Stéphane Redon
email: stephane.redon@inria.fr

Abderrahmane Kheddar
email: kheddar@iup.univ-evry.fr

Sabine Coquillart
email: sabine.coquillart]@inria.fr

Hierarchical Back-Face Culling for Collision Detection

 suggested to apply a variant of back-face culling to speed-up collision detection between polyhedral objects. However, Vanecek's method is linear in the number of faces in the object, which is unpractical for large models. This paper suggests to add some geometrical information to hierarchies of bounding volumes, typically used in collision detection, and perform conservative back-face culling at the bounding-volume level in constant time. The method described in this paper can be applied to complement any kind of bounding-volumes hierarchy and allows a trade-off between memory and speed. Preliminary experimental results suggest that the method allows a significant speed-up, especially in close proximity situations.

Introduction

Collision detection (CD) is still a fundamental problem in numerous domains. Some typical examples are computer graphics (physically-based modeling, animation), robotics (path-planning, collision avoidance), industrial applications (virtual prototyping, assembly tests) and video games. Especially, haptics research has generated the need for algorithms able to achieve kilohertz rates.

A few years ago, Vanecek [START_REF] Vanecek | Back-Face Culling Applied to Collision Detection of Polyhedra[END_REF] suggested to apply a variant of back-face culling (BFC) to speed-up collision detection between polyhedral objects. The method consists in culling faces which are moving backwards, relatively to the other objects. Since it is insensitive to objects positions and orientations, the method is especially efficient in close-proximity configurations (a peg in a hole, for example). To our knowledge, this method is the only one offering such characteristics for general polyhedral objects1,2 .

Vanecek's method, however, performs back-face culling at the face level. Consequently, the algorithm is linear in the number of faces in the object, which is unpractical for large models. This paper suggests to add some geometrical information to hierarchies of bounding volumes (BVs), typically used in collision detection, and perform conservative back-face culling at the bounding-volume level. Precisely, this geometrical information is used to perform a constant-time culling test which detects most situations where every triangle associated to a bounding-volume is moving backwards, ie situations where the boundingvolume hierarchies need not be further descended, even when the BVs are overlapping.

The method described in this paper can be applied to complement any kind of bounding-volumes hierarchy, and doesn't require a separate hierarchy. It allows a trade-off between the memory overhead due to the addition of geometrical information in the bounding-volumes and the provided speed-up. Moreover, it can be applied to discrete and continuous collision detection.

Background

Back-face culling for collision detection

Let's briefly recall Vanecek's results. More details can be found in the original paper [START_REF] Vanecek | Back-Face Culling Applied to Collision Detection of Polyhedra[END_REF]. Let's consider a point p belonging to a rigid body. Let r denote the body's center of gravity and let ṙ and ω denote respectively the object's translational and rotational velocities at a given time. Then, the instantaneous velocity of p is ṗ = ṙ + ω ∧ (p -r). Now if i and j denote two objects, then the velocity of p from object i relatively to object j is:

ṗij = ṗi -ṗj = a ij + p ∧ (ω j -ω i) (1)
where a ij = ṙiṙjω i ∧ r i + ω j ∧ r j . Relative velocities are linearly related. If p 1 ,. . . p t denote some motions to estimate lower bounds on time of impacts, they don't use the motion direction, as in Vanecek [START_REF] Vanecek | Back-Face Culling Applied to Collision Detection of Polyhedra[END_REF].

points from object i, then

p = t s=1 α s p s ⇒ ṗij = t s=1 α s ṗs ij (2)
for any (α 1 , ..., α t) ∈ IR t . Now, if p denotes a point from face m in object i, and n m denotes the outward normal to the face, then p is moving backwards relatively to object j if and only if ṗij .n m < 0

Relation (2) and the linear property of the dot product leads to the following convex property:

(ṗs ij .n m < 0, 1 s t) ⇒ (ṗij .n m < 0) (4)
for any point p in the convex hull of p 1 ,. . . p t . In Vanecek [START_REF] Vanecek | Back-Face Culling Applied to Collision Detection of Polyhedra[END_REF], this property is used to cull faces in two steps3 :

Compute extremal vertices' velocities

An enclosing convex polygon is associated to each face. The velocities of the vertices p 1 ,. . . p t of the enclosing polygon are computed from equation (1).

