overexpression	[191]
		hepatocellular carcinoma (HCC)		overexpression	[192]
		breast cancer		overexpression	[193,194]
SMYD3	НЗК4	colorectal cancer		overexpression	[195]
		hepatocellular carcinoma (HCC)		overexpression	[196]
CD 01 CD C		breast cancer		downregulation	[197]
SIVIYD4		medulloblastoma		downregulation	[187]
PRDM1		lymphoma	mutations in PRDM1 gene, epigenetic silencing		[198–207]
PRDM1		lupus erythematosus		overexpression	[208–210]
		Crohn's disease	intragenic mutation		[211–213]
PRDM2	НЗК9	breast cancer	mutations in PRDM2 gene; promoter DNA methylation		[186,214,215]
		colorectal cancer (CRC)	mutations in PRDM2 gene		[216–218]

			gastric cancer	mutations in PRDM2 genes, promoter DNA methylation		[216,218–221]
			hepatocellular carcinoma (HCC)	promoter DNA methylation	downregulation	[222–226]
			lung cancer		downregulation	[215,227]
			neuroblastoma		downregulation	[228,229]
			breast cancer	promoter DNA methylation	downregulation	[230]
	PRDM5		colorectal and gastric cancer	promoter DNA methylation	downregulation	[231]
			liver cancer	promoter DNA methylation	downregulation	[230]
	PRDM8		lafora disease	mutation		[232]
	PRDM9	H3K4	azoospermia, infertility	mutation		[233–235]
	PRDM12		chronic myeloid leukemia (CML)	9q microdeletions encompassing RRP4 and PRDM12		[236]
	PRDM14		breast cancer		overexpression	[237]
	LSD1	н3К4	neuroblastoma		overexpression	[238]
			chondrosarcoma, Ewing's sarcoma, osteosarcoma		overexpression	[239]
		НЗК9	leukemia		overexpression	[238,240–243]
			others cancers		overexpression	[238,244–263]
			hypertension		downregulation	[264,265]
	JMJD5	H3K36	tumors		overexpression	[266]
	KDM2B	H3K36 H3K4	leukemias		overexpression	[267]
se	PHF8	H3K9 H4K20	X-linked mental retardation	mutation		[268–272]
ny la			Ewing sarcoma		overexpression	[273]
neth	JIVIJUTA	пэкэ	kidney cancer		overexpression	[274]
den		דראכם	hodgkin's lymphoma		overexpression	[275]
ne	COLINIC	Π3ΝΖ/	renal cell carcinoma		overexpression	[276]
isto		דראכם	Kabuki syndrome	mutation		[277–280]
I		IJKZ/	cancers	mutation		[276,281–293]
	JMJD2A	H3K9 H3K36 H1.4K26	cancers		overexpression	[258,294–300]
	JMJD2C	H3K9 H3K36 H1.4K26	cancers		overexpression	[301–304]
	JMJD2B	H3K9 H3K36 H1.4K26	cancers		overexpression	[305–310]
	KDM5B	H3K4	melanoma		overexpression	[311–315]

		prostate cancer		overexpression	[316]
		breast cancer		overexpression	[317–322]
KDM5C	H3K4	non-syndromic X-linked mental retardation	mutation		[323–333]
KDM5A	H3K4	breast cancer		overexpression	[334]

3

4

5 References

- Rapin N, Porse BT. Oncogenic fusion proteins expressed in immature hematopoietic
 cells fail to recapitulate the transcriptional changes observed in human AML.
 Oncogenesis. 3, e106 (2014).
- 9 2. Gao W, Wang T, Wu Y, Liu HX, Li YC, Chen WM. Mixed lineage leukemia-septin 5
 10 fusion transcript in de novo adult acute myeloid leukemia with t(11;22)(q23;q11.2): A
 11 case report. Oncol. Lett. 7(6), 1930–1932 (2014).
- Krumbholz M, Jung R, Bradtke J, Reinhardt D, Stachel D, Metzler M. Response
 monitoring of infant acute myeloid leukemia treatment by quantification of the tumor
 specific MLL-FNBP1 fusion gene. *Leuk. Lymphoma.*, 1–10 (2014).
- Sakamoto K, Imamura T, Yano M, *et al.* Sensitivity of MLL-rearranged AML cells to all trans retinoic acid is associated with the level of H3K4me2 in the RARα promoter
 region. *Blood Cancer J.* 4, e205 (2014).
- Van der Linden MH, Willekes M, van Roon E, *et al.* MLL fusion-driven activation of
 CDK6 potentiates proliferation in MLL-rearranged infant ALL. *Cell Cycle Georget. Tex.* 13(5), 834–844 (2014).
- Placke T, Faber K, Nonami A, *et al.* Requirement for CDK6 in MLL-rearranged acute
 myeloid leukemia. *Blood*. (2014).
- Krivtsov AV, Armstrong SA. MLL translocations, histone modifications and leukaemia
 stem-cell development. *Nat. Rev. Cancer.* 7(11), 823–833 (2007).
- B. Dorrance AM, Liu S, Chong A, *et al.* The MII partial tandem duplication: differential,
 tissue-specific activity in the presence or absence of the wild-type allele. *Blood*.
 112(6), 2508–2511 (2008).
- Dorrance AM, Liu S, Yuan W, *et al.* Mll partial tandem duplication induces aberrant
 Hox expression in vivo via specific epigenetic alterations. *J. Clin. Invest.* 116(10), 2707–
 2716 (2006).
- Whitman SP, Hackanson B, Liyanarachchi S, et al. DNA hypermethylation and
 epigenetic silencing of the tumor suppressor gene, SLC5A8, in acute myeloid leukemia
 with the MLL partial tandem duplication. *Blood*. 112(5), 2013–2016 (2008).

- Strom SP, Lozano R, Lee H, *et al.* De Novo variants in the KMT2A (MLL) gene causing
 atypical Wiedemann-Steiner syndrome in two unrelated individuals identified by
 clinical exome sequencing. *BMC Med. Genet.* 15(1), 49 (2014).
- Mendelsohn BA, Pronold M, Long R, Smaoui N, Slavotinek AM. Advanced bone age in
 a girl with Wiedemann-Steiner syndrome and an exonic deletion in KMT2A (MLL). *Am. J. Med. Genet. A.* (2014).
- 40 13. Jones WD, Dafou D, McEntagart M, et al. De novo mutations in MLL cause
 41 Wiedemann-Steiner syndrome. Am. J. Hum. Genet. 91(2), 358–364 (2012).
- Saigo K, Yoshida K, Ikeda R, *et al.* Integration of hepatitis B virus DNA into the
 myeloid/lymphoid or mixed-lineage leukemia (MLL4) gene and rearrangements of
 MLL4 in human hepatocellular carcinoma. *Hum. Mutat.* 29(5), 703–708 (2008).
- 45 15. Wang GG, Song J, Wang Z, *et al.* Haematopoietic malignancies caused by dysregulation
 46 of a chromatin-binding PHD finger. *Nature*. 459(7248), 847–851 (2009).
- Hannibal MC, Buckingham KJ, Ng SB, et al. Spectrum of MLL2 (ALR) mutations in 110
 cases of Kabuki syndrome. Am. J. Med. Genet. A. 155A(7), 1511–1516 (2011).
- Ng SB, Bigham AW, Buckingham KJ, *et al.* Exome sequencing identifies MLL2 mutations
 as a cause of Kabuki syndrome. *Nat. Genet.* 42(9), 790–793 (2010).
- 51 18. Chen C, Liu Y, Rappaport AR, *et al.* MLL3 is a haploinsufficient 7q tumor suppressor in 52 acute myeloid leukemia. *Cancer Cell.* 25(5), 652–665 (2014).
- Li W-D, Li Q-R, Xu S-N, *et al.* Exome sequencing identifies an MLL3 gene germ line
 mutation in a pedigree of colorectal cancer and acute myeloid leukemia. *Blood*.
 121(8), 1478–1479 (2013).
- 56 20. Sjöblom T, Jones S, Wood LD, *et al.* The consensus coding sequences of human breast 57 and colorectal cancers. *Science*. 314(5797), 268–274 (2006).
- Je EM, Lee SH, Yoo NJ, Lee SH. Mutational and expressional analysis of MLL genes in
 gastric and colorectal cancers with microsatellite instability. *Neoplasma*. 60(2), 188–
 195 (2013).
- Watanabe Y, Castoro RJ, Kim HS, *et al.* Frequent alteration of MLL3 frameshift
 mutations in microsatellite deficient colorectal cancer. *PloS One*. 6(8), e23320 (2011).
- 63 23. Okada Y, Feng Q, Lin Y, *et al.* hDOT1L links histone methylation to leukemogenesis.
 64 *Cell*. 121(2), 167–178 (2005).
- Krivtsov AV, Feng Z, Lemieux ME, *et al.* H3K79 methylation profiles define murine and
 human MLL-AF4 leukemias. *Cancer Cell.* 14(5), 355–368 (2008).

67 25. Okada Y, Jiang Q, Lemieux M, Jeannotte L, Su L, Zhang Y. Leukaemic transformation by
68 CALM-AF10 involves upregulation of Hoxa5 by hDOT1L. *Nat. Cell Biol.* 8(9), 1017–1024
69 (2006).

- Van Vlierberghe P, van Grotel M, Tchinda J, *et al.* The recurrent SET-NUP214 fusion as
 a new HOXA activation mechanism in pediatric T-cell acute lymphoblastic leukemia. *Blood.* 111(9), 4668–4680 (2008).
- Evangelou E, Valdes AM, Castano-Betancourt MC, *et al.* The DOT1L rs12982744
 polymorphism is associated with osteoarthritis of the hip with genome-wide statistical
 significance in males. *Ann. Rheum. Dis.* 72(7), 1264–1265 (2013).
- Castaño Betancourt MC, Cailotto F, Kerkhof HJ, *et al.* Genome-wide association and
 functional studies identify the DOT1L gene to be involved in cartilage thickness and
 hip osteoarthritis. *Proc. Natl. Acad. Sci. U. S. A.* 109(21), 8218–8223 (2012).
- Pasini D, Capra M, Prosperini E, Colli E, Helin K. EZH2 is downstream of
 the pRB-E2F pathway, essential for proliferation and amplified in cancer. *EMBO J.*22(20), 5323–5335 (2003).
- So. Collett K, Eide GE, Arnes J, et al. Expression of enhancer of zeste homologue 2 is
 significantly associated with increased tumor cell proliferation and is a marker of
 aggressive breast cancer. Clin. Cancer Res. Off. J. Am. Assoc. Cancer Res. 12(4), 1168–
 1174 (2006).
- Friedman JM, Jones PA, Liang G. The tumor suppressor microRNA-101 becomes an
 epigenetic player by targeting the polycomb group protein EZH2 in cancer. *Cell Cycle Georget. Tex.* 8(15), 2313–2314 (2009).
- Arisan S, Buyuktuncer ED, Palavan-Unsal N, Caşkurlu T, Cakir OO, Ergenekon E.
 Increased expression of EZH2, a polycomb group protein, in bladder carcinoma. Urol.
 Int. 75(3), 252–257 (2005).
- Raman JD, Mongan NP, Tickoo SK, Boorjian SA, Scherr DS, Gudas LJ. Increased
 expression of the polycomb group gene, EZH2, in transitional cell carcinoma of the
 bladder. *Clin. Cancer Res. Off. J. Am. Assoc. Cancer Res.* 11(24 Pt 1), 8570–8576 (2005).
- Wang H, Albadine R, Magheli A, *et al.* Increased EZH2 protein expression is associated
 with invasive urothelial carcinoma of the bladder. *Urol. Oncol.* 30(4), 428–433 (2012).
- Hinz S, Kempkensteffen C, Christoph F, *et al.* Expression of the polycomb group
 protein EZH2 and its relation to outcome in patients with urothelial carcinoma of the
 bladder. *J. Cancer Res. Clin. Oncol.* 134(3), 331–336 (2008).
- Weikert S, Christoph F, Köllermann J, *et al.* Expression levels of the EZH2 polycomb
 transcriptional repressor correlate with aggressiveness and invasive potential of
 bladder carcinomas. *Int. J. Mol. Med.* 16(2), 349–353 (2005).
- 103 37. Kleer CG, Cao Q, Varambally S, *et al.* EZH2 is a marker of aggressive breast cancer and
 104 promotes neoplastic transformation of breast epithelial cells. *Proc. Natl. Acad. Sci. U.*105 S. A. 100(20), 11606–11611 (2003).

