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Abstract

A new approach to the collision detection problem
was introduced in [8], that allows to detect collisions
continuously and efficiently between polyhedral primi-
tives (vertices, edges and faces). This paper extends
the results of [8] to continuously detect collisions be-
tween pairs of complex polyhedral objects. A C++ li-
brary, CONTACT, has been developped. The tests of
this library, reported here, seem to show that this ap-
proach is especially suited for precise real-time inter-
action in virtual environments.

1 Introduction

Collision detection (CD) has become an important
research topic in many fields. In computer graphics,
virtual reality, robotics, or engineering, efficient algo-
rithms are needed to avoid the CD problem to become
a major bottleneck of the applications developped. In
virtual reality, especially, collision detection is needed
in order to prevent objects from interpenetrating each
other, and give them a physically correct behavior.

A recent survey can be found in Lin et al.[5]. Colli-
sion detection techniques are traditionnally split into
two categories. Whereas discrete techniques detect
interpenetrations between objects at successive dis-
crete instants, continuous techniques use the object
motion to compute the time of first collision. Discrete
techniques are generally faster than continuous ones,
but require backtracking methods to find the time of
first collision'. These backtracking methods are diffi-
cult to implement as soon as the objects are complex
(non-convex objects for example). Redon et al.[8] sug-
gest to replace the complex (or unknown) object mo-
tion between successive instants (eg over successive
timesteps) by an arbitrary rigid motion. This motion
is general enough to interpolate any two successive
positions, and simple enough to efficiently and contin-
uously detect collisions between primitives (vertices,
edges and faces): the time of first collision is a root of
a polynomial whose degree is three or less. Since col-

LFor example, the time of first collision is required for ana-
lytical rigid body simulation methods.

lision detection is efficient, the time interval between
successive positions can be small and the difference
between the real object motion and the arbitrary one
tends to be negligible?.

Whereas detecting collisions between primitives is
theoretically sufficient to detect collisions between
complete polyhedral objects?, it is generally imprac-
tical to test for all possible pairs of elementary con-
tacts (edge/edge or vertex/face). In order to elimi-
nate quickly irrelevant pairs, many CD methods use
bounding-volume hierarchies (BVHs). This paper
adapts the specific case of sphere-trees to fit in the
continuous approach given in [8], and describes a com-
plete CD method that can efficiently detect collisions
between pairs of complex rigid polyhedral objects.

Section 2 briefly recalls the results of Redon et
al.[8]. Section 3 introduces the use of sphere-trees in
a continuous CD scheme. Section 4 describes various
optimizations. Especially we introduce a general op-
timization technique that can be used with any BVH
method. Section 5 presents two applications that were
designed to test the validity of the approach, while
Section 6 concludes the paper.

2 Elementary collision detection

For simplicity, let’s assume that the time inter-
val between two successive positions is [0,1] (eg the
timestep size is 1). Finding an arbitrary in-between
motion amounts to interpolate two successive rigid
object positions. Using screwings?, [8] suggested to
define a class of in-between motions by choosing two

2In a rigid body simulator, for example, the successive posi-
tions are computed by the constraints solver (one computation
per frame), and the object’s motions are replaced by arbitrary
ones between these positions only.

3For rigid polyhedral objects, only three (non exclusive) con-
tact types can occur for two rigid polyhedral objects A and B.
Either an edge of A contacts an edge of B, or a vertex of A
contacts a face of B, or a vertex of B contacts a face of A.

4A screwing V(w,s,0,i) is a composition of a rotation
around the axis (O, @) and a translation along the same axis.
The rotation angle is w, and the translation amount is s. It is
well known that if Ag describes an object at time 0 and A; de-
scribes the same object at time 1, then there exists a screwing
V(w,s,0,u) such as V(Ap) = A;.



functions a,b: R? x [0,1] — R such as, for every pair

(w, s) in R2, the functions:

o [0,1] - R
“f] B w =alw,s,t)

b [0,1] - R
Y s =b(w, s, t)

are C!, increasing, and such as a, s(0) = b, 5(0) = 0
and a, s(1) =w and b, (1) = s.