Perform culling tests

For each vertex p s of the enclosing convex polygon, a culling test is performed as in equation [START_REF] Cohen | I-COLLIDE: an interactive and exact collision detection system for largescale environments[END_REF]. If every vertex p s is culled, then the face is culled.

Bounding-Volumes Hierarchies

Using bounding-volumes hierarchies (BVH) is a common strategy in collision detection and other domains (rendering for example). Briefly, overlap tests between bounding-volumes are used to cull many irrelevant elementary tests between objects parts. Let's assume, for example, that each of the two objects currently processed by the CD algorithm is bounded by a sphere. If the spheres don't overlap, then there can't be any collision between the objects. If the spheres do overlap, however, then there may be a collision between the objects. In this case, the spheres are replaced by unions of smaller spheres and overlap tests between spheres are recursively performed. When spheres sizes are smaller than a pre-determined threshold, exact tests are performed between the object geometries (for example, triangle/triangle collision tests, in the case of triangle soups). For rigid objects, bounding-volumes hierarchies are usually computed offline. Some typical examples of BVs are spheres [START_REF] Hubbard | Collision detection for interactive graphics applications[END_REF], axis-aligned bouding boxes (AABBs), oriented bounding boxes [START_REF] Gottschalk | OBB-Tree: A Hierarchical Structure for Rapid Interference Detection[END_REF] (OBBs), and k-dops [START_REF] Klosowski | Efficient Collision Detection Using bounding-volume Hierarchies of k-DOPs[END_REF].

In order to include the backward-motion (BM) culling test in the BVHs traversal algorithm, this paper suggests to extend the BV/BV overlap test in the following way:

1. If one of the two BVs has already been BMculled (checked through a flag set in step 3), return, else go to 2.

2. Perform the BV/BV overlap test. If the BVs don't overlap, return, else go to 3.

Perform the BM culling test for each BV in turn.

If one BV is BM-culled, mark it and return.

For clarity, a simple definition will be useful in the remaining of the paper: in the following, the triangles associated to any particular node of a boundingvolumes hierarchy are the ones found in its descendent leaf-nodes.

Method Overview

In order to get a constant-time backward-motion culling test for a bounding-volume, we adapt both steps from Section 2.1. Precisely, whatever the number k of triangles associated to the bounding volume, the following algorithm is used:

Compute characteristic points' velocities

Instead of computing the velocities of the 3k vertices defining the k triangles, we compute the velocities of a fixed number of characteristic points c 1 , . . . c t whose convex hull contains the bounding-volume. For AABBs or OBBs, for example, the corners may by used (t = 8).

From the linear property (2) of relative velocities, the characteristic points' velocities approximate the triangles velocities. Since the number of characteristic points is fixed for a given bounding-volume type, the velocities computation is performed in constant-time, whatever the number of triangles associated to the bounding-volume.

Perform conservative culling tests

From the convex property (4), the characteristic points' velocities can be used to cull a triangle associated to a bounding-volume. However, culling all the triangles would still be linear in k.

BM v = r m=1 H(ñ m) ⊂ k m=1 H(n m) (5
)
where r is smaller than a user-defined constant r max . BM v is the polyhedral backward-motion cone (BMcone) added to the bounding-volume. Thus, the bounding-volume v is BM-culled when

ċs ij ∈ BM v , 1 s t (6)
r is the size of the BM-cone. Since t and r max are fixed, the bounding-volume culling test is performed in constant time.

