N
N

N

HAL

open science

Hierarchical back-face culling for collision detection
Stéphane Redon, Abderrahmane Kheddar, Sabine Coquillart

» To cite this version:

Stéphane Redon, Abderrahmane Kheddar, Sabine Coquillart. Hierarchical back-face culling for colli-
sion detection. Intelligent Robots and Systems, 2002. IEEE/RSJ International Conference on, 2002,

Lausanne, Switzerland. pp.3036-3041, 10.1109/IRDS.2002.1041734 . hal-01147674

HAL Id: hal-01147674
https://hal.science/hal-01147674

Submitted on 4 May 2015

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.


https://hal.science/hal-01147674
https://hal.archives-ouvertes.fr

Hierarchical Back-Face Culling for Collision Detection

Stéphane Redon* , Abderrahmane Kheddar' , Sabine Coquillart*

*i3D - INRIA, France, [stephane.redon, sabine.coquillart]@inria.fr
Y CEMIF-SC - Université d’Evry, France, kheddar@iup.univ-evry.fr

Abstract

A few years ago, Vanecek[16] suggested to apply
a wvariant of back-face culling to speed-up colli-
sion detection between polyhedral objects. However,
Vanecek’s method is linear in the number of faces
in the object, which is unpractical for large models.
This paper suggests to add some geometrical infor-
mation to hierarchies of bounding volumes, typically
used in collision detection, and perform conservative
back-face culling at the bounding-volume level in con-
stant time. The method described in this paper can be
applied to complement any kind of bounding-volumes
hierarchy and allows a trade-off between memory and
speed. Preliminary experimental results suggest that
the method allows a significant speed-up, especially
in close proximity situations.

1 Introduction

Collision detection (CD) is still a fundamental prob-
lem in numerous domains. Some typical examples
are computer graphics (physically-based modeling,
animation), robotics (path-planning, collision avoid-
ance), industrial applications (virtual prototyping,
assembly tests) and video games. Especially, hap-
tics research has generated the need for algorithms
able to achieve kilohertz rates.

A few years ago, Vanecek[16] suggested to apply a
variant of back-face culling (BFC) to speed-up col-
lision detection between polyhedral objects. The
method consists in culling faces which are moving
backwards, relatively to the other objects. Since it
is insensitive to objects positions and orientations,
the method is especially efficient in close-proximity
configurations (a peg in a hole, for example). To our
knowledge, this method is the only one offering such
characteristics for general polyhedral objects!: 2.

IFor convex objects, however, separating plane algorithms
are somewhat insensitive to the objects positions and orienta-
tions, even in close-proximity situations. Also, the incoming
constraint in Snyder et al.[15] can be seen as back-face culling
applied to collision detection between parametric or implicit
surfaces.

2While some time-scheduling methods[9] use the objects

Vanecek’s method, however, performs back-face
culling at the face level. Consequently, the algorithm
is linear in the number of faces in the object, which is
unpractical for large models. This paper suggests to
add some geometrical information to hierarchies of
bounding volumes (BVs), typically used in collision
detection, and perform conservative back-face culling
at the bounding-volume level. Precisely, this geomet-
rical information is used to perform a constant-time
culling test which detects most situations where ev-
ery triangle associated to a bounding-volume is mov-
ing backwards, ie situations where the bounding-
volume hierarchies need not be further descended,
even when the BVs are overlapping.

The method described in this paper can be applied
to complement any kind of bounding-volumes hier-
archy, and doesn’t require a separate hierarchy. It
allows a trade-off between the memory overhead due
to the addition of geometrical information in the
bounding-volumes and the provided speed-up. More-
over, it can be applied to discrete and continuous
collision detection.

2 Background

2.1 Back-face culling for collision detection

Let’s briefly recall Vanecek’s results. More details
can be found in the original paper[16]. Let’s consider
a point p belonging to a rigid body. Let r denote
the body’s center of gravity and let r and w denote
respectively the object’s translational and rotational
velocities at a given time. Then, the instantaneous
velocity of pis p =1+ w A (p —r). Now if ¢ and
j denote two objects, then the velocity of p from
object i relatively to object j is:

Pij =Pi —Pj = a;; +PA (wj —w;) (1)

where a;; = 1r; —1; —w; ATy +w;j Ar;. Relative ve-
locities are linearly related. If p,...p* denote some

motions to estimate lower bounds on time of impacts, they
don’t use the motion direction, as in Vanecek[16].