- Bachmann IM, Halvorsen OJ, Collett K, *et al.* EZH2 expression is associated with high
 proliferation rate and aggressive tumor subgroups in cutaneous melanoma and
 cancers of the endometrium, prostate, and breast. J. Clin. Oncol. Off. J. Am. Soc. Clin.
 Oncol. 24(2), 268–273 (2006).
- Mimori K, Ogawa K, Okamoto M, Sudo T, Inoue H, Mori M. Clinical significance of enhancer of zeste homolog 2 expression in colorectal cancer cases. *Eur. J. Surg. Oncol. J. Eur. Soc. Surg. Oncol. Br. Assoc. Surg. Oncol.* 31(4), 376–380 (2005).
- 40. Wang J, Ma Z-B, Li K, Guo G-H. Association between EZH2 polymorphisms and
 colorectal cancer risk in Han Chinese population. *Med. Oncol. Northwood Lond. Engl.*31(3), 874 (2014).
- Tamagawa H, Oshima T, Numata M, *et al.* Global histone modification of H3K27
 correlates with the outcomes in patients with metachronous liver metastasis of
 colorectal cancer. *Eur. J. Surg. Oncol. J. Eur. Soc. Surg. Oncol. Br. Assoc. Surg. Oncol.*39(6), 655–661 (2013).
- 42. Fornaro L, Crea F, Masi G, *et al.* EZH2 polymorphism and benefit from bevacizumab in
 colorectal cancer: another piece to the puzzle. *Ann. Oncol. Off. J. Eur. Soc. Med. Oncol. ESMO.* 23(5), 1370–1371 (2012).
- 43. Crea F, Fornaro L, Paolicchi E, *et al.* An EZH2 polymorphism is associated with clinical
 outcome in metastatic colorectal cancer patients. *Ann. Oncol. Off. J. Eur. Soc. Med. Oncol. ESMO.* 23(5), 1207–1213 (2012).
- 44. Wang C-G, Ye Y-J, Yuan J, Liu F-F, Zhang H, Wang S. EZH2 and STAT6 expression
 profiles are correlated with colorectal cancer stage and prognosis. *World J. Gastroenterol. WJG*. 16(19), 2421–2427 (2010).
- Fluge Ø, Gravdal K, Carlsen E, et al. Expression of EZH2 and Ki-67 in colorectal cancer
 and associations with treatment response and prognosis. Br. J. Cancer. 101(8), 1282–
 1289 (2009).
- 46. Guo L, Yang T-F, Liang S-C, Guo J-X, Wang Q. Role of EZH2 protein expression in gastric
 carcinogenesis among Asians: a meta-analysis. *Tumour Biol. J. Int. Soc. Oncodevelopmental Biol. Med.* (2014).
- He L-J, Cai M-Y, Xu G-L, *et al.* Prognostic significance of overexpression of EZH2 and
 H3k27me3 proteins in gastric cancer. *Asian Pac. J. Cancer Prev. APJCP*. 13(7), 3173–
 3178 (2012).
- Lee H, Yoon SO, Jeong WY, Kim HK, Kim A, Kim B. Immunohistochemical analysis of
 polycomb group protein expression in advanced gastric cancer. *Hum. Pathol.* 43(10),
 1704–1710 (2012).
- 14149.Zhou Y, Du W-D, Wu Q, *et al.* EZH2 genetic variants affect risk of gastric cancer in the142Chinese Han population. *Mol. Carcinog.* (2012).

- 143 50. Cai GH, Wang K, Miao Q, Peng YS, Chen XY. Expression of polycomb protein EZH2 in 144 multi-stage tissues of gastric carcinogenesis. *J. Dig. Dis.* 11(2), 88–93 (2010).
- 145 51. Choi JH, Song YS, Yoon JS, Song KW, Lee YY. Enhancer of zeste homolog 2 expression is
 146 associated with tumor cell proliferation and metastasis in gastric cancer. *APMIS Acta*147 *Pathol. Microbiol. Immunol. Scand.* 118(3), 196–202 (2010).
- Mattioli E, Vogiatzi P, Sun A, *et al.* Immunohistochemical analysis of pRb2/p130, VEGF,
 EZH2, p53, p16(INK4A), p27(KIP1), p21(WAF1), Ki-67 expression patterns in gastric
 cancer. *J. Cell. Physiol.* 210(1), 183–191 (2007).
- 151 53. Matsukawa Y, Semba S, Kato H, Ito A, Yanagihara K, Yokozaki H. Expression of the 152 enhancer of zeste homolog 2 is correlated with poor prognosis in human gastric 153 cancer. *Cancer Sci.* 97(6), 484–491 (2006).
- 154 54. Hung S-Y, Lin H-H, Yeh K-T, Chang J-G. Histone-modifying genes as biomarkers in 155 hepatocellular carcinoma. *Int. J. Clin. Exp. Pathol.* 7(5), 2496–2507 (2014).
- 156 55. Yu Y-L, Su K-J, Hsieh Y-H, *et al.* Effects of EZH2 polymorphisms on susceptibility to and 157 pathological development of hepatocellular carcinoma. *PloS One*. 8(9), e74870 (2013).
- 158 56. Hajósi-Kalcakosz S, Dezső K, Bugyik E, *et al.* Enhancer of zeste homologue 2 (EZH2) is a
 reliable immunohistochemical marker to differentiate malignant and benign hepatic
 tumors. *Diagn. Pathol.* 7, 86 (2012).
- 161 57. Cai M-Y, Tong Z-T, Zheng F, *et al.* EZH2 protein: a promising immunomarker for the
 162 detection of hepatocellular carcinomas in liver needle biopsies. *Gut.* 60(7), 967–976
 163 (2011).
- 164 58. Cai M-Y, Hou J-H, Rao H-L, *et al.* High expression of H3K27me3 in human
 165 hepatocellular carcinomas correlates closely with vascular invasion and predicts worse
 166 prognosis in patients. *Mol. Med. Camb. Mass.* 17(1-2), 12–20 (2011).
- Sudo T, Utsunomiya T, Mimori K, *et al.* Clinicopathological significance of EZH2 mRNA
 expression in patients with hepatocellular carcinoma. *Br. J. Cancer.* 92(9), 1754–1758
 (2005).
- Berg T, Thoene S, Yap D, *et al.* A transgenic mouse model demonstrating the
 oncogenic role of mutations in the polycomb-group gene EZH2 in lymphomagenesis. *Blood.* 123(25), 3914–3924 (2014).
- Guo S, Chan JKC, Iqbal J, *et al.* EZH2 Mutations in Follicular Lymphoma from Different
 Ethnic Groups and Associated Gene Expression Alterations. *Clin. Cancer Res. Off. J. Am. Assoc. Cancer Res.* 20(12), 3078–3086 (2014).
- 62. Okosun J, Bödör C, Wang J, et al. Integrated genomic analysis identifies recurrent
 mutations and evolution patterns driving the initiation and progression of follicular
 lymphoma. Nat. Genet. 46(2), 176–181 (2014).

- Parry M, Rose-Zerilli MJJ, Gibson J, *et al.* Whole exome sequencing identifies novel
 recurrently mutated genes in patients with splenic marginal zone lymphoma. *PloS One.* 8(12), e83244 (2013).
- 182 64. Lee HJ, Shin DH, Kim KB, *et al.* Polycomb protein EZH2 expression in diffuse large B-cell 183 lymphoma is associated with better prognosis in patients treated with rituximab, 184 cyclophosphamide, doxorubicin, vincristine and prednisone. *Leuk. Lymphoma*. (2014).
- Shiogama S, Yoshiba S, Soga D, Motohashi H, Shintani S. Aberrant expression of EZH2
 is associated with pathological findings and P53 alteration. *Anticancer Res.* 33(10),
 4309–4317 (2013).
- 188 66. Bödör C, Grossmann V, Popov N, *et al.* EZH2 mutations are frequent and represent an 189 early event in follicular lymphoma. *Blood.*, blood–2013–04–496893 (2013).
- Abd Al Kader L, Oka T, Takata K, *et al.* In aggressive variants of non-Hodgkin
 lymphomas, Ezh2 is strongly expressed and polycomb repressive complex PRC1.4
 dominates over PRC1.2. *Virchows Arch. Int. J. Pathol.* 463(5), 697–711 (2013).
- 193 68. Heyn H, Esteller M. EZH2: an epigenetic gatekeeper promoting lymphomagenesis.
 194 *Cancer Cell*. 23(5), 563–565 (2013).
- Saieg MA, Geddie WR, Boerner SL, Bailey D, Crump M, da Cunha Santos G. EZH2 and
 CD79B mutational status over time in B-cell non-Hodgkin lymphomas detected by
 high-throughput sequencing using minimal samples. *Cancer Cytopathol.* 121(7), 377–
 386 (2013).
- 199 70. Guo S-Q, Zhang Y-Z. Overexpression of enhancer of zests homolog 2 in lymphoma.
 200 *Chin. Med. J. (Engl.).* 125(20), 3735–3739 (2012).
- 71. Chen J, Li J, Han Q, *et al.* Enhancer of zeste homolog 2 is overexpressed and contributes to epigenetic inactivation of p21 and phosphatase and tensin homolog in
 B-cell acute lymphoblastic leukemia. *Exp. Biol. Med. Maywood NJ.* 237(9), 1110–1116 (2012).
- 72. Majer CR, Jin L, Scott MP, *et al.* A687V EZH2 is a gain-of-function mutation found in
 lymphoma patients. *FEBS Lett.* 586(19), 3448–3451 (2012).
- Simon C, Chagraoui J, Krosl J, *et al.* A key role for EZH2 and associated genes in mouse
 and human adult T-cell acute leukemia. *Genes Dev.* 26(7), 651–656 (2012).
- 74. McCabe MT, Graves AP, Ganji G, *et al.* Mutation of A677 in histone methyltransferase
 EZH2 in human B-cell lymphoma promotes hypertrimethylation of histone H3 on
 lysine 27 (H3K27). *Proc. Natl. Acad. Sci. U. S. A.* 109(8), 2989–2994 (2012).
- 75. Ntziachristos P, Tsirigos A, Van Vlierberghe P, *et al.* Genetic inactivation of the
 polycomb repressive complex 2 in T cell acute lymphoblastic leukemia. *Nat. Med.*18(2), 298–301 (2012).