For a given screwing, this defines a class of continu-
ous in-between screwing-based motions, whose general
form is:

. [0,1] x R - IR?
M { (taA) = A= V(aw,s(t)a bw,s(t): O,ﬁ)(A)

where A is the object at time 0 and A’ the object
during the in-between motion®.

It is chosen to consider only the relative motion of
two objects®, so as to make the CD equation simpler
by solving it in the screwing frame, in which the ro-
tation axis is the third one. Thus, in the edge/edge
problem, the second edge is always static and, in the
vertex/face problem, the face is always static (in the
face/vertex problem, the opposite relative motion is
considered, so that the face is also static).

Two particular functions were shown to solve ef-
ficiently both elementary problems. These functions
are:

{ a(w, s,t) = wt
b(w, s,1) = sf(t)

where f has the following form:

t ifw=0
f(t) = tan(wt/2
(tari(uz/Z) else

Using these functions, it can indeed be shown that
both problems lead to a polynomial CD equation
whose degree is three or less. This polynomial equa-
tion is solved explicitly, and very quickly, using Car-

dano’s fomulas.

5It is important to notice that the two functions a and b
depend only on w and s, the screwing parameters, and not on
the object characteristics. Thanks to this, all of the object
elements (vertices, edges and faces) have the same rigid motion.

6This can be a problem for multiple moving objects : if A has
a particular screwing-based motion relatively to B, and another
one relatively to C, then A has apparently two different motions
in the global frame, leading to incoherent configurations. We
believe that this problem can be avoided, however, by reducing
the timestep size, as it has been shown in test applications. For
exactness care, other functions a and b than the one given in

this paper are currently under research.

3 Bounding Volumes Hierarchies

To detect collisions efficiently between two objects,
it isn’t enough to be able to solve efficiently the CD
equation for pairs of primitives. Indeed, if v4 (resp.
vp), ea (resp. egp), and fa (resp. fg) denote the
number of vertices, edges and faces of object A (resp.
B), then the total computational cost of detecting a
collision between A and B would be proportional to
vafpt+vsfatesep. A method is thus needed to elim-
inate quickly irrelevant pairs. Many collision detection
algorithms use bounding-volume hierarchies (BVH).

The idea behind BVHs is quite simple: each rigid
object is associated to a hierarchy of bounding vol-
umes, organized in a tree[5]. Using BVHs is straight-
forward. If two rigid objects are respectiveley asso-
ciated to two bounding volumes hierarchies, then a
simple recursive function simultaneously descending
both trees may eliminate many elementary CD tests,
by detecting collisions between smaller and smaller
BVs([5]). Note that in the case of a continuous CD
technique, collisions must be detected between mov-
ing BVHs, and not just interpenetrations at fixed mo-
ments. Of course, over a timestep, the BVHs have the
same motion M than the primitives they contain.
3.1 Sphere-trees

Various examples of bounding volumes have been
studied in the literature, most of them for discrete
collision detection. Well known examples are spheres
[7, 3], axis-aligned bounding boxes, k-DOPs [4], spher-
ical shells [11], or oriented bounding boxes [2].

It was chosen to use spheres because of their adapt-
ability to our continuous case. Two spheres intersect
if and only if the distance d between their center is
less than the sum of their radius. Let ¢4 and cg de-
note the centers, and r4 and rg denote the radii. If
the first sphere is moving according to M, while the
second one is static, then the problem is to find the
first time in [0, 1] for which :

d(M(t,ca),cp)? < (ra+rp)” (1)

However, equation (1) leads to a polynomial equation
whose degree is four or less. Fortunately, it is not
necessary to know when the spheres collide, during
the timestep. While the exact collision time could be a
helpful information, in order to speed up the detection
(see Section 4), it is indeed enough to know that they
collide, since they are just bounding volumes. Thus, it
is enough to look for the roots of the derivative, whose
degree is three or less. If no collision is detected, the
function returns any value meaning that there is no
collision during the timestep (for example, —1, since
a valid collision time must be in [0, 1]).