points from object ¢, then

t

t
p= Z asp® = pij = Z aspi; (2)
s=1

s=1

for any (v, ...,ay) € R". Now, if p denotes a point
from face m in object ¢, and n,,, denotes the outward
normal to the face, then p is moving backwards rel-
atively to object j if and only if

pij.nm <0 (3)

Relation (2) and the linear property of the dot prod-
uct leads to the following convez property:

(Pl nm <0, 1<s<t)= (Ppijnm <0) (4)
for any point p in the convex hull of p',...p". In
Vanecek[16], this property is used to cull faces in
two steps3:

1. Compute extremal vertices’ velocities
An enclosing convex polygon is associated to
each face. The velocities of the vertices p!,. .. p?
of the enclosing polygon are computed from
equation (1).

2. Perform culling tests
For each vertex p® of the enclosing convex
polygon, a culling test is performed as in
equation (3). If every vertex p® is culled, then
the face is culled.

2.2 Bounding-Volumes Hierarchies

Using bounding-volumes hierarchies (BVH) is a com-
mon strategy in collision detection and other do-
mains (rendering for example). Briefly, overlap tests
between bounding-volumes are used to cull many
irrelevant elementary tests between objects parts.
Let’s assume, for example, that each of the two ob-
jects currently processed by the CD algorithm is
bounded by a sphere. If the spheres don’t over-
lap, then there can’t be any collision between the
objects. If the spheres do overlap, however, then
there may be a collision between the objects. In this
case, the spheres are replaced by unions of smaller
spheres and overlap tests between spheres are recur-
sively performed. When spheres sizes are smaller
than a pre-determined threshold, exact tests are per-
formed between the object geometries (for example,
triangle/triangle collision tests, in the case of trian-
gle soups). For rigid objects, bounding-volumes hi-
erarchies are usually computed offline. Some typical

3Note that, actually, the velocities computations and the
culling tests are interleaved in order to return earlier when a
face is moving forwards. Hovever, all faces still have to be
tested.

examples of BVs are spheres[5], axis-aligned bouding
boxes (AABBs), oriented bounding boxes[4] (OBBs),
and k-dops|[6].

In order to include the backward-motion (BM)
culling test in the BVHs traversal algorithm, this pa-
per suggests to extend the BV/BV overlap test in the
following way:

1. If one of the two BVs has already been BM-
culled (checked through a flag set in step 3),
return, else go to 2.

2. Perform the BV/BV overlap test. If the BVs
don’t overlap, return, else go to 3.

3. Perform the BM culling test for each BV in turn.
If one BV is BM-culled, mark it and return.

For clarity, a simple definition will be useful in the re-
maining of the paper: in the following, the triangles
associated to any particular node of a bounding-
volumes hierarchy are the ones found in its descen-
dent leaf-nodes.

3 Method Overview

In order to get a constant-time backward-motion
culling test for a bounding-volume, we adapt both
steps from Section 2.1. Precisely, whatever the num-
ber k of triangles associated to the bounding volume,
the following algorithm is used:

1. Compute characteristic points’ velocities
Instead of computing the velocities of the 3k
vertices defining the k triangles, we compute
the velocities of a fixed number of characteristic
points ¢!, ...c' whose convex hull contains
the bounding-volume. For AABBs or OBBs,
for example, the corners may by used (¢ = 8).
From the linear property (2) of relative ve-
locities, the characteristic points’ velocities
approximate the triangles velocities.  Since
the number of characteristic points is fixed for
a given bounding-volume type, the velocities
computation is performed in constant-time,
whatever the number of triangles associated to
the bounding-volume.

2. Perform conservative culling tests
From the convex property (4), the characteris-
tic points’ velocities can be used to cull a tri-
angle associated to a bounding-volume. How-
ever, culling all the triangles would still be lin-
ear in k. Thus, we use a bounded number
of precomputed backward-motion vectors (BM-
vectors) My, ...n, which suitably approximate



the set of triangle normals. Precisely, each char-
acteristic point c® is tested against each pre-
computed vector n,, as in equation (3). The
bounding-volume is culled if all of the ¢ x r tests
are successful.