- 76. Ryan RJH, Nitta M, Borger D, *et al.* EZH2 codon 641 mutations are common in BCL2rearranged germinal center B cell lymphomas. *PloS One*. 6(12), e28585 (2011).
- 217 77. Capello D, Gloghini A, Martini M, *et al.* Mutations of CD79A, CD79B and EZH2 genes in immunodeficiency-related non-Hodgkin lymphomas. *Br. J. Haematol.* 152(6), 777–780
 219 (2011).
- 220 78. Bödör C, O'Riain C, Wrench D, *et al.* EZH2 Y641 mutations in follicular lymphoma.
 221 Leukemia. 25(4), 726–729 (2011).
- 222 79. Sasaki D, Imaizumi Y, Hasegawa H, *et al.* Overexpression of Enhancer of zeste homolog
 223 2 with trimethylation of lysine 27 on histone H3 in adult T-cell leukemia/lymphoma as
 224 a target for epigenetic therapy. *Haematologica*. 96(5), 712–719 (2011).
- Park SW, Chung NG, Eom HS, Yoo NJ, Lee SH. Mutational analysis of EZH2 codon 641 in
 non-Hodgkin lymphomas and leukemias. *Leuk. Res.* 35(1), e6–7 (2011).
- 81. Morin RD, Johnson NA, Severson TM, *et al.* Somatic mutations altering EZH2 (Tyr641)
 in follicular and diffuse large B-cell lymphomas of germinal-center origin. *Nat. Genet.*42(2), 181–185 (2010).
- Visser HP, Gunster MJ, Kluin-Nelemans HC, *et al.* The Polycomb group protein EZH2 is
 upregulated in proliferating, cultured human mantle cell lymphoma. *Br. J. Haematol.*112(4), 950–958 (2001).
- 83. Muto T, Sashida G, Oshima M, *et al.* Concurrent loss of Ezh2 and Tet2 cooperates in
 the pathogenesis of myelodysplastic disorders. *J. Exp. Med.* 210(12), 2627–2639
 (2013).
- 236 84. Wang J, Ai X, Gale RP, *et al.* TET2, ASXL1 and EZH2 mutations in Chinese with 237 myelodysplastic syndromes. *Leuk. Res.* 37(3), 305–311 (2013).
- 238 85. Shih AH, Abdel-Wahab O, Patel JP, Levine RL. The role of mutations in epigenetic 239 regulators in myeloid malignancies. *Nat. Rev. Cancer.* 12(9), 599–612 (2012).
- Puda A, Milosevic JD, Berg T, *et al.* Frequent deletions of JARID2 in leukemic
 transformation of chronic myeloid malignancies. *Am. J. Hematol.* 87(3), 245–250
 (2012).
- 243 87. Zhang S-J, Abdel-Wahab O. Disordered epigenetic regulation in the pathophysiology of
 244 myeloproliferative neoplasms. *Curr. Hematol. Malig. Rep.* 7(1), 34–42 (2012).
- Reuther GW. Recurring mutations in myeloproliferative neoplasms alter epigenetic
 regulation of gene expression. *Am. J. Cancer Res.* 1(6), 752–762 (2011).
- 247 89. Vainchenker W, Delhommeau F, Constantinescu SN, Bernard OA. New mutations and
 248 pathogenesis of myeloproliferative neoplasms. *Blood*. 118(7), 1723–1735 (2011).
- 249 90. Abdel-Wahab O. Genetics of the myeloproliferative neoplasms. *Curr. Opin. Hematol.*250 18(2), 117–123 (2011).

- 91. Tefferi A, Abdel-Wahab O, Cervantes F, *et al.* Mutations with epigenetic effects in
 myeloproliferative neoplasms and recent progress in treatment: Proceedings from the
 5th International Post-ASH Symposium. *Blood Cancer J.* 1, e7 (2011).
- 92. Venneti S, Le P, Martinez D, *et al.* Malignant rhabdoid tumors express stem cell
 factors, which relate to the expression of EZH2 and Id proteins. *Am. J. Surg. Pathol.*35(10), 1463–1472 (2011).
- 93. Alimova I, Birks DK, Harris PS, *et al.* Inhibition of EZH2 suppresses self-renewal and
 induces radiation sensitivity in atypical rhabdoid teratoid tumor cells. *Neuro-Oncol.*(2012).
- 94. Knutson SK, Warholic NM, Wigle TJ, *et al.* Durable tumor regression in genetically
 altered malignant rhabdoid tumors by inhibition of methyltransferase EZH2. *Proc. Natl. Acad. Sci. U. S. A.* 110(19), 7922–7927 (2013).
- 95. Wilson BG, Wang X, Shen X, et al. Epigenetic antagonism between polycomb and
 SWI/SNF complexes during oncogenic transformation. *Cancer Cell*. 18(4), 316–328
 (2010).
- 266 96. Tiffen J, Gallagher SJ, Hersey P. EZH2: An emerging role in melanoma biology and
 267 strategies for targeted therapy. *Pigment Cell Melanoma Res.* (2014).
- 97. Asangani IA, Harms PW, Dodson L, *et al.* Genetic and epigenetic loss of microRNA-31
 leads to feed-forward expression of EZH2 in melanoma. *Oncotarget*. 3(9), 1011–1025
 (2012).
- 98. Holling TM, Bergevoet MWT, Wilson L, *et al.* A role for EZH2 in silencing of IFN-gamma inducible MHC2TA transcription in uveal melanoma. *J. Immunol. Baltim. Md* 1950.
 179(8), 5317–5325 (2007).
- McHugh JB, Fullen DR, Ma L, Kleer CG, Su LD. Expression of polycomb group protein
 EZH2 in nevi and melanoma. *J. Cutan. Pathol.* 34(8), 597–600 (2007).
- 100. Vieira FQ, Costa-Pinheiro P, Ramalho-Carvalho J, *et al.* Deregulated expression of
 selected histone methylases and demethylases in prostate carcinoma. *Endocr. Relat. Cancer.* 21(1), 51–61 (2014).
- Li K, Liu C, Zhou B, *et al.* Role of EZH2 in the Growth of Prostate Cancer Stem Cells
 Isolated from LNCaP Cells. *Int. J. Mol. Sci.* 14(6), 11981–11993 (2013).
- 102. Deb G, Thakur VS, Gupta S. Multifaceted role of EZH2 in breast and prostate
 tumorigenesis: epigenetics and beyond. *Epigenetics Off. J. DNA Methylation Soc.* 8(5),
 464–476 (2013).
- 103. Yang YA, Yu J. EZH2, an epigenetic driver of prostate cancer. *Protein Cell*. 4(5), 331–
 341 (2013).
- 104. Xu K, Wu ZJ, Groner AC, *et al.* EZH2 Oncogenic Activity in Castration Resistant Prostate
 Cancer Cells is Polycomb-Independent. *Science*. 338(6113), 1465–1469 (2012).

- Ribarska T, Bastian K-M, Koch A, Schulz WA. Specific changes in the expression of
 imprinted genes in prostate cancer--implications for cancer progression and
 epigenetic regulation. *Asian J. Androl.* 14(3), 436–450 (2012).
- 106. Ugolkov AV, Eisengart LJ, Luan C, Yang XJ. Expression analysis of putative stem cell markers in human benign and malignant prostate. *The Prostate*. 71(1), 18–25 (2011).
- 107. Karanikolas BDW, Figueiredo ML, Wu L. Comprehensive evaluation of the role of EZH2
 in the growth, invasion, and aggression of a panel of prostate cancer cell lines. *The Prostate*. 70(6), 675–688 (2010).
- 108. Karanikolas BDW, Figueiredo ML, Wu L. Polycomb group protein enhancer of zeste 2 is
 an oncogene that promotes the neoplastic transformation of a benign prostatic
 epithelial cell line. *Mol. Cancer Res. MCR.* 7(9), 1456–1465 (2009).
- Hoffmann MJ, Engers R, Florl AR, Otte AP, Muller M, Schulz WA. Expression changes in
 EZH2, but not in BMI-1, SIRT1, DNMT1 or DNMT3B are associated with DNA
 methylation changes in prostate cancer. *Cancer Biol. Ther.* 6(9), 1403–1412 (2007).
- 110. Cho KS, Oh HY, Lee EJ, Hong SJ. Identification of enhancer of zeste homolog 2
 expression in peripheral circulating tumor cells in metastatic prostate cancer patients:
 a preliminary study. *Yonsei Med. J.* 48(6), 1009–1014 (2007).
- Yu J, Yu J, Rhodes DR, *et al.* A polycomb repression signature in metastatic prostate
 cancer predicts cancer outcome. *Cancer Res.* 67(22), 10657–10663 (2007).
- 112. Cooper CS, Campbell C, Jhavar S. Mechanisms of Disease: biomarkers and molecular
 targets from microarray gene expression studies in prostate cancer. *Nat. Clin. Pract.* Urol. 4(12), 677–687 (2007).
- Laitinen S, Martikainen PM, Tolonen T, Isola J, Tammela TLJ, Visakorpi T. EZH2, Ki-67
 and MCM7 are prognostic markers in prostatectomy treated patients. *Int. J. Cancer J. Int. Cancer*. 122(3), 595–602 (2008).
- 313 114. Bryant RJ, Cross NA, Eaton CL, Hamdy FC, Cunliffe VT. EZH2 promotes proliferation
 and invasiveness of prostate cancer cells. *The Prostate*. 67(5), 547–556 (2007).
- 115. Van Leenders GJLH, Dukers D, Hessels D, *et al.* Polycomb-group oncogenes EZH2,
 BMI1, and RING1 are overexpressed in prostate cancer with adverse pathologic and
 clinical features. *Eur. Urol.* 52(2), 455–463 (2007).
- Berezovska OP, Glinskii AB, Yang Z, Li X-M, Hoffman RM, Glinsky GV. Essential role for
 activation of the Polycomb group (PcG) protein chromatin silencing pathway in
 metastatic prostate cancer. *Cell Cycle Georget. Tex.* 5(16), 1886–1901 (2006).
- 117. Saramäki OR, Tammela TLJ, Martikainen PM, Vessella RL, Visakorpi T. The gene for
 polycomb group protein enhancer of zeste homolog 2 (EZH2) is amplified in late-stage
 prostate cancer. *Genes. Chromosomes Cancer.* 45(7), 639–645 (2006).