Since constraint [START_REF] Hubbard | Collision detection for interactive graphics applications[END_REF] implies

ċs ij ∈ r m=1 H(ñ m) ⇒ ċs ij ∈ k m=1 H(n m) (7)
for 1 s t, all triangles associated to the bounding-volume are necessarily moving backwards when equation (6) culls the bounding-volume. Yet, this culling test is only conservative: it may fail even though every triangle associated to the boundingvolume is moving backwards.

The reasons for this should be clear. First, triangles velocities are approximated through those of a few characteristic points. And second, triangles normals are approximated through the backwardmotion cone. However, as the bounding-volumes hierarchy is being descended, the bounding volumes fit the object geometry better and better. Thus, these approximations are more and more precise and the backward-motion cone allows to cull more and more backward-moving triangles. Figure 1 depicts this phenomenon: as the hierarchy is descended, the BMculling tests allows to cull more and more bounding volumes (and thus more and more groups of associated triangles). 4 Building enhanced bounding-volumes hierarchies

Building hierarchies of BVs

Algorithms which compute bounding-volumes hierarchies can generally be split into two categories: top-down and bottom-up approaches. In the case of top-down approaches, a rule is used to split the triangles list for a given node into two sublists. Typical splitting rules include Min Sum, Min Max, Splatter and Longest Side [START_REF] Klosowski | Efficient Collision Detection Using bounding-volume Hierarchies of k-DOPs[END_REF]. Note that the choice of the splitting rule is generally independant of the choice of the bounding-volume.

In order to take advantage of BM-culling, a natural idea consists in deriving a splitting rule based upon the normals repartition. Thus, denoting n 1 , ... n k the triangles normals associated to the current bouding-volume, the normals mean µ = 1 k k i=1 n i is computed, as well as a covariance matrix C:

C lm = 1 k k i=1 (n i [l] -µ[l])(n i [m] -µ[m]) (8)
where 1 l, m 3, n i [l] and µ[l] denote vectors coordinates, and C lm denote the matrix components. This covariance matrix is diagonalized and the triangles are distributed into two sublists according to their normal projection along the greatest variance direction.

However, this idea misses the point of collision detection since the method is unable to compute tight bounding-volumes hierarchies. Instead, we suggest to use a traditional splitting rule (the MinMax rule for example). It turns out that, as the hierarchy is being descended, the local curvature is lower and lower and the normals vary less and less, enabling efficient BM-culling. While some future work include the search of a mixed splitting rule, which would use triangle normals and positions 4 , traditional splitting rules proved to be sufficient to yield significant speedups (see Section 7).

Adding BM-cones

Adding BM-cones in bounding-volumes is independent of the kind of approach used to build the bounding-volumes hierarchy, and the addition itself can be performed top-down or bottom-up. In the top-down case, the BM-cones are computed from the triangles normals n 1 , . . . n k associated to the bounding-volumes. In the bottom-up case, the BMcones are recursively computed from those of the bounding-volumes child-nodes according to the following rules:

1. The BM-cones of leaf bounding-volumes are computed from the triangles normals.

2. If (and only if) all child-nodes have a BM-cone, the BM-cones of internal nodes are computed from the BM-vectors in all child-nodes.

Note that using a bottom-up approach still provides conservative tests. If BM v1 , . . . BM vc denote the BM-cones in the bounding-volume's child-nodes, then

BM v ⊂ c i=1 BM vi (9)
Whereas the top-down approach yields more precise results (and, thus, bouding-volumes are more often BM-culled), the bottom-up approach is typically much faster and is preferably used for large models.

Building the backward-motion cone

In this section, we describe an algorithm able to build a bounding-volume's BM-cone from a set of vectors n 1 , . . . n k . From the previous section, these vectors are triangles normals or BM-vectors of all child-nodes.