The precomputed vectors are chosen so as to pro-
vide a constant-time conservative culling test. First,
note that the elementary culling test (3) can be ex-
pressed geometrically. Denoting H(n,,) = {x €
R?, x.n,, < 0} the open half-space defined by n,,,
then p from i is moving backwards from j if and only
if p;; € H(n,,). Using this notation, the constraint
on the precomputed BM-vectors can be expressed
simply: ny, ...n, are chosen such as

T k
BM, = (| H(d,,) C (] H(ny) (5)

where r is smaller than a user-defined constant 7,,4z.
BM, is the polyhedral backward-motion cone (BM-

cone) added to the bounding-volume. Thus, the
bounding-volume v is BM-culled when
¢, €BM,, 1<s<t (6)

r is the size of the BM-cone. Since t and 7,4, are
fixed, the bounding-volume culling test is performed
in constant time.

Since constraint (5) implies

r k
¢;; € () H@n) = ¢ € [|Hny) (7)

for 1 < s < t, all triangles associated to the
bounding-volume are necessarily moving backwards
when equation (6) culls the bounding-volume. Yet,
this culling test is only conservative: it may fail even
though every triangle associated to the bounding-
volume is moving backwards.

The reasons for this should be clear. First, trian-
gles velocities are approximated through those of
a few characteristic points. And second, triangles
normals are approximated through the backward-
motion cone. However, as the bounding-volumes hi-
erarchy is being descended, the bounding volumes fit
the object geometry better and better. Thus, these
approximations are more and more precise and the
backward-motion cone allows to cull more and more
backward-moving triangles. Figure 1 depicts this
phenomenon: as the hierarchy is descended, the BM-
culling tests allows to cull more and more bounding
volumes (and thus more and more groups of associ-
ated triangles).

Figure 1: Hierarchical BM-culling of a moving door. Faces
moving forwards are shown filled. The door is translating
away from the viewer (snapshots a, b and c are taken at the
same time, though). As the hierarchy is descended, the BM-
culling tests allows to cull more and more bounding volumes
(and thus more and more groups of associated triangles). Lev-
els of the BVH: a=7, b=9 and c=11.

4 Building enhanced bounding-volumes
hierarchies

4.1 Building hierarchies of BVs

Algorithms which compute bounding-volumes hier-
archies can generally be split into two categories:
top-down and bottom-up approaches. In the case
of top-down approaches, a rule is used to split the
triangles list for a given node into two sublists. Typ-
ical splitting rules include Min Sum, Min Mazx, Splat-
ter and Longest Side[6]. Note that the choice of the
splitting rule is generally independant of the choice
of the bounding-volume.

In order to take advantage of BM-culling, a natu-
ral idea consists in deriving a splitting rule based
upon the normals repartition. Thus, denoting nq, ...
n; the triangles normals associated to the current
. 1 k
bouding-volume, the normals mean p = >, n;



is computed, as well as a covariance matrix C:

Clm =

| =

Z(ni [l] = pll)) (ni[m] — ufm]) — (8)

where 1 < I,m < 3, n;[I] and p[l] denote vectors co-
ordinates, and C;,, denote the matrix components.
This covariance matrix is diagonalized and the tri-
angles are distributed into two sublists according to
their normal projection along the greatest variance
direction.

However, this idea misses the point of collision de-
tection since the method is unable to compute tight
bounding-volumes hierarchies. Instead, we suggest
to use a traditional splitting rule (the MinMax rule
for example). It turns out that, as the hierarchy
is being descended, the local curvature is lower and
lower and the normals vary less and less, enabling ef-
ficient BM-culling. While some future work include
the search of a mized splitting rule, which would use
triangle normals and positions*, traditional splitting
rules proved to be sufficient to yield significant speed-
ups (see Section 7).

4.2 Adding BM-cones

Adding BM-cones in bounding-volumes is indepen-
dent of the kind of approach used to build the
bounding-volumes hierarchy, and the addition itself
can be performed top-down or bottom-up. In the
top-down case, the BM-cones are computed from
the triangles normals ni, ...n; associated to the
bounding-volumes. In the bottom-up case, the BM-
cones are recursively computed from those of the
bounding-volumes child-nodes according to the fol-
lowing rules:

1. The BM-cones of leaf bounding-volumes are com-
puted from the triangles normals.

2. If (and only if) all child-nodes have a BM-cone,
the BM-cones of internal nodes are computed
from the BM-vectors in all child-nodes.

Note that using a bottom-up approach still pro-
vides conservative tests. If BM,,, ...BM,, denote
the BM-cones in the bounding-volume’s child-nodes,
then

BM, C | BM,, (9)
i=1

Whereas the top-down approach yields more pre-
cise results (and, thus, bouding-volumes are more of-
ten BM-culled), the bottom-up approach is typically
much faster and is preferably used for large models.