- Bachmann N, Hoegel J, Haeusler J, *et al.* Mutation screen and association study of
 EZH2 as a susceptibility gene for aggressive prostate cancer. *The Prostate.* 65(3), 252–
 259 (2005).
- 119. Ogata R, Matsueda S, Yao A, Noguchi M, Itoh K, Harada M. Identification of polycomb
 group protein enhancer of zeste homolog 2 (EZH2)-derived peptides immunogenic in
 HLA-A24+ prostate cancer patients. *The Prostate*. 60(4), 273–281 (2004).
- Sellers WR, Loda M. The EZH2 polycomb transcriptional repressor--a marker or mover
 of metastatic prostate cancer? *Cancer Cell*. 2(5), 349–350 (2002).
- 121. Varambally S, Dhanasekaran SM, Zhou M, *et al.* The polycomb group protein EZH2 is involved in progression of prostate cancer. *Nature*. 419(6907), 624–629 (2002).
- Girard N, Bazille C, Lhuissier E, *et al.* 3-Deazaneplanocin A (DZNep), an Inhibitor of the
 Histone Methyltransferase EZH2, Induces Apoptosis and Reduces Cell Migration in
 Chondrosarcoma Cells. *PLoS ONE* [Internet]. 9(5) (2014). Available from:
 http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4031152/.
- Li Z, Xu L, Tang N, *et al.* The polycomb group protein EZH2 inhibits lung cancer cell
 growth by repressing the transcription factor Nrf2. *FEBS Lett.* (2014).
- Tatton-Brown K, Murray A, Hanks S, *et al.* Weaver syndrome and EZH2 mutations:
 Clarifying the clinical phenotype. *Am. J. Med. Genet. A.* 161A(12), 2972–2980 (2013).
- Tatton-Brown K, Hanks S, Ruark E, *et al.* Germline mutations in the oncogene EZH2
 cause Weaver syndrome and increased human height. *Oncotarget*. 2(12), 1127–1133
 (2011).
- 345 126. Gibson WT, Hood RL, Zhan SH, *et al.* Mutations in EZH2 cause Weaver syndrome. *Am.*346 *J. Hum. Genet.* 90(1), 110–118 (2012).
- Thanasopoulou A, Tzankov A, Schwaller J. Potent cooperation between the NUP98 NSD1 fusion and FLT3-ITD mutation in acute myeloid leukemia induction.
 Haematologica. (2014).
- Akiki S, Dyer SA, Grimwade D, *et al.* NUP98-NSD1 fusion in association with FLT3-ITD
 mutation identifies a prognostically relevant subgroup of pediatric acute myeloid
 leukemia patients suitable for monitoring by real time quantitative PCR. *Genes. Chromosomes Cancer.* 52(11), 1053–1064 (2013).
- Shiba N, Ichikawa H, Taki T, *et al.* NUP98-NSD1 gene fusion and its related gene expression signature are strongly associated with a poor prognosis in pediatric acute myeloid leukemia. *Genes. Chromosomes Cancer.* 52(7), 683–693 (2013).
- 130. Fasan A, Haferlach C, Alpermann T, Kern W, Haferlach T, Schnittger S. A rare but
 specific subset of adult AML patients can be defined by the cytogenetically cryptic
 NUP98-NSD1 fusion gene. *Leukemia*. 27(1), 245–248 (2013).

- 131. Thol F, Kölking B, Hollink IHI, et al. Analysis of NUP98/NSD1 translocations in adult
 AML and MDS patients. *Leukemia*. 27(3), 750–754 (2013).
- Hollink IHIM, van den Heuvel-Eibrink MM, Arentsen-Peters STCJM, *et al.* NUP98/NSD1
 characterizes a novel poor prognostic group in acute myeloid leukemia with a distinct
 HOX gene expression pattern. *Blood.* 118(13), 3645–3656 (2011).
- Petit A, Radford I, Waill M-C, Romana S, Berger R. NUP98-NSD1 fusion by insertion in
 acute myeloblastic leukemia. *Cancer Genet. Cytogenet.* 180(1), 43–46 (2008).
- 367 134. Wang T-F, Horsley SW, Lee K-F, Chu S-C, Li C-C, Kao R-H. Translocation between
 368 chromosome 5q35 and chromosome 11q13-- an unusual cytogenetic finding in a
 369 primary refractory acute myeloid leukemia. *Clin. Lab. Haematol.* 28(3), 160–163
 370 (2006).
- 135. Cerveira N, Correia C, Dória S, *et al.* Frequency of NUP98-NSD1 fusion transcript in childhood acute myeloid leukaemia. *Leukemia*. 17(11), 2244–2247 (2003).
- 136. Casas S, Aventín A, Nomdedéu J, Sierra J. Cryptic t(5;11)(q35;p15.5) in adult de novo
 acute myelocytic leukemia with normal karyotype. *Cancer Genet. Cytogenet.* 145(2),
 183 (2003).
- 137. Panarello C, Rosanda C, Morerio C. Cryptic translocation t(5;11)(q35;p15.5) with
 involvement of the NSD1 and NUP98 genes without 5q deletion in childhood acute
 myeloid leukemia. *Genes. Chromosomes Cancer.* 35(3), 277–281 (2002).
- 138. Jaju RJ, Fidler C, Haas OA, *et al.* A novel gene, NSD1, is fused to NUP98 in the
 t(5;11)(q35;p15.5) in de novo childhood acute myeloid leukemia. *Blood*. 98(4), 1264–
 1267 (2001).
- 139. Ishikawa M, Yagasaki F, Okamura D, *et al.* A novel gene, ANKRD28 on 3p25, is fused
 with NUP98 on 11p15 in a cryptic 3-way translocation of t(3;5;11)(p25;q35;p15) in an
 adult patient with myelodysplastic syndrome/acute myelogenous leukemia. *Int. J. Hematol.* 86(3), 238–245 (2007).
- 140. Baujat G, Rio M, Rossignol S, *et al.* Paradoxical NSD1 mutations in Beckwith Wiedemann syndrome and 11p15 anomalies in Sotos syndrome. *Am. J. Hum. Genet.* 74(4), 715–720 (2004).
- 141. Park SH, Lee JE, Sohn YB, Ko JM. First identified Korean family with Sotos syndrome
 caused by a novel intragenic mutation in NSD1. *Ann. Clin. Lab. Sci.* 44(2), 228–231
 (2014).
- 392142.Kılıç E, Utine GE, Boduroğlu K. A case of Sotos syndrome with 5q35 microdeletion and393novel clinical findings. *Turk. J. Pediatr.* 55(2), 207–209 (2013).
- 143. Dikow N, Maas B, Gaspar H, *et al.* The phenotypic spectrum of duplication 5q35.2q35.3 encompassing NSD1: is it really a reversed Sotos syndrome? *Am. J. Med. Genet.*A. 161(9), 2158–2166 (2013).

- Rosenfeld JA, Kim KH, Angle B, *et al.* Further Evidence of Contrasting Phenotypes
 Caused by Reciprocal Deletions and Duplications: Duplication of NSD1 Causes Growth
 Retardation and Microcephaly. *Mol. Syndromol.* 3(6), 247–254 (2013).
- 400 145. Sohn YB, Lee CG, Ko JM, *et al.* Clinical and genetic spectrum of 18 unrelated Korean
 401 patients with Sotos syndrome: frequent 5q35 microdeletion and identification of four
 402 novel NSD1 mutations. *J. Hum. Genet.* 58(2), 73–77 (2013).
- 403 146. Hirai N, Matsune K, Ohashi H. Craniofacial and oral features of Sotos syndrome:
 404 differences in patients with submicroscopic deletion and mutation of NSD1 gene. *Am.*405 *J. Med. Genet. A.* 155A(12), 2933–2939 (2011).
- 406 147. Kasnauskiene J, Cimbalistiene L, Ciuladaite Z, *et al.* De novo 5q35.5 duplication with
 407 clinical presentation of Sotos syndrome. *Am. J. Med. Genet. A.* 155A(10), 2501–2507
 408 (2011).
- 409 148. Fickie MR, Lapunzina P, Gentile JK, *et al.* Adults with Sotos syndrome: review of 21
 410 adults with molecularly confirmed NSD1 alterations, including a detailed case report
 411 of the oldest person. *Am. J. Med. Genet. A.* 155A(9), 2105–2111 (2011).
- 412 149. Nicita F, Tarani L, Spalice A, et al. Novel missense mutation (L1917P) involving sac413 domain of NSD1 gene in a patient with Sotos syndrome. J. Genet. 90(1), 147–150
 414 (2011).
- 415 150. Piccione M, Consiglio V, Di Fiore A, *et al.* Deletion of NSD1 exon 14 in Sotos syndrome:
 416 first description. *J. Genet.* 90(1), 119–123 (2011).
- 417 151. Fryssira H, Drossatou P, Sklavou R, Barambouti F, Manolaki N. Two cases of Sotos
 418 syndrome with novel mutations of the NSD1 gene. *Genet. Couns. Geneva Switz.* 21(1),
 419 53–59 (2010).
- 420 152. Berdasco M, Ropero S, Setien F, *et al.* Epigenetic inactivation of the Sotos overgrowth
 421 syndrome gene histone methyltransferase NSD1 in human neuroblastoma and glioma.
 422 *Proc. Natl. Acad. Sci. U. S. A.* 106(51), 21830–21835 (2009).
- 423 153. Kotilainen J, Pohjola P, Pirinen S, Arte S, Nieminen P. Premolar hypodontia is a
 424 common feature in Sotos syndrome with a mutation in the NSD1 gene. *Am. J. Med.*425 *Genet. A.* 149A(11), 2409–2414 (2009).
- 426 154. Fagali C, Kok F, Nicola P, *et al.* MLPA analysis in 30 Sotos syndrome patients revealed
 427 one total NSD1 deletion and two partial deletions not previously reported. *Eur. J. Med.*428 *Genet.* 52(5), 333–336 (2009).
- IS5. Zechner U, Kohlschmidt N, Kempf O, *et al.* Familial Sotos syndrome caused by a novel
 missense mutation, C2175S, in NSD1 and associated with normal intelligence, insulin
 dependent diabetes, bronchial asthma, and lipedema. *Eur. J. Med. Genet.* 52(5), 306–
 310 (2009).