Preliminaries

We need the following definitions:

Definition (Positive cone). The positive cone

P(v 1 , . . . , v k) generated by k vectors v 1 , . . . v k in IR 3
is the set of positive linear combinations of these k vectors:

P(v 1 , . . . , v k) = k m=1 λ m v m , λ m 0, 1 m k Definition (Minimal subset). Let v 1 , . . . v k be k vectors in IR 3 .
In this paper, a minimal subset of this vectors is a smallest set of s vectors v i1 , . . . v it of these k vectors such as

P(v i1 , . . . , v it) = P(v 1 , . . . , v k).
In other words, a minimal subset is a smallest subset of vectors which generate the same positive cone.

The vectors in a minimal subset are on the convex hull of the positive cone.

The constraint on the backward-motion cone is the inclusion property [START_REF] Hubbard | Collision detection for interactive graphics applications[END_REF]. Consequently, we are interested in building the BM-cone only when k m=1 H(n m) is non-empty 5 . The following lemma indicates when the search for a BM-cone can be avoided:

Lemma 1. Assume P(n 1 , . . . , n k) = IR 3 , then k m=1 H(n m) is empty.
Proof. Assume there exists x ∈ IR 3 such as x.n m < 0, 1 m k (then x = 0). Since x ∈ P(n 1 , . . . , n k), there exists k positive values λ 1 , . . . λ k such as x = k m=1 λ m n m . Since x = 0, at least one of these values is strictly positive. However, ||x|| 2 = x.x = k m=1 λ m x.n m < 0. This is impossible.

Note that this lemma only allows to avoid the construction of most unuseful (empty) BM-cones. Sometimes n 1 , . . . n k may not generate IR 3 while k m=1 H(n m) is empty. This occurs for example when P(n 1 , . . . , n k) contains a full line or a plane, but does not contain IR 3 . In these (rare) cases, our algorithm computes a set of r vectors ñ1 , . . . ñr . However, the resulting BM-cone is empty.

In order to practically determine when P(n 1 , . . . , n k) = IR 3 , our algorithm uses the following lemma: Lemma 2. P(n 1 , . . . , n k) = IR 3 if and only if (±1, 0, 0), (0, ±1, 0) and (0, 0, ±1) are in P(n 1 , . . . , n k).

Proof. Let i = (1, 0, 0), j = (0, 1, 0) and k = (0, 0, 1). Assume ±i, ±j and ±k are in P(n 1 , . . . , n k), and let x = x i i+x j j+x k k. Assume for example that x i 0, x j < 0 and x k 0. Then x = x i i + |x j |(-j) + x k k. Since i, -j and k are in P(n 1 , . . . , n k), x is also a positive linear combination of n 1 , . . . n k . The seven other sign combinations are similar.

One final lemma is used by our algorithm to search for vectors ñ1 , . . . ñr satisfying condition (5):

Lemma 3. If n m ∈ P(ñ 1 , . . . , ñr), 1 m k, then BM v ⊂ k m=1 H(n m). Proof. Let x denote a point in BM v , then x.ñ m < 0, 1 m r.
For any 1 m k, since n m is a positive linear combination of ñ1 , . . . ñr , and since the dot product is bilinear, x.n m < 0. Since (n m ∈ P(ñ 1 , . . . , ñr), 1 m k) ⇔ (P(n 1 , . . . , n r) ⊂ P(ñ 1 , . . . , ñr)) [START_REF] Press | Numerical Recipes in C: The Art of Scientific Computing[END_REF] Lemma 3 indicates that a way to compute the BM-cone is to find a positive cone bounding P(n 1 , . . . , n r). In order to BM-cull the boundingvolume as often as possible, the r vectors ñ1 , . . . ñr are chosen so as to minimize the difference between the BM-cone BM v and k m=1 H(n m). Thus, the positive cone P(ñ 1 , . . . , ñr) should be the tightest positive cone bounding P(n 1 , . . . , n k).

The algorithm

The interest in using positive cones representations of vectors sets is that they provide a way to measure the difference between BM v and k m=1 H(n m): in our algorithm, this difference is measured by computing BM-vectors' distances to P(n 1 , . . . , n k).