Figure 1: The teapot is half inside the cube’s large leaf
sphere, resulting in many irrelevant elementary tests. To
avoid this situation, all the leaf spheres in a scene have to
be approximately the same size.

Various methods exist to build sphere-trees[3].
We use an approach similar to that proposed by
Quinlan[7] and detailed in Ruspini[9]. In this bottom-
up approach, an object is first covered by small
spheres, which will be the leaf-spheres of the final tree.
All of these small spheres have the same user-defined
size, which isn’t a priori related to the size of the prim-
itives. Thus, a leaf-sphere may contain a few vertices,
(eventually parts of) edges, and (eventually parts of)
faces. Conversely, an edge or a face may be covered
by an arbitrary number of spheres. One tradition-
nal rule, however, is that the leaf-spheres contain only
a few primitives (or parts of primitives). Once the
leaf-spheres are created, a divide-and-conquer strat-
egy creates the interior nodes (which are spheres too)
to build a complete tree[9].

4 Speeding up the detection
4.1 Caching vertices coordinates

Each time an elementary CD occurs, the coordi-
nates of the vertices characterizing the primitives (ex-
tremities of the edges and vertices of the faces) have
to be given in the screwing frame. Unfortunately,
some vertices can belong to many primitives, and some
primitives can be located in many leaf spheres. More-
over, a leaf sphere associated to an object A can be
tested with many leaf spheres associated to another
object B. In order to prevent the re-calculation of the
coordinates each time a leaf sphere is re-tested, these
coordinates are cached.

Figure 2: Problematic situation without labels. Numer-
ous colliding leaf spheres will result in testing many times
the same pair of faces.

4.2 Bounding the sphere’s trajectory

In the general case of spheres collision detection
(rotation and translation), where the degree of the
polynomial equation is three, it is possible to test,
first, for a collision between a volume bounding the
first sphere’s trajectory and the second sphere. This
bounding volume is a cylinder whose axis is the z-axis
of the screwing frame. Most of the time, this allows
to avoid the resolution of the general equation. More-
over, in specific cases (pure rotations and pure trans-
lations), it is possible to achieve the tests without any
division.

4.3 Passing the
collision

Let’s consider a collision detection between two ob-
jects. Since we are designing a continuous CD method,
we are only interested in the first collision time in [0, 1]
(and the primitives colliding at that time). Thus, dur-
ing the CD process between the two objects (eg during
both trees traversal), we maintain a current time-of-
first-collision t.. At the beginning of the CD process,
t. has any value meaning that no collision has been
detected (for example, t, = —1). Then, whenever a
collision is detected between two primitives, t. is up-
dated if the new collision occurs in [0, t.] (if t, = —1,
then it is automatically set to the new collision time).
Thus we can speed up the detection by passing t. to
the CD functions (eg the sphere/sphere, vertex/face
and egdge/edge CD functions), so as to check for col-
lisions in [0, t.] only instead of [0, 1] . This is especially

current time-of-first-



Figure 3: Test object for the label optimization technique.
Object A comes close to object B and then goes far again.

useful in the sphere/sphere case, since many elemen-
tary tests can be avoided.
4.4 Labelling the spheres

Finally, an optimization technique proved to be
most useful in some applications, and is based on a
simple observation: the coherence in the BVHs. In a
scene composed of mobile and static objects, indeed,
a simple rule governs the size of the leaf spheres: they
must be approximately the same size, for all objects.
It is not enough that they contain only a few primi-
tives, since a leaf sphere of an object A can contain
many leaf spheres of an object B, as in Figure 1. In
the case depicted in this figure, A is a simple cube,
whose sphere-tree’s depth is one, and B is a teapot,
whose sphere-tree’s depth is five (only the leaf spheres
are drawn). Since the teapot is half entered into the
sphere associated to the cube, many leaf spheres have
to be tested, thus loosing the benefit of using a deep
tree to speed up the collision detection.