- 433 156. Ellison J. Gene symbol: NSD1. Disease: Sotos syndrome. *Hum. Genet.* 124(3), 311
 434 (2008).
- 435 157. Mochizuki J, Saitsu H, Mizuguchi T, *et al.* Alu-related 5q35 microdeletions in Sotos
 436 syndrome. *Clin. Genet.* 74(4), 384–391 (2008).
- 437 158. Malan V, De Blois MC, Prieur M, et al. Sotos syndrome caused by a paracentric
 438 inversion disrupting the NSD1 gene. Clin. Genet. 73(1), 89–91 (2008).
- 439 159. Saugier-Veber P, Bonnet C, Afenjar A, *et al.* Heterogeneity of NSD1 alterations in 116
 440 patients with Sotos syndrome. *Hum. Mutat.* 28(11), 1098–1107 (2007).
- 160. Tei S, Tsuneishi S, Matsuo M. The first Japanese familial Sotos syndrome with a novel
 mutation of the NSD1 gene. *Kobe J. Med. Sci.* 52(1-2), 1–8 (2006).
- 443 161. Kanemoto N, Kanemoto K, Nishimura G, *et al.* Nevo syndrome with an NSD1 deletion:
 444 a variant of Sotos syndrome? *Am. J. Med. Genet. A.* 140(1), 70–73 (2006).
- 162. Douglas J, Tatton-Brown K, Coleman K, *et al.* Partial NSD1 deletions cause 5% of Sotos
 syndrome and are readily identifiable by multiplex ligation dependent probe
 amplification. J. Med. Genet. 42(9), e56 (2005).
- 448 163. Faravelli F. NSD1 mutations in Sotos syndrome. Am. J. Med. Genet. C Semin. Med.
 449 Genet. 137C(1), 24–31 (2005).
- 164. Tatton-Brown K, Douglas J, Coleman K, *et al.* Genotype-phenotype associations in
 Sotos syndrome: an analysis of 266 individuals with NSD1 aberrations. *Am. J. Hum. Genet.* 77(2), 193–204 (2005).
- 165. Cecconi M, Forzano F, Milani D, *et al.* Mutation analysis of the NSD1 gene in a group of
 59 patients with congenital overgrowth. *Am. J. Med. Genet. A.* 134(3), 247–253
 (2005).
- 456 166. Melchior L, Schwartz M, Duno M. dHPLC screening of the NSD1 gene identifies nine
 457 novel mutations--summary of the first 100 Sotos syndrome mutations. *Ann. Hum.*458 *Genet.* 69(Pt 2), 222–226 (2005).
- 459 167. Kamimura J, Endo Y, Kurotaki N, *et al.* Identification of eight novel NSD1 mutations in
 460 Sotos syndrome. *J. Med. Genet.* 40(11), e126 (2003).
- 168. Türkmen S, Gillessen-Kaesbach G, Meinecke P, *et al.* Mutations in NSD1 are
 responsible for Sotos syndrome, but are not a frequent finding in other overgrowth
 phenotypes. *Eur. J. Hum. Genet. EJHG.* 11(11), 858–865 (2003).
- 169. Rio M, Clech L, Amiel J, *et al.* Spectrum of NSD1 mutations in Sotos and Weaver
 syndromes. *J. Med. Genet.* 40(6), 436–440 (2003).
- 170. Nagai T, Matsumoto N, Kurotaki N, *et al.* Sotos syndrome and haploinsufficiency of
 NSD1: clinical features of intragenic mutations and submicroscopic deletions. *J. Med. Genet.* 40(4), 285–289 (2003).

- Höglund P, Kurotaki N, Kytölä S, Miyake N, Somer M, Matsumoto N. Familial Sotos
 syndrome is caused by a novel 1 bp deletion of the NSD1 gene. *J. Med. Genet.* 40(1),
 51–54 (2003).
- 472 172. Douglas J, Hanks S, Temple IK, *et al.* NSD1 mutations are the major cause of Sotos
 473 syndrome and occur in some cases of Weaver syndrome but are rare in other
 474 overgrowth phenotypes. *Am. J. Hum. Genet.* 72(1), 132–143 (2003).
- 475 173. Kurotaki N, Imaizumi K, Harada N, *et al.* Haploinsufficiency of NSD1 causes Sotos
 476 syndrome. *Nat. Genet.* 30(4), 365–366 (2002).
- 477 174. Li J, Yin C, Okamoto H, *et al.* Identification of a novel proliferation-related protein,
 478 WHSC1 4a, in human gliomas. *Neuro-Oncol.* 10(1), 45–51 (2008).
- 479 175. Kleefstra T, Brunner HG, Amiel J, *et al.* Loss-of-function mutations in euchromatin
 480 histone methyl transferase 1 (EHMT1) cause the 9q34 subtelomeric deletion
 481 syndrome. *Am. J. Hum. Genet.* 79(2), 370–377 (2006).
- 482 176. Jaffe JD, Wang Y, Chan HM, *et al.* Global chromatin profiling reveals NSD2 mutations in
 483 pediatric acute lymphoblastic leukemia. *Nat. Genet.* 45(11), 1386–1391 (2013).
- Huang Z, Wu H, Chuai S, *et al.* NSD2 is recruited through its PHD domain to oncogenic
 gene loci to drive multiple myeloma. *Cancer Res.* 73(20), 6277–6288 (2013).
- 486 178. Keats JJ, Maxwell CA, Taylor BJ, *et al.* Overexpression of transcripts originating from
 487 the MMSET locus characterizes all t(4;14)(p16;q32)-positive multiple myeloma
 488 patients. *Blood.* 105(10), 4060–4069 (2005).
- 489 179. Kassambara A, Klein B, Moreaux J. MMSET is overexpressed in cancers: link with
 490 tumor aggressiveness. *Biochem. Biophys. Res. Commun.* 379(4), 840–845 (2009).
- 180. Nimura K, Ura K, Shiratori H, *et al.* A histone H3 lysine 36 trimethyltransferase links
 Nkx2-5 to Wolf-Hirschhorn syndrome. *Nature*. 460(7252), 287–291 (2009).
- 181. Rosati R, La Starza R, Veronese A, *et al.* NUP98 is fused to the NSD3 gene in acute
 myeloid leukemia associated with t(8;11)(p11.2;p15). *Blood.* 99(10), 3857–3860
 (2002).
- Kleefstra T, van Zelst-Stams WA, Nillesen WM, *et al.* Further clinical and molecular delineation of the 9q subtelomeric deletion syndrome supports a major contribution of EHMT1 haploinsufficiency to the core phenotype. *J. Med. Genet.* 46(9), 598–606 (2009).
- 183. Kleefstra T, Smidt M, Banning MJG, *et al.* Disruption of the gene Euchromatin Histone
 Methyl Transferase1 (Eu-HMTase1) is associated with the 9q34 subtelomeric deletion
 syndrome. *J. Med. Genet.* 42(4), 299–306 (2005).

503184. Rump A, Hildebrand L, Tzschach A, Ullmann R, Schrock E, Mitter D. A mosaic maternal504splice donor mutation in the EHMT1 gene leads to aberrant transcripts and to505Kleefstra syndrome in the offspring. *Eur. J. Hum. Genet. EJHG.* 21(8), 887–890 (2013).

- 185. Nillesen WM, Yntema HG, Moscarda M, *et al.* Characterization of a novel transcript of
 the EHMT1 gene reveals important diagnostic implications for Kleefstra syndrome.
 Hum. Mutat. 32(7), 853–859 (2011).
- 509 186. Cebrian A, Pharoah PD, Ahmed S, *et al.* Genetic variants in epigenetic genes and 510 breast cancer risk. *Carcinogenesis*. 27(8), 1661–1669 (2006).
- 187. Northcott PA, Nakahara Y, Wu X, *et al.* Multiple recurrent genetic events converge on
 control of histone lysine methylation in medulloblastoma. *Nat. Genet.* 41(4), 465–472
 (2009).
- 188. Ryu H, Lee J, Hagerty SW, et al. ESET/SETDB1 gene expression and histone H3 (K9)
 trimethylation in Huntington's disease. *Proc. Natl. Acad. Sci. U. S. A.* 103(50), 19176–
 19181 (2006).
- 517 189. Zhang Y, Leaves NI, Anderson GG, *et al.* Positional cloning of a quantitative trait locus
 518 on chromosome 13q14 that influences immunoglobulin E levels and asthma. *Nat.*519 *Genet.* 34(2), 181–186 (2003).
- 190. Sakamoto LHT, Andrade RV de, Felipe MSS, Motoyama AB, Pittella Silva F. SMYD2 is
 highly expressed in pediatric acute lymphoblastic leukemia and constitutes a bad
 prognostic factor. *Leuk. Res.* 38(4), 496–502 (2014).
- 191. Komatsu S, Imoto I, Tsuda H, *et al.* Overexpression of SMYD2 relates to tumor cell
 proliferation and malignant outcome of esophageal squamous cell carcinoma.
 Carcinogenesis. 30(7), 1139–1146 (2009).
- Skawran B, Steinemann D, Weigmann A, *et al.* Gene expression profiling in
 hepatocellular carcinoma: upregulation of genes in amplified chromosome regions.
 Mod. Pathol. Off. J. U. S. Can. Acad. Pathol. Inc. 21(5), 505–516 (2008).
- 193. Hamamoto R, Silva FP, Tsuge M, *et al.* Enhanced SMYD3 expression is essential for the growth of breast cancer cells. *Cancer Sci.* 97(2), 113–118 (2006).
- Frank B, Hemminki K, Wappenschmidt B, *et al.* Variable number of tandem repeats
 polymorphism in the SMYD3 promoter region and the risk of familial breast cancer. *Int. J. Cancer J. Int. Cancer.* 118(11), 2917–2918 (2006).
- 195. Gaedcke J, Grade M, Jung K, *et al.* Mutated KRAS results in overexpression of DUSP4, a
 MAP-kinase phosphatase, and SMYD3, a histone methyltransferase, in rectal
 carcinomas. *Genes. Chromosomes Cancer.* 49(11), 1024–1034 (2010).
- 537196.Hamamoto R, Furukawa Y, Morita M, et al. SMYD3 encodes a histone538methyltransferase involved in the proliferation of cancer cells. Nat. Cell Biol. 6(8),539731–740 (2004).
- Hu L, Zhu YT, Qi C, Zhu Y-J. Identification of Smyd4 as a potential tumor suppressor
 gene involved in breast cancer development. *Cancer Res.* 69(9), 4067–4072 (2009).