Precisely, we use Wilhelmsen's algorithm [START_REF] Wilhelmsen | A Nearest Point Algorithm for Convex Polyhedral Cones and Applications to Positive Linear Approximations[END_REF] to compute the projections ñ * 1 = W(ñ 1), . . . ñ * r = W(ñ r) of the BM-vectors on P(n 1 , . . . , n k). The required distances are simply

d 1 = ||ñ 1 -ñ * 1 ||, . . . d r = ||ñ r -ñ * r ||.
Especially, Wilhelmsen's algorithm allows to know that a point belongs to a positive cone when the distance between the point and its projection is zero.

The algorithm building a BM-cone can now be described:

1. Preliminary test Compute W(±i), W(±j) and W(±k). If every point projects on himself, then return. No non-empty BM-cone can be built. Else, go to step 2.

Minimal subset computation

Use Wilhelmsen's algorithm to repeatedly remove vectors which are linearly dependent of the others and obtain a minimal subset v i1 , . . . v it6 . If t is smaller than r max , then return the minimal subset as the set of BM-vectors. Else, go to step 3.

BM-cone initialization

Compute the minimal vectors mean m = 1 t t j=1 v ij . Randomly pick up r max vectors ñ1 , . . . ñrmax from the minimal subset until m is in P(ñ 1 , . . . , ñrmax) (r max should be greater than 3). Push the r max vectors outside P(v i1 , . . . , v it) (ie in the directions ñi -m).

BM-cone refinement

Continuous culling

For now, the method only depends on relative velocities at a given instant. While this is valid for discrete collision detection methods, which detect objects interpenetrations at successive instants, this may not be suitable for continuous collision detection methods, which use the objects' motions between these instants to compute collision times (see for example [START_REF] Cameron | Collision detection by four-dimensional intersection testing[END_REF][START_REF] Canny | Collision detection for moving polyhedra[END_REF][START_REF] Redon | An Algebraic Solution to the Problem of Collision Detection for Rigid Polyhedral Objects[END_REF][START_REF] Snyder | Interval Methods for Multi-point Collisions between Time-Dependent Curved Surfaces[END_REF]). For these methods, the relative motion over a time interval may be general, and a triangle moving backwards at the beginning of the time interval may not do so during the whole time interval. However, the culling tests can be simply extended using interval arithmetic [START_REF] Snyder | Interval analysis for Computer Graphics[END_REF].

Essentially, interval arithmetic allows to bound functions ranges over intervals. Precisely, for any given function f : IR → IR, an inclusion function f : IIR → IIR is associated to f , such as:

t ∈ I ⇒ f (t) ∈ f (I) (11)
for any interval I. Thus, the dot products in the culling test (6) yield interval results:

ċs ij .ñ m ∈ [l s,m , u s,m] (12)
and a bounding-volume is culled when u s,m < 0, 1 s t, 1 m r.

Results

The method has been implemented and added to CONTACT Toolkit, our simulation system [START_REF] Redon | An Algebraic Solution to the Problem of Collision Detection for Rigid Polyhedral Objects[END_REF][START_REF] Redon | Gauss' least constraint principle and rigid body simulations[END_REF][START_REF] Redon | Fast continuous collision detection between rigid bodies[END_REF]. Preliminary experiments have been conducted with industrial data (two instances of the door in Figure 1, 3530 triangles). One test constituted the hard-case for any collision detection method: a mobile object comes in close-proximity with a static object and goes through different contact configurations (transient and permanent contacts). The object's motions were recorded and replayed without and with BM-culling. For the tests, r max was set to 5 and the BM-cones were built using the bottomup method.

Conclusion

This paper has described a backward-motion culling test that allows to detect in constant-time situations where every triangle associated to a boundingvolume is moving backwards, and thus cull this bounding-volume during the BVHs traversal. This test is based upon the addition of some geometrical information in the bounding-volumes. An algorithm able to compute this geometrical information has been described. The method has been implemented and the conducted experiments suggest that the method allows to significantly speed up the collision detection, especially in close proximity situations.