This rule can lead, however, to many leaf spheres
covering a single face. If two such faces, each one be-
longing to a different object, come close to each other
(Figure 2), then the BVH algorithm will test the two
faces as many times as there exists colliding pairs of
leaf spheres. A way to avoid this is, for a given object,
to add a label to the nodes of a BVH. Two leaf nodes
that contain the same set of primitives have the same
label (an integer for example). For the internal nodes,
a simple rule is added. If all of the children of a node
have the same label, then the same label is given to
this node. If not, then a new label is created. When
two nodes are processed, it is first checked whether the
pair formed by their labels has already been tested. If
it has, then the node-testing function returns. If not,
the node-testing process continues. When two leaf

nodes have been completely tested (that is, each possi-
ble elementary test has occured), then the pair formed
by their labels is marked as tested. A hashtable is used
to store the tested pairs of labels. To complete this
technique, three more hashtables are used to store the
tested pairs of primitives (one for edge/edge tests, one
for vertex/face tests, and one for face/vertex tests).
This optimization has proved to reduce significantly
the total computation in cases similar to the one de-
picted in Figure 2. A simple test is reported in Table 1.
In this test, two objects identical to the one of Figure
3 are placed in a scene. Object B is static, while ob-
ject A is mobile and follows a recorded path. At the
beginning of the path, the mobile object is far from
the static one. It then comes very close to the static
one, and finally goes far from it. Table 1 reports the
total number of sphere/sphere (SS), edge/edge (EE),
vertex/face (VF) and face/vertex (FV) tests along the
whole path according to the hashtables used. It shows
that in this example case, using the sphere/sphere
hashtable alone allows to eliminate 17% of the CD
tests and that using the four hashtables alltogether
allows to eliminate more than 20% of the CD tests.

No hasht. SS EE-VF-FV | Four hasht.
SS Tests 1.213.596 1.017.112 1.213.596 1.017.112
EE Tests 87.284 61.916 20.717 20.717
VF Tests 3.963 3.155 2.367 2.367
FV Tests 3.858 3.098 2.317 2.317
Total 1.308.701 1.085.281 1.238.997 1.042.513

Table 1: The label technique and the hashtables allows to
reduce the total number of tests.

One final advantage of the label technique is that
it can be used to factor the BVH associated to the
object and thus reduce the total amount of memory
required to store the tree. Note that this method only
exploits the fact that the optimization structure is a
tree, and does not depend on the nature of the bound-
ing volumes.

5 Discussion

The algorithms described in this paper have been
implemented in a portable C++ library: CONTACT
(CONTinuous and Accurate Collision Tracking). This
section describes two test applications designed to
show the validity of the approach. The applications
are portable, since the graphics are done with OpenGl,
and have been tested on PCs and SGIs. Thanks to its
stereo capability, the latter system permitted to check
more easily the accuracy and the correctness of the
collision detection.



Figure 4: Object manipulation. In a, the objects contact
but do not interpenetrate, as they would have if a discrete
CD method had been used (b). The user can navigate the
scene to check the collision detection (c).

5.1 Object manipulation

This first test was designed to show the comfort
and the realism obtained thanks to a real-time contin-
uous CD method. It consisted in a simple application
in which the scene is composed of two objects: a mo-
bile object, manipulated by the user, and a static one.
The object manipulation was done with the keyboard
on the PC and with a 6-degree-of-freedom device on
the SGIs. Since the goal of the application was to
study the CD efficiency and not the collision response
problem, the mobile object was stopped whenever it
contacted the static one. The user had then the op-
portunity to navigate the scene, in order to check that
the objects contacted but did not interpenetrate. He
or she had also the possibility to display the inten-
tional final object position, that is, the position the
object would have had if no collision had occured, or
if a discrete CD method had been used.

Figure 4 shows a mobile teapot that has just con-
tacted a static bunny. Part ¢ of the figure is a close-up
of the scene seen in part a, made by navigating in the
scene, after the detected collision stopped the teapot
motion. Part b of the figure shows the intentional fi-
nal position of the teapot. Both objects are turned
transparent, so as to better see the interpenetration
that would have occured if a discrete CD method had
been used.