- 542198. Boi M, Rinaldi A, Kwee I, et al. PRDM1/BLIMP1 is commonly inactivated in anaplastic543large T-cell lymphoma. Blood. 122(15), 2683–2693 (2013).
- 199. Best T, Li D, Skol AD, *et al.* Variants at 6q21 implicate PRDM1 in the etiology of
 therapy-induced second malignancies after Hodgkin's lymphoma. *Nat. Med.* 17(8),
 941–943 (2011).
- Song Y, Cao Z, Li L, Zhang H-T, Zhang X. Blimp-1 protein and Hans classification on
 prognosis of diffuse large B-cell lymphoma and their interrelation. *Chin. J. Cancer.*29(9), 781–786 (2010).
- 550 201. Nie K, Zhang T, Allawi H, *et al.* Epigenetic down-regulation of the tumor suppressor 551 gene PRDM1/Blimp-1 in diffuse large B cell lymphomas: a potential role of the 552 microRNA let-7. *Am. J. Pathol.* 177(3), 1470–1479 (2010).
- 202. Courts C, Montesinos-Rongen M, Brunn A, *et al.* Recurrent inactivation of the PRDM1
 gene in primary central nervous system lymphoma. *J. Neuropathol. Exp. Neurol.* 67(7),
 720–727 (2008).
- Tam W, Gomez M, Nie K. Significance of PRDM1beta expression as a prognostic
 marker in diffuse large B-cell lymphomas. *Blood*. 111(4), 2488–2489; author reply
 2489–2490 (2008).
- 559 204. Tate G, Hirayama-Ohashi Y, Kishimoto K, Mitsuya T. Novel BLIMP1/PRDM1 gene 560 mutations in B-cell lymphoma. *Cancer Genet. Cytogenet.* 172(2), 151–153 (2007).
- 561 205. Garcia J-F, Roncador G, García J-F, *et al.* PRDM1/BLIMP-1 expression in multiple B and 562 T-cell lymphoma. *Haematologica*. 91(4), 467–474 (2006).
- Tam W, Gomez M, Chadburn A, Lee JW, Chan WC, Knowles DM. Mutational analysis of
 PRDM1 indicates a tumor-suppressor role in diffuse large B-cell lymphomas. *Blood*.
 107(10), 4090–4100 (2006).
- Pasqualucci L, Compagno M, Houldsworth J, *et al.* Inactivation of the PRDM1/BLIMP1
 gene in diffuse large B cell lymphoma. *J. Exp. Med.* 203(2), 311–317 (2006).
- Luo J, Niu X, Liu H, Zhang M, Chen M, Deng S. Up-regulation of transcription factor
 Blimp1 in systemic lupus erythematosus. *Mol. Immunol.* 56(4), 574–582 (2013).
- Zhou X, Lu X, Lv J, *et al.* Genetic association of PRDM1-ATG5 intergenic region and
 autophagy with systemic lupus erythematosus in a Chinese population. *Ann. Rheum. Dis.* 70(7), 1330–1337 (2011).
- 573 210. Gateva V, Sandling JK, Hom G, *et al.* A large-scale replication study identifies TNIP1,
 574 PRDM1, JAZF1, UHRF1BP1 and IL10 as risk loci for systemic lupus erythematosus. *Nat.*575 *Genet.* 41(11), 1228–1233 (2009).
- 576 211. Ellinghaus D, Zhang H, Zeissig S, *et al.* Association between variants of PRDM1 and
 577 NDP52 and Crohn's disease, based on exome sequencing and functional studies.
 578 *Gastroenterology*. 145(2), 339–347 (2013).

- 579 212. Cleynen I, González JR, Figueroa C, *et al.* Genetic factors conferring an increased
 580 susceptibility to develop Crohn's disease also influence disease phenotype: results
 581 from the IBDchip European Project. *Gut.* 62(11), 1556–1565 (2013).
- 582 213. Fransen K, Mitrovic M, van Diemen CC, *et al.* Limited evidence for parent-of-origin 583 effects in inflammatory bowel disease associated loci. *PloS One*. 7(9), e45287 (2012).
- Abbondanza C, De Rosa C, D'Arcangelo A, *et al.* Identification of a functional estrogenresponsive enhancer element in the promoter 2 of PRDM2 gene in breast cancer cell
 lines. *J. Cell. Physiol.* 227(3), 964–975 (2012).
- 587 215. Du Y, Carling T, Fang W, Piao Z, Sheu JC, Huang S. Hypermethylation in human cancers
 588 of the RIZ1 tumor suppressor gene, a member of a histone/protein methyltransferase
 589 superfamily. *Cancer Res.* 61(22), 8094–8099 (2001).
- Sakurada K, Furukawa T, Kato Y, Kayama T, Huang S, Horii A. RIZ, the retinoblastoma protein interacting zinc finger gene, is mutated in genetically unstable cancers of the pancreas, stomach, and colorectum. *Genes. Chromosomes Cancer*. 30(2), 207–211 (2001).
- 594 217. Chadwick RB, Jiang GL, Bennington GA, *et al.* Candidate tumor suppressor RIZ is
 595 frequently involved in colorectal carcinogenesis. *Proc. Natl. Acad. Sci. U. S. A.* 97(6),
 596 2662–2667 (2000).
- Piao Z, Fang W, Malkhosyan S, *et al.* Frequent frameshift mutations of RIZ in sporadic
 gastrointestinal and endometrial carcinomas with microsatellite instability. *Cancer Res.* 60(17), 4701–4704 (2000).
- Pan K-F, Lu Y-Y, Liu W-G, Zhang L, You W-C. Detection of frameshift mutations of RIZ in
 gastric cancers with microsatellite instability. *World J. Gastroenterol. WJG*. 10(18),
 2719–2722 (2004).
- Coshimo Y, Oue N, Mitani Y, *et al.* Frequent epigenetic inactivation of RIZ1 by promoter
 hypermethylation in human gastric carcinoma. *Int. J. Cancer J. Int. Cancer.* 110(2),
 212–218 (2004).
- 606221. Tokumaru Y, Nomoto S, Jerónimo C, et al. Biallelic inactivation of the RIZ1 gene in607human gastric cancer. Oncogene. 22(44), 6954–6958 (2003).
- Nishida N, Kudo M, Nagasaka T, Ikai I, Goel A. Characteristic patterns of altered DNA
 methylation predict emergence of human hepatocellular carcinoma. *Hepatol. Baltim. Md*. 56(3), 994–1003 (2012).
- 223. Zhang C, Li H, Wang Y, *et al.* Epigenetic inactivation of the tumor suppressor gene RIZ1
 in hepatocellular carcinoma involves both DNA methylation and histone
 modifications. *J. Hepatol.* 53(5), 889–895 (2010).

- Piao GH, Piao WH, He Y, Zhang HH, Wang GQ, Piao Z. Hyper-methylation of RIZ1
 tumor suppressor gene is involved in the early tumorigenesis of hepatocellular
 carcinoma. *Histol. Histopathol.* 23(10), 1171–1175 (2008).
- 617 225. Fang W, Piao Z, Buyse IM, *et al.* Preferential loss of a polymorphic RIZ allele in human 618 hepatocellular carcinoma. *Br. J. Cancer.* 84(6), 743–747 (2001).
- Fang W, Piao Z, Simon D, Sheu JC, Huang S. Mapping of a minimal deleted region in human hepatocellular carcinoma to 1p36.13-p36.23 and mutational analysis of the RIZ (PRDM2) gene localized to the region. *Genes. Chromosomes Cancer*. 28(3), 269–275
 (2000).
- Tan S-X, Hu R-C, Liu J-J, Tan Y-L, Liu W-E. Methylation of PRDM2, PRDM5 and PRDM16
 genes in lung cancer cells. *Int. J. Clin. Exp. Pathol.* 7(5), 2305–2311 (2014).
- 625 228. Geli J, Kiss N, Kogner P, Larsson C. Suppression of RIZ in biologically unfavourable 626 neuroblastomas. *Int. J. Oncol.* 37(5), 1323–1330 (2010).
- 627 229. Hoebeeck J, Michels E, Pattyn F, *et al.* Aberrant methylation of candidate tumor 628 suppressor genes in neuroblastoma. *Cancer Lett.* 273(2), 336–346 (2009).
- 230. Deng Q, Huang S. PRDM5 is silenced in human cancers and has growth suppressive
 activities. *Oncogene*. 23(28), 4903–4910 (2004).
- Watanabe Y, Toyota M, Kondo Y, *et al.* PRDM5 identified as a target of epigenetic
 silencing in colorectal and gastric cancer. *Clin. Cancer Res. Off. J. Am. Assoc. Cancer Res.* 13(16), 4786–4794 (2007).
- 634 232. Turnbull J, Girard J-M, Lohi H, *et al.* Early-onset Lafora body disease. *Brain J. Neurol.* 635 135(Pt 9), 2684–2698 (2012).
- He X-J, Ruan J, Du W-D, *et al.* PRDM9 gene polymorphism may not be associated with
 defective spermatogenesis in the Chinese Han population. *Syst. Biol. Reprod. Med.*59(1), 38–41 (2013).
- 639 234. Irie S, Tsujimura A, Miyagawa Y, *et al.* Single-nucleotide polymorphisms of the PRDM9
 640 (MEISETZ) gene in patients with nonobstructive azoospermia. *J. Androl.* 30(4), 426–
 641 431 (2009).
- 642 235. Miyamoto T, Koh E, Sakugawa N, *et al.* Two single nucleotide polymorphisms in
 643 PRDM9 (MEISETZ) gene may be a genetic risk factor for Japanese patients with
 644 azoospermia by meiotic arrest. *J. Assist. Reprod. Genet.* 25(11-12), 553–557 (2008).
- Reid AG, Nacheva EP. A potential role for PRDM12 in the pathogenesis of chronic
 myeloid leukaemia with derivative chromosome 9 deletion. *Leukemia*. 18(1), 178–180
 (2004).
- Nishikawa N, Toyota M, Suzuki H, et al. Gene amplification and overexpression of
 PRDM14 in breast cancers. *Cancer Res.* 67(20), 9649–9657 (2007).

- Schulte JH, Lim S, Schramm A, *et al.* Lysine-specific demethylase 1 is strongly
 expressed in poorly differentiated neuroblastoma: implications for therapy. *Cancer Res.* 69(5), 2065–2071 (2009).
- Bennani-Baiti IM, Machado I, Llombart-Bosch A, Kovar H. Lysine-specific demethylase
 1 (LSD1/KDM1A/AOF2/BHC110) is expressed and is an epigenetic drug target in
 chondrosarcoma, Ewing's sarcoma, osteosarcoma, and rhabdomyosarcoma. *Hum. Pathol.* 43(8), 1300–1307 (2012).
- 40. Harris WJ, Huang X, Lynch JT, *et al.* The histone demethylase KDM1A sustains the
 oncogenic potential of MLL-AF9 leukemia stem cells. *Cancer Cell*. 21(4), 473–487
 (2012).
- Binda C, Valente S, Romanenghi M, *et al.* Biochemical, structural, and biological
 evaluation of tranylcypromine derivatives as inhibitors of histone demethylases LSD1
 and LSD2. *J. Am. Chem. Soc.* 132(19), 6827–6833 (2010).
- Li Y, Deng C, Hu X, *et al.* Dynamic interaction between TAL1 oncoprotein and LSD1
 regulates TAL1 function in hematopoiesis and leukemogenesis. *Oncogene*. 31(48),
 5007–5018 (2012).
- Fiskus W, Sharma S, Shah B, *et al.* Highly effective combination of LSD1 (KDM1A)
 antagonist and pan-histone deacetylase inhibitor against human AML cells. *Leukemia*.
 (2014).
- Sankar S, Theisen ER, Bearss J, et al. Reversible LSD1 inhibition interferes with global
 EWS/ETS transcriptional activity and impedes Ewing sarcoma tumor growth. *Clin. Cancer Res. Off. J. Am. Assoc. Cancer Res.* (2014).
- 672 245. Miura S, Maesawa C, Shibazaki M, *et al.* Immunohistochemistry for histone h3 lysine 9
 673 methyltransferase and demethylase proteins in human melanomas. *Am. J.*674 *Dermatopathol.* 36(3), 211–216 (2014).
- Ding D, Liu X, Guo S-W. Overexpression of lysine-specific demethylase 1 in ovarian
 endometriomas and its inhibition reduces cellular proliferation, cell cycle progression,
 and invasiveness. *Fertil. Steril.* 101(3), 740–749 (2014).
- Konovalov S, Garcia-Bassets I. Analysis of the levels of lysine-specific demethylase 1
 (LSD1) mRNA in human ovarian tumors and the effects of chemical LSD1 inhibitors in
 ovarian cancer cell lines. J. Ovarian Res. 6(1), 75 (2013).
- Kong L, Zhang G, Wang X, Zhou J, Hou S, Cui W. Immunohistochemical expression of
 RBP2 and LSD1 in papillary thyroid carcinoma. *Romanian J. Morphol. Embryol. Rev. Roum. Morphol. Embryol.* 54(3), 499–503 (2013).
- Huang Z, Li S, Song W, *et al.* Lysine-specific demethylase 1 (LSD1/KDM1A) contributes
 to colorectal tumorigenesis via activation of the Wnt/β-catenin pathway by downregulating Dickkopf-1 (DKK1) [corrected]. *PloS One*. 8(7), e70077 (2013).