Figure 1 :

 1 Figure 1: Hierarchical BM-culling of a moving door. Faces moving forwards are shown filled. The door is translating away from the viewer (snapshots a, b and c are taken at the same time, though). As the hierarchy is descended, the BMculling tests allows to cull more and more bounding volumes (and thus more and more groups of associated triangles). Levels of the BVH: a=7, b=9 and c=11.

 Precisely, each characteristic point c s is tested against each precomputed vector ñm as in equation[START_REF] Cohen | I-COLLIDE: an interactive and exact collision detection system for largescale environments[END_REF]. The bounding-volume is culled if all of the t × r tests are successful. IR 3 , x.n m < 0} the open half-space defined by n m , then p from i is moving backwards from j if and only if ṗij ∈ H(n m). Using this notation, the constraint on the precomputed BM-vectors can be expressed simply: ñ1 , . . . ñr are chosen such as

	The precomputed vectors are chosen so as to pro-
	vide a constant-time conservative culling test. First,
	note that the elementary culling test (3) can be ex-
	pressed geometrically. Denoting H(n m) = {x ∈

Thus, we use a bounded number of precomputed backward-motion vectors (BMvectors) ñ1 , . . . ñr which suitably approximate the set of triangle normals.

 Progressively refine the BM-cone thanks to a simulated annealing algorithm[START_REF] Press | Numerical Recipes in C: The Art of Scientific Computing[END_REF]. Briefly, BM-vectors are slightly modified step after step. Modifications are valid if the inclusion constraint (5) holds and if the increase in the distances d 1 , . . . d rmax ins't greater than a predetermined ratio. Wilhelmsen's algorithm is used to check the inclusion constraint (through Lemma 3) and to compute the distances.

Table 1 :

 1 Table 1 reports the resulting numbers of BV/BV overlap tests, edge/edge, vertex/face and face/vertex tests in each case7 , and shows that BMculling allows to reduce significantly the number of all kinds of tests, and results in an important speedup. BM-culling allows to significantly reduce the number of bounding-volume/bounding-volume (BV/BV), edge/edge (EE), vertex/face (VF) and face/vertex (FV) tests, which results in an important speed-up.

		Without BM-culling	With BM-culling
	BV/BV Tests	4.837.443	3.514.144
	E/E Tests	3.572.298	1.622.297
	V/F Tests	1.170.412	528.195
	F/V Tests	1.169.060	528.553
	Total time	15.46 sec.	11.85 sec.

For convex objects, however, separating plane algorithms are somewhat insensitive to the objects positions and orientations, even in close-proximity situations. Also, the incoming constraint in Snyder et al.[START_REF] Snyder | Interval Methods for Multi-point Collisions between Time-Dependent Curved Surfaces[END_REF] can be seen as back-face culling applied to collision detection between parametric or implicit surfaces.

[START_REF] Canny | Collision detection for moving polyhedra[END_REF] While some time-scheduling methods[START_REF] Mirtich | Impulse-based dynamic simulation of rigid body systems[END_REF] use the objects

Note that, actually, the velocities computations and the culling tests are interleaved in order to return earlier when a face is moving forwards. Hovever, all faces still have to be tested.

For example, Kumar et al.[START_REF] Kumar | Hierarchical back-face computation[END_REF] describe a method to perform hierarchical back-face culling for rendering which computes clusters from both faces normals and positions.

when k m=1 H(nm) is empty, at least one of the triangle associated to the bounding-volume is moving forwards, whatever the object's motion.

For a large-scale implementation, however, we suggest to adapt a convex hull algorithm.

Since our simulation system uses a continuous collision detection method, these are the only contact types that can occur.

Acknowledgments

The authors would like to thank Renault for providing the car model. The model parts are c Renault. Tangui Morvan, especially, has to be thanked for coding an inventor parser able to load the provided models. This research was funded by the French Ministry of Research through an AMX grant and the RNTL PERF-RV project.