4For example, Kumar et al.[7] describe a method to per-
form hierarchical back-face culling for rendering which com-
putes clusters from both faces normals and positions.

5 Building the backward-motion cone

In this section, we describe an algorithm able to
build a bounding-volume’s BM-cone from a set of
vectors ny, ...n. From the previous section, these
vectors are triangles normals or BM-vectors of all
child-nodes.

5.1 Preliminaries
We need the following definitions:

Definition (Positive cone). The positive cone
P(vi,...,Vk) generated by k vectors vy, ...vy in
IR? is the set of positive linear combinations of these
k wvectors:

k
P(vi,...,VE) = {ZAmvm, Am =0, 1<m<k}
m=1

Definition (Minimal subset). Let vy, ...vy be
k wectors in R>. In this paper, a minimal subset
of this vectors is a smallest set of s wvectors v;,,
..v;, of these k vectors such as P(vi,...,v;,) =

P(Viyeooy Vi)

In other words, a minimal subset is a smallest sub-
set of vectors which generate the same positive cone.
The vectors in a minimal subset are on the convex
hull of the positive cone.

The constraint on the backward-motion cone is
the inclusion property (5). Consequently, we
are interested in building the BM-cone only when
ﬂ:;zl H(n,,) is non-empty®. The following lemma
indicates when the search for a BM-cone can be
avoided:

Lemma 1. Assume P(ny,...,n;) = R3, then

ﬂ:;zl H(n,,) is empty.

Proof. Assume there exists x € IR® such as x.n,, <
0,1 < m < k (then x # 0). Sincex € P(ny,...,nk),
there exists k positive values Ay, ... \; such as x =
anzl AmDy,. Since x # 0, at least one of these
values is strictly positive. However, ||x||? = x.x =
an:l AmX.n,, < 0. This is impossible. O
Note that this lemma only allows to avoid the
construction of most unuseful (empty) BM-cones.
Sometimes n;, ...n, may not generate IR® while
ﬂ:@zl H(n,,) is empty. This occurs for example
when P(ny,...,ng) contains a full line or a plane,
but does not contain IR®. In these (rare) cases, our
algorithm computes a set of r vectors np, ...n,.
However, the resulting BM-cone is empty.

Swhen ﬂ"fn:l H(n,,) is empty, at least one of the triangle
associated to the bounding-volume is moving forwards, what-
ever the object’s motion.



In  order to
P(ny,...,ng) =

following lemma:

practically  determine  when
IR®, our algorithm uses the

Lemma 2. P(ny,...
if (£1,0,0),
P(ny,...,ng).

,n) = IR® if and only
(0,£1,0) and (0,0,4£1) are in

Proof. Leti=(1,0,0),j=(0,1,0) and k = (0,0, 1).
Assume =+i, +j and +k are in P(n1,...,ng), and let
X = z;i+x;j+zik. Assume for example that z; > 0,
xzj < 0and z; > 0. Then x = z;i+ |z;|(—]) + zik.
Since i, —j and k are in P(ny,...,ng), x is also a
positive linear combination of ny, ...ny. The seven
other sign combinations are similar. O

One final lemma is used by our algorithm to search
for vectors ny, ...n, satisfying condition (5):

Lemma 3. Ifn,, € P(ny,..
BM, c N _, H(n,,).

., n), 1< m <k, then

Proof. Let x denote a point in BM,,, then x.n,,, < 0,
1<m << r. Forany 1 < m < k, since n,, is a

positive linear combination of ny, ...n,, and since
the dot product is bilinear, x.n,,, < 0. O
Since
(nm ep(ﬁlv"'vﬁr)al gmgk)@
(P(ny,...,n,.) C P(ny,...,n.)) (10)

Lemma 3 indicates that a way to compute the
BM-cone is to find a positive cone bounding
P(ni,...,n,). In order to BM-cull the bounding-
volume as often as possible, the r vectors ny, ...n,
are chosen so as to minimize the difference between
the BM-cone BM,, and ﬂ’;zl H(n,,).

Thus, the positive cone P(ny, ..., n,) should be the
tightest positive cone bounding P(ny,...,ng).