- Ding J, Zhang Z-M, Xia Y, *et al.* LSD1-mediated epigenetic modification contributes to
 proliferation and metastasis of colon cancer. *Br. J. Cancer.* 109(4), 994–1003 (2013).
- Yu Y, Wang B, Zhang K, *et al.* High expression of lysine-specific demethylase 1
 correlates with poor prognosis of patients with esophageal squamous cell carcinoma.
 Biochem. Biophys. Res. Commun. 437(2), 192–198 (2013).
- Liu J, Liu F-Y, Tong Z-Q, *et al.* Lysine-specific demethylase 1 in breast cancer cells
 contributes to the production of endogenous formaldehyde in the metastatic bone
 cancer pain model of rats. *PloS One*. 8(3), e58957 (2013).
- Kashyap V, Ahmad S, Nilsson EM, et al. The lysine specific demethylase-1
 (LSD1/KDM1A) regulates VEGF-A expression in prostate cancer. *Mol. Oncol.* 7(3), 555–
 566 (2013).
- 4. Jie D, Zhongmin Z, Guoqing L, *et al.* Positive expression of LSD1 and negative
 expression of E-cadherin correlate with metastasis and poor prognosis of colon
 cancer. *Dig. Dis. Sci.* 58(6), 1581–1589 (2013).
- Zhao Z-K, Yu H-F, Wang D-R, *et al.* Overexpression of lysine specific demethylase 1
 predicts worse prognosis in primary hepatocellular carcinoma patients. *World J. Gastroenterol. WJG.* 18(45), 6651–6656 (2012).
- Serce N, Gnatzy A, Steiner S, Lorenzen H, Kirfel J, Buettner R. Elevated expression of
 LSD1 (Lysine-specific demethylase 1) during tumour progression from pre-invasive to
 invasive ductal carcinoma of the breast. *BMC Clin. Pathol.* 12, 13 (2012).
- 257. Lv T, Yuan D, Miao X, *et al.* Over-expression of LSD1 promotes proliferation, migration
 and invasion in non-small cell lung cancer. *PloS One*. 7(4), e35065 (2012).
- Kauffman EC, Robinson BD, Downes MJ, et al. Role of androgen receptor and associated lysine-demethylase coregulators, LSD1 and JMJD2A, in localized and advanced human bladder cancer. *Mol. Carcinog.* 50(12), 931–944 (2011).
- 259. Hayami S, Kelly JD, Cho H-S, *et al.* Overexpression of LSD1 contributes to human
 carcinogenesis through chromatin regulation in various cancers. *Int. J. Cancer J. Int. Cancer.* 128(3), 574–586 (2011).
- 260. Suikki HE, Kujala PM, Tammela TLJ, van Weerden WM, Vessella RL, Visakorpi T.
 Genetic alterations and changes in expression of histone demethylases in prostate
 cancer. *The Prostate*. 70(8), 889–898 (2010).
- 261. Lim S, Janzer A, Becker A, *et al.* Lysine-specific demethylase 1 (LSD1) is highly
 expressed in ER-negative breast cancers and a biomarker predicting aggressive
 biology. *Carcinogenesis*. 31(3), 512–520 (2010).
- Magerl C, Ellinger J, Braunschweig T, *et al.* H3K4 dimethylation in hepatocellular
 carcinoma is rare compared with other hepatobiliary and gastrointestinal carcinomas

- and correlates with expression of the methylase Ash2 and the demethylase LSD1. *Hum. Pathol.* 41(2), 181–189 (2010).
- Z63. Zhu Q, Liu C, Ge Z, *et al.* Lysine-specific demethylase 1 (LSD1) Is required for the transcriptional repression of the telomerase reverse transcriptase (hTERT) gene. *PloS One*. 3(1), e1446 (2008).
- Krug AW, Tille E, Sun B, *et al.* Lysine-specific demethylase-1 modifies the age effect on
 blood pressure sensitivity to dietary salt intake. *Age Dordr. Neth.* 35(5), 1809–1820
 (2013).
- Pojoga LH, Williams JS, Yao TM, *et al.* Histone demethylase LSD1 deficiency during
 high-salt diet is associated with enhanced vascular contraction, altered NO-cGMP
 relaxation pathway, and hypertension. *Am. J. Physiol. Heart Circ. Physiol.* 301(5),
 H1862–1871 (2011).
- 735 266. Hsia DA, Tepper CG, Pochampalli MR, *et al.* KDM8, a H3K36me2 histone demethylase
 736 that acts in the cyclin A1 coding region to regulate cancer cell proliferation. *Proc. Natl.*737 *Acad. Sci. U. S. A.* 107(21), 9671–9676 (2010).
- 267. He J, Nguyen AT, Zhang Y. KDM2b/JHDM1b, an H3K36me2-specific demethylase, is
 required for initiation and maintenance of acute myeloid leukemia. *Blood*. 117(14),
 3869–3880 (2011).
- 741268. Qiu J, Shi G, Jia Y, *et al.* The X-linked mental retardation gene PHF8 is a histone742demethylase involved in neuronal differentiation. *Cell Res.* 20(8), 908–918 (2010).
- Kleine-Kohlbrecher D, Christensen J, Vandamme J, *et al.* A functional link between the
 histone demethylase PHF8 and the transcription factor ZNF711 in X-linked mental
 retardation. *Mol. Cell.* 38(2), 165–178 (2010).
- Z70. Loenarz C, Ge W, Coleman ML, *et al.* PHF8, a gene associated with cleft lip/palate and
 mental retardation, encodes for an Nepsilon-dimethyl lysine demethylase. *Hum. Mol. Genet.* 19(2), 217–222 (2010).
- Abidi FE, Miano MG, Murray JC, Schwartz CE. A novel mutation in the PHF8 gene is associated with X-linked mental retardation with cleft lip/cleft palate. *Clin. Genet.*72(1), 19–22 (2007).
- Z72. Laumonnier F, Holbert S, Ronce N, *et al.* Mutations in PHF8 are associated with X
 linked mental retardation and cleft lip/cleft palate. *J. Med. Genet.* 42(10), 780–786
 (2005).
- Parrish JK, Sechler M, Winn RA, Jedlicka P. The histone demethylase KDM3A is a
 microRNA-22-regulated tumor promoter in Ewing Sarcoma. *Oncogene*. (2013).
- Guo X, Lu J, Wang Y, Gui Y, Duan X, Cai Z. Ascorbate antagonizes nickel ion to regulate
 JMJD1A expression in kidney cancer cells. *Acta Biochim. Biophys. Sin.* 44(4), 330–338
 (2012).

- Anderton JA, Bose S, Vockerodt M, et al. The H3K27me3 demethylase, KDM6B, is
 induced by Epstein-Barr virus and over-expressed in Hodgkin's Lymphoma. Oncogene
 [Internet]. (2011). Available from: http://www.ncbi.nlm.nih.gov/pubmed/21242977.
- 763 276. Shen Y, Guo X, Wang Y, *et al.* Expression and significance of histone H3K27 764 demethylases in renal cell carcinoma. *BMC Cancer*. 12, 470 (2012).
- 277. Banka S, Lederer D, Benoit V, *et al.* Novel KDM6A (UTX) mutations and a clinical and
 molecular review of the X-linked Kabuki syndrome (KS2). *Clin. Genet.* (2014).
- 767 278. Miyake N, Koshimizu E, Okamoto N, *et al.* MLL2 and KDM6A mutations in patients
 768 with Kabuki syndrome. *Am. J. Med. Genet. A.* 161(9), 2234–2243 (2013).
- 769 279. Miyake N, Mizuno S, Okamoto N, *et al.* KDM6A point mutations cause Kabuki
 770 syndrome. *Hum. Mutat.* 34(1), 108–110 (2013).
- 280. Lederer D, Grisart B, Digilio MC, *et al.* Deletion of KDM6A, a histone demethylase
 interacting with MLL2, in three patients with Kabuki syndrome. *Am. J. Hum. Genet.*90(1), 119–124 (2012).
- 281. Gossage L, Murtaza M, Slatter AF, *et al.* Clinical and pathological impact of VHL,
 PBRM1, BAP1, SETD2, KDM6A, and JARID1c in clear cell renal cell carcinoma. *Genes. Chromosomes Cancer*. 53(1), 38–51 (2014).
- Paolicchi E, Crea F, Farrar WL, Green JE, Danesi R. Histone lysine demethylases in
 breast cancer. *Crit. Rev. Oncol. Hematol.* 86(2), 97–103 (2013).
- 283. Dubuc AM, Remke M, Korshunov A, *et al.* Aberrant patterns of H3K4 and H3K27
 histone lysine methylation occur across subgroups in medulloblastoma. *Acta Neuropathol. (Berl.).* 125(3), 373–384 (2013).
- 284. Liu J, Lee W, Jiang Z, *et al.* Genome and transcriptome sequencing of lung cancers
 reveal diverse mutational and splicing events. *Genome Res.* 22(12), 2315–2327 (2012).
- Z85. Jones DTW, Jäger N, Kool M, *et al.* Dissecting the genomic complexity underlying
 medulloblastoma. *Nature*. 488(7409), 100–105 (2012).
- 786 286. Murati A, Brecqueville M, Devillier R, Mozziconacci M-J, Gelsi-Boyer V, Birnbaum D.
 787 Myeloid malignancies: mutations, models and management. *BMC Cancer*. 12, 304
 788 (2012).
- 789 287. Robinson G, Parker M, Kranenburg TA, *et al.* Novel mutations target distinct
 790 subgroups of medulloblastoma. *Nature*. 488(7409), 43–48 (2012).
- 791 288. McDevitt MA. Clinical applications of epigenetic markers and epigenetic profiling in
 792 myeloid malignancies. *Semin. Oncol.* 39(1), 109–122 (2012).
- Muramatsu H, Makishima H, Maciejewski JP. Chronic myelomonocytic leukemia and
 atypical chronic myeloid leukemia: novel pathogenetic lesions. *Semin. Oncol.* 39(1),
 67–73 (2012).