Figure 5 shows a problematic situation for a dis-
crete CD method, that doesn’t occur in a continuous
scheme. In cases a and b, the bunny is both trans-
lating, from left to right (the transparent bunnies are
the initial and final positions of the plain one), and
slightly rotating, which results in a complex motion.
Since this motion occurs during a single timestep, a
discrete CD method could detect a collision in case a

Figure 5: A problematic situation for a discrete CD
method. Whereas such a method would detect an inter-
penetration in case q, it couldn’t stop the bunny in case b.
Using the arbitrary in-between motion given in Section 2
allows to stop the bunny in both cases.

only, and would fail in case b. In both cases, however,
CONTACT detects a collision and stops the bunny.

5.2 Bouncing objects

This second test was designed to show the validity
of the approach for real-time impulsive dynamics sim-
ulations. The laws of physics for impulsive contacts
are well known ([6]), and readily implementable when
the contact locations are known. Since they are given
by our continuous CD method, we could easily add a
simple dynamics engine, and create a test application
in which various objects (one at a time) could bounce
on a floor.

The CD library proved to be fast enough to allow
objects with up to several thousands of triangles to
bounce with a constant frame rate higer than 30 Hz on
a PC, while maintaining a sufficiently short timestep
to make the motion physically realistic. Moreover, the
fact that no backtracking method was needed to give
the objects a realistic position (and to locate the con-
tact) when a collision occured helped to maintain a
high frame rate. Finally, the simulation proved to be
extremely robust (no incoherent behaviour, even with
random initial velocities), which is most important in
an interactive application. We found that some com-
mercial products, even for simple similar simulations,
have to be tuned carefully in order to produce realistic
results. These systems use indeed a discrete collision
detection technique and their collision response mod-
ule does not seem to be able to handle unshared edges,
or pure surfaces that are not actual volumes, such as



the teapot in Figure 4.

A demo mpeg file is available[12]. It is the record-
ing of the real-time test application, running on a PC.
It shows a simple teapot boucing on a floor, with ran-
dom initial velocities. It is the same teapot that was
problematic in some commercial products.

6 Conclusion

In [8], a new general approach to the collision detec-
tion problem was introduced, that consisted in using
arbitrary in-between motions. The specific in-between
motion that was given allowed to detect collisions be-
tween rigid polyhedral primitives (vertices, edges and
faces). This paper has described how sphere-trees
could be included in this approach to create a complete
CD structure, enabling continuous collision detection
between complex rigid polyhedral objects. Optimiza-
tion techniques that were used to develop CONTACT,
the C++ library based upon this approach, have been
described, as well as test applications implemented
thanks to this library. These tests allowed to demon-
strate that this approach seems especially appropriate
for virtual environments, where precise and fast ma-
nipulation of objects is required. Indeed, a coherent
collision status (collision time and contact type), par-
ticularly useful to develop easily realistic interaction
methods, is computed very efficiently.

6.1 Future work

The approach described in [8] opened many re-
search directions, as it was both a general framework
and a specific method (since two specific functions a
and b were introduced). Many topics could benefit of
further attention.

Thus, one could examine other arbitrary in-between
motions (other functions a and b), more general, in or-
der to avoid the relative-motion problem, or to achieve
efficient collision detection for more general objects.

No effort was made to make this approach handle
numerous models efficiently (ée the n-body problem).
We believe, however, that existing methods[1, 10]
could be easily adapted to produce a general continu-
ous CD algorithm

Some optimizations given in section 4 seem to be
extendible. The label method, for example, could ben-
efit from more complex labelling rules (for internal
nodes). Moreover, the poor assumptions needed to
use this technique should make it usable for other al-
gorithmic applications.

For thin objects, a sphere has a bad ratio
%. Other bounding volumes could thus
be profitably adapted or designed. The difficult point,
of course, is to choose bounding volumes allowing fast
CD tests between them.

For now, the temporal coherency in the scene hasn’t
been used. However, the primary goal of this method
being precise manipulation, with strong frame-to-
frame coherency, it should be useful to develop specific
techniques exploiting it.
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