5.2 The algorithm

The interest in using positive cones representations
of vectors sets is that they provide a way to measure
the difference between BM, and ﬂ:mzl H(n,): in
our algorithm, this difference is measured by com-
puting BM-vectors’ distances to P(ny,...,ng).

Precisely, we use Wilhelmsen’s algorithm[17] to com-
pute the projections nj = W(ny), ...n} = W(n,) of
the BM-vectors on P(ny,...,ng). The required dis-
tances are simply dy = ||[f; —nf||, ...d, = ||n,.—nf]|.
Especially, Wilhelmsen’s algorithm allows to know
that a point belongs to a positive cone when the dis-

tance between the point and its projection is zero.

The algorithm building a BM-cone can now be de-
scribed:

1. Preliminary test Compute W(%i), W(Lj)
and W(£k). If every point projects on him-
self, then return. No non-empty BM-cone can
be built. Else, go to step 2.

2. Minimal subset computation Use Wilhelm-
sen’s algorithm to repeatedly remove vectors
which are linearly dependent of the others and
obtain a minimal subset v;,, ...v; % If t is
smaller than r,,,., then return the minimal sub-

set as the set of BM-vectors. Else, go to step 3.

3. BM-cone initialization Compute the mini-
mal vectors mean m = %Z;Zl v;;. Randomly
pick Up 7y,qe vectors 0y, ... 0, from the min-
imal subset until m is in P(0y, ..., 0, ) ("ma
should be greater than 3). Push the r,., vec-
tors outside P(v;,, ..., v;,) (te in the directions
fli — m)

4. BM-cone refinement Progressively refine the
BM-cone thanks to a simulated annealing
algorithm[10]. Briefly, BM-vectors are slightly
modified step after step. Modifications are valid
if the inclusion constraint (5) holds and if the in-
crease in the distances dy, ...d, _ ins’t greater
than a predetermined ratio. Wilhelmsen’s algo-
rithm is used to check the inclusion constraint
(through Lemma 3) and to compute the dis-
tances.

6 Continuous culling

For now, the method only depends on relative veloci-
ties at a given instant. While this is valid for discrete
collision detection methods, which detect objects in-
terpenetrations at successive instants, this may not
be suitable for continuous collision detection meth-
ods, which use the objects’ motions between these
instants to compute collision times (see for example
[1, 2, 11, 15]). For these methods, the relative motion
over a time interval may be general, and a triangle
moving backwards at the beginning of the time in-
terval may not do so during the whole time interval.
However, the culling tests can be simply extended
using interval arithmetic[14].

Essentially, interval arithmetic allows to bound func-
tions ranges over intervals. Precisely, for any given
function f : R — IR, an inclusion function f IR —
IR is associated to f, such as:

tel= f(t)e f(I) (11)

for any interval I. Thus, the dot products in the
culling test (6) yield interval results:

S

('sz.flm S [ls,mauS,Tﬂ/] (12)

6For a large-scale implementation, however, we suggest to
adapt a convex hull algorithm.



and a bounding-volume is culled when u,,, < 0,
1<s<t,1<m<r.

7 Results

The method has been implemented and added to
CONTACT Toolkit, our simulation system|[11, 12,
13]. Preliminary experiments have been conducted
with industrial data (two instances of the door in
Figure 1, 3530 triangles). One test constituted the
hard-case for any collision detection method: a mo-
bile object comes in close-proximity with a static
object and goes through different contact configu-
rations (transient and permanent contacts). The ob-
ject’s motions were recorded and replayed without
and with BM-culling. For the tests, r,q.: was set
to 5 and the BM-cones were built using the bottom-
up method. Table 1 reports the resulting numbers
of BV/BV overlap tests, edge/edge, vertex/face and
face/vertex tests in each case”, and shows that BM-
culling allows to reduce significantly the number of
all kinds of tests, and results in an important speed-

up.

Without BM-culling | With BM-culling
BV/BV Tests 4.837.443 3.514.144
E/E Tests 3.572.298 1.622.297
V/F Tests 1.170.412 528.195
F/V Tests 1.169.060 528.553
Total time 15.46 sec. 11.85 sec.

Table 1: BM-culling allows to significantly reduce
the number of bounding-volume/bounding-volume (BV/BV),
edge/edge (EE), vertex/face (VF) and face/vertex (FV) tests,

which results in an important speed-up.