- Z90. Jankowska AM, Makishima H, Tiu RV, *et al.* Mutational spectrum analysis of chronic
 myelomonocytic leukemia includes genes associated with epigenetic regulation: UTX,
 EZH2, and DNMT3A. *Blood.* 118(14), 3932–3941 (2011).
- 799 291. Gui Y, Guo G, Huang Y, *et al.* Frequent mutations of chromatin remodeling genes in 800 transitional cell carcinoma of the bladder. *Nat. Genet.* 43(9), 875–878 (2011).
- Wartman LD, Larson DE, Xiang Z, et al. Sequencing a mouse acute promyelocytic
 leukemia genome reveals genetic events relevant for disease progression. J. Clin.
 Invest. 121(4), 1445–1455 (2011).
- Van Haaften G, Dalgliesh GL, Davies H, *et al.* Somatic mutations of the histone H3K27
 demethylase, UTX, in human cancer. *Nat. Genet.* 41(5), 521–523 (2009).
- 294. Li L-L, Xue A-M, Li B-X, *et al.* JMJD2A contributes to breast cancer progression through
 transcriptional repression of the tumor suppressor ARHI. *Breast Cancer Res. BCR*.
 16(3), R56 (2014).
- 295. Wang H-L, Liu M-M, Ma X, et al. Expression and effects of JMJD2A histone
 demethylase in endometrial carcinoma. Asian Pac. J. Cancer Prev. APJCP. 15(7), 3051–
 3056 (2014).
- 812 296. Hu C-E, Liu Y-C, Zhang H-D, Huang G-J. JMJD2A predicts prognosis and regulates cell 813 growth in human gastric cancer. *Biochem. Biophys. Res. Commun.* 449(1), 1–7 (2014).
- Li B-X, Li J, Luo C-L, *et al.* Expression of JMJD2A in infiltrating duct carcinoma was
 markedly higher than fibroadenoma, and associated with expression of ARHI, p53 and
 ER in infiltrating duct carcinoma. *Indian J. Exp. Biol.* 51(3), 208–217 (2013).
- 817 298. Berry WL, Janknecht R. KDM4/JMJD2 histone demethylases: epigenetic regulators in
 818 cancer cells. *Cancer Res.* 73(10), 2936–2942 (2013).
- Kogure M, Takawa M, Cho H-S, *et al.* Deregulation of the histone demethylase JMJD2A
 is involved in human carcinogenesis through regulation of the G(1)/S transition. *Cancer Lett.* 336(1), 76–84 (2013).
- Berry WL, Shin S, Lightfoot SA, Janknecht R. Oncogenic features of the JMJD2A histone
 demethylase in breast cancer. *Int. J. Oncol.* 41(5), 1701–1706 (2012).
- 824301. Hong Q, Yu S, Yang Y, Liu G, Shao Z. A polymorphism in JMJD2C alters the cleavage by825caspase-3 and the prognosis of human breast cancer. Oncotarget. (2014).
- 302. Luo W, Chang R, Zhong J, Pandey A, Semenza GL. Histone demethylase JMJD2C is a
 coactivator for hypoxia-inducible factor 1 that is required for breast cancer
 progression. *Proc. Natl. Acad. Sci. U. S. A.* 109(49), E3367–3376 (2012).
- 303. Vinatzer U, Gollinger M, Müllauer L, Raderer M, Chott A, Streubel B. Mucosaassociated lymphoid tissue lymphoma: novel translocations including rearrangements of ODZ2, JMJD2C, and CNN3. *Clin. Cancer Res. Off. J. Am. Assoc. Cancer Res.* 14(20), 6426–6431 (2008).

- 833 304. Rui L, Emre NCT, Kruhlak MJ, *et al.* Cooperative epigenetic modulation by cancer 834 amplicon genes. *Cancer Cell*. 18(6), 590–605 (2010).
- 835 305. Kim T-D, Fuchs JR, Schwartz E, *et al.* Pro-growth role of the JMJD2C histone
 836 demethylase in HCT-116 colon cancer cells and identification of curcuminoids as
 837 JMJD2 inhibitors. *Am. J. Transl. Res.* 6(3), 236–247 (2014).
- 838 306. Li W, Zhao L, Zang W, *et al.* Histone demethylase JMJD2B is required for tumor cell
 839 proliferation and survival and is overexpressed in gastric cancer. *Biochem. Biophys.*840 *Res. Commun.* 416(3-4), 372–378 (2011).
- 307. Toyokawa G, Cho H-S, Iwai Y, *et al.* The histone demethylase JMJD2B plays an essential
 role in human carcinogenesis through positive regulation of cyclin-dependent kinase
 6. *Cancer Prev. Res. Phila. Pa.* 4(12), 2051–2061 (2011).
- 308. Pryor JG, Brown-Kipphut BA, Iqbal A, Scott GA. Microarray comparative genomic
 hybridization detection of copy number changes in desmoplastic melanoma and
 malignant peripheral nerve sheath tumor. *Am. J. Dermatopathol.* 33(8), 780–785
 (2011).
- Shi L, Sun L, Li Q, *et al.* Histone demethylase JMJD2B coordinates H3K4/H3K9
 methylation and promotes hormonally responsive breast carcinogenesis. *Proc. Natl. Acad. Sci. U. S. A.* 108(18), 7541–7546 (2011).
- 851 310. Kawazu M, Saso K, Tong KI, *et al.* Histone demethylase JMJD2B functions as a co-factor
 852 of estrogen receptor in breast cancer proliferation and mammary gland development.
 853 *PloS One.* 6(3), e17830 (2011).
- 854311. Kuźbicki L, Lange D, Strączyńska-Niemiec A, Chwirot BW. JARID1B expression in human855melanoma and benign melanocytic skin lesions. *Melanoma Res.* 23(1), 8–12 (2013).
- 856 312. Radberger P, Radberger A, Bykov VJN, Seregard S, Economou MA. JARID1B protein
 857 expression and prognostic implications in uveal melanoma. *Invest. Ophthalmol. Vis.*858 *Sci.* 53(8), 4442–4449 (2012).
- 313. Held M, Bosenberg M. A role for the JARID1B stem cell marker for continuous
 melanoma growth. *Pigment Cell Melanoma Res.* 23(4), 481–483 (2010).
- 861 314. Roesch A, Fukunaga-Kalabis M, Schmidt EC, *et al.* A temporarily distinct subpopulation
 862 of slow-cycling melanoma cells is required for continuous tumor growth. *Cell.* 141(4),
 863 583–594 (2010).
- 864 315. Roesch A, Mueller AM, Stempfl T, Moehle C, Landthaler M, Vogt T. RBP2-H1/JARID1B
 865 is a transcriptional regulator with a tumor suppressive potential in melanoma cells.
 866 Int. J. Cancer J. Int. Cancer. 122(5), 1047–1057 (2008).
- 867316. Xiang Y, Zhu Z, Han G, et al. JARID1B is a histone H3 lysine 4 demethylase up-regulated868in prostate cancer. Proc. Natl. Acad. Sci. U. S. A. 104(49), 19226–19231 (2007).

- Mitra D, Das PM, Huynh FC, Jones FE. Jumonji/ARID1 B (JARID1B) protein promotes
 breast tumor cell cycle progression through epigenetic repression of microRNA let-7e. *J. Biol. Chem.* 286(47), 40531–40535 (2011).
- 318. Catchpole S, Spencer-Dene B, Hall D, *et al.* PLU-1/JARID1B/KDM5B is required for
 embryonic survival and contributes to cell proliferation in the mammary gland and in
 ER+ breast cancer cells. *Int. J. Oncol.* 38(5), 1267–1277 (2011).
- 875 319. Izawa A, Kobayashi D, Nasu S, *et al.* Relevance of c-erbB2, PLU-1 and survivin mRNA
 876 expression to diagnostic assessment of breast cancer. *Anticancer Res.* 22(5), 2965–
 877 2969 (2002).
- Madsen B, Tarsounas M, Burchell JM, Hall D, Poulsom R, Taylor-Papadimitriou J. PLU1, a transcriptional repressor and putative testis-cancer antigen, has a specific
 expression and localisation pattern during meiosis. *Chromosoma*. 112(3), 124–132
 (2003).
- 321. Yamane K, Tateishi K, Klose RJ, *et al.* PLU-1 is an H3K4 demethylase involved in
 transcriptional repression and breast cancer cell proliferation. *Mol. Cell.* 25(6), 801–
 812 (2007).
- Barrett A, Santangelo S, Tan K, *et al.* Breast cancer associated transcriptional repressor
 PLU-1/JARID1B interacts directly with histone deacetylases. *Int. J. Cancer J. Int. Cancer.* 121(2), 265–275 (2007).
- 323. Jensen LR, Amende M, Gurok U, *et al.* Mutations in the JARID1C gene, which is
 involved in transcriptional regulation and chromatin remodeling, cause X-linked
 mental retardation. *Am. J. Hum. Genet.* 76(2), 227–236 (2005).
- 324. Tzschach A, Lenzner S, Moser B, *et al.* Novel JARID1C/SMCX mutations in patients with
 X-linked mental retardation. *Hum. Mutat.* 27(4), 389 (2006).
- 325. Santos C, Rodriguez-Revenga L, Madrigal I, Badenas C, Pineda M, Milà M. A novel
 mutation in JARID1C gene associated with mental retardation. *Eur. J. Hum. Genet. EJHG*. 14(5), 583–586 (2006).
- 896326.Tahiliani M, Mei P, Fang R, et al. The histone H3K4 demethylase SMCX links REST897target genes to X-linked mental retardation. Nature. 447(7144), 601–605 (2007).
- 327. Iwase S, Lan F, Bayliss P, *et al.* The X-linked mental retardation gene SMCX/JARID1C
 defines a family of histone H3 lysine 4 demethylases. *Cell.* 128(6), 1077–1088 (2007).
- 328. Abidi FE, Holloway L, Moore CA, *et al.* Mutations in JARID1C are associated with Xlinked mental retardation, short stature and hyperreflexia. *J. Med. Genet.* 45(12), 787–
 793 (2008).
- 329. Abidi F, Holloway L, Moore CA, et al. Novel human pathological mutations. Gene
 symbol: JARID1C. Disease: mental retardation, X-linked. Hum. Genet. 125(3), 345
 (2009).
- 330. Rujirabanjerd S, Nelson J, Tarpey PS, *et al.* Identification and characterization of two
 novel JARID1C mutations: suggestion of an emerging genotype-phenotype correlation.
 Eur. J. Hum. Genet. EJHG. 18(3), 330–335 (2010).
- 331. Jensen LR, Bartenschlager H, Rujirabanjerd S, *et al.* A distinctive gene expression
 fingerprint in mentally retarded male patients reflects disease-causing defects in the
 histone demethylase KDM5C. *PathoGenetics*. 3(1), 2 (2010).
- 332. Santos-Rebouças CB, Fintelman-Rodrigues N, Jensen LR, *et al.* A novel nonsense
 mutation in KDM5C/JARID1C gene causing intellectual disability, short stature and
 speech delay. *Neurosci. Lett.* 498(1), 67–71 (2011).
- 333. Ounap K, Puusepp-Benazzouz H, Peters M, *et al.* A novel c.2T > C mutation of the
 KDM5C/JARID1C gene in one large family with X-linked intellectual disability. *Eur. J. Med. Genet.* 55(3), 178–184 (2012).
- 334. Hou J, Wu J, Dombkowski A, *et al.* Genomic amplification and a role in drug-resistance
 for the KDM5A histone demethylase in breast cancer. *Am. J. Transl. Res.* 4(3), 247–256
 (2012).

921