8 Conclusion

This paper has described a backward-motion culling
test that allows to detect in constant-time situa-
tions where every triangle associated to a bounding-
volume is moving backwards, and thus cull this
bounding-volume during the BVHs traversal. This
test is based upon the addition of some geometri-
cal information in the bounding-volumes. An algo-
rithm able to compute this geometrical information
has been described. The method has been imple-
mented and the conducted experiments suggest that
the method allows to significantly speed up the col-
lision detection, especially in close proximity situa-
tions.

7Since our simulation system uses a continuous collision
detection method, these are the only contact types that can
occur.

Acknowledgments

The authors would like to thank Renault for provid-
ing the car model. The model parts are (©Renault.
Tangui Morvan, especially, has to be thanked for cod-
ing an inventor parser able to load the provided mod-
els. This research was funded by the French Ministry
of Research through an AMX grant and the RNTL
PERF-RV project.

References

[1] S. A. Cameron. Collision detection by four-dimensional in-
tersection testing. IEEE Trans. Robotics and Automation. 6,
3 (June 1990), pp 291-302.

[2] J. F. Canny. Collision detection for moving polyhedra. IEEE
Trans. Patt. Anal. Mach. Intell. 8,2 (March 1986), pp 200-
209.

[3] J. Cohen, M. Lin, D. Manocha and M. Ponamgi. I-COLLIDE:
an interactive and exact collision detection system for large-
scale environments. In Proceedings of ACM Interactive 3D
Graphics Conference, ACM, Monterey, CA, 1995, pp. 189-196.

[4] S. Gottschalk, M. C. Lin, and D. Manocha. OBB-Tree: A
Hierarchical Structure for Rapid Interference Detection. In
SIGGRAPH 96 Conference Proceedings, Annual Conference
Series. ACM SIGGRAPH, Addison Wesley, August 1996.

[5] P. M. Hubbard. Collision detection for interactive graphics
applications. Ph.D. Thesis, April 1995.

[6] J.T. Klosowski, M. Held, J.S.B. Mitchell, H. Sowizral, K.
Zikan. Efficient Collision Detection Using bounding-volume
Hierarchies of k-DOPs. IEEE Transactions on Visualization
and Computer Graphics, March 1998, Volume 4, Number 1.

[7] S. Kumar, D. Manocha, B. Garett and M. Lin. Hierarchical
back-face computation. Computer and Graphics, vol. 9, no.
5, pp. 681-692. Special Issue on Visibility, 1999.

[8] M. C. Lin, A. Gregory, S. Ehmann, S. Gottschalk, and R.
Taylor. Contact Determination for Real-Time Haptic Inter-
action in 3D Modeling, Editing and Painting. Proc. 1999
Workshop for PhanTom User Group.

[9] B. Mirtich. Impulse-based dynamic simulation of rigid body
systems. PhD Thesis. Fall 1996.

[10] W. H. Press, S. A. Teukolsky, W. T. Vetterling and B. R. Flan-
nery. Numerical Recipes in C: The Art of Scientific Comput-
ing. Cambridge University Press, Cambridge, second edition,
1992.

[11] S. Redon, A. Kheddar and S. Coquillart. An Algebraic Solu-
tion to the Problem of Collision Detection for Rigid Poly-
hedral Objects. In Proceedings of IEEE International Confer-
ence on Robotics and Automation, pp 3733-3738, April 2000.

[12] S. Redon, A. Kheddar and S. Coquillart. Gauss’ least con-
straint principle and rigid body simulations. In proceedings
of IEEE International Conference on Robotics and Automa-
tion, may 2002.

[13] S. Redon. A. Kheddar and S. Coquillart. Fast continuous col-
lision detection between rigid bodies. In Proceedings of Eu-
rographics, September 2002.

[14] J. Snyder. Interval analysis for Computer Graphics. Com-
puter Graphics, 26(2),pages 121-130, July 1992.

[15] J. Snyder, A. Woodbury, K. Fleischer, B. Currin, and A. Barr,
Interval Methods for Multi-point Collisions between Time-
Dependent Curved Surfaces. Computer Graphics, 27(2), pp.
321-334, Aug. 1993.

[16] G. Vanecek. Back-Face Culling Applied to Collision Detec-
tion of Polyhedra. Journal of Visualization and Computer An-
imation, Vol.5, no.1, pp.55-63, 1994.

[17] D. R. Wilhelmsen. A Nearest Point Algorithm for Convex
Polyhedral Cones and Applications to Positive Linear Approx-
imations. Mathematics of computation, 30, pp 48-57, 1976.



