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Abstract

This paper is devoted to existence and uniqueness results for classes
of nonlinear diffusion equations (or systems) which may be viewed as
regular perturbations of Wasserstein gradient flows. First, in the case
where the drift is a gradient (in the physical space), we obtain exis-
tence by a semi-implicit Jordan-Kinderlehrer-Otto scheme. Then, in
the nonpotential case, we derive existence from a regularization proce-
dure and parabolic energy estimates. We also address the uniqueness
issue by a displacement convexity argument.

Keywords: nonlinear diffusion, systems, interacting species, Wasserstein
gradient flows, semi-implicit JKO scheme, nonlinear parabolic equations.

MS Classification: 35K15, 35K40, 49J40.

1 Introduction
The continuity equation with a density-dependent drift
Op = div(pv), with v = V|[p]

is ubiquitous in modeling and arises in a variety of domains such as biology,
particle physics, population dynamics, crowd modelling, opinion formation...
It should actually come as no surprise since it captures the dynamics of a
population of particles following the ODE X = —v(t, X) where v = Vp|
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depends itself on the density in a way (local, nonlocal, attractive, repulsive
etc..) depending on which phenomena (aggregation, diffusion...) one aims to
capture and the type of applications.

Of course, at this level of generality not much can be said on existence
and uniqueness. There are however two cases which may be treated in a
systematic way. The first one, is the regular case where V|p| is a smooth
vector field whatever the probability measure p is, with some uniform bounds
on some of its derivatives and p — V|[p] is Lipschitz in the Wasserstein
metric. In this regular case, existence and uniqueness can be proved as a
simple exercise by the method of characteristics and a suitable fixed point
argument. This regular case (a typical example being that of a convolution)
is however rather restrictive and for instance rules out diffusion. The second
case where there is a general theory is the Wasserstein gradient flow case.
In this case, at least at a formal level, v may be written as v = Vg—i that
is the gradient of the first variation of a functional £ defined on measures.
In their seminal paper [10], Jordan, Kinderlehrer and Otto discovered that
the heat flow is the gradient flow of the entropy functional £(p) = [ plog(p)
which corresponds to the case v = Y2, The theory of Wasserstein gradient
flows has been very succesful in addressing a variety of nonlinear evolution
equations such as the porous medium equation [18], aggregation equations
[3] or granular media equations [4]. This powerful theory is presented in
a complete and detailed way in the reference book of Ambrosio, Gigli and
Savaré [1].

The purpose of the present paper is a contribution to the following general
question: can one hope for an existence/uniqueness theory in the case where
V' is the sum of a Wasserstein gradient flow term and a regular term (not
necessarily a gradient). Our motivation for this question actually comes from
systems. For instance, a simple but natural model, for the evolution of two
(say) interacting species is:

Opr = 1 Apy + div(p V(F % p1 + G * p2)),
Oypa = 12 Ape + div(paV(H * p1 + K % po)).

When vy, = vy, = 0 i.e. without diffusion, this is exactly the system studied
by Di Francesco and Fagioli [8]. As emphasized in [8], if cross-interactions
are symmetric i.e. G = K (or more generally G and K are proportional),
this system has a (product) Wasserstein gradient flow structure but this
is certainly a restrictive and often unrealistic assumption in applications.
This is why Di Francesco and Fagioli, still taking advantage of the similarity
with Wasserstein gradient flows used a semi-implicit scheme a la Jordan-
Kinderlehrer-Otto to obtain existence and uniqueness results. In [8], there
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is no diffusion but clearly the structure of the system belongs to the mized
case where drifts can be decomposed as the sum of a Wasserstein gradient
and a regular term. Of course, the semi-implicit scheme only makes sense
when drifts are gradients.

Regarding systems with a gradient structure and in the presence of nonlin-
ear diffusion, our first contribution is to establish strong enough convergence
at the level of the semi-implicit scheme to recover a solution of the PDE at
the limit. The delicate step is of course to pass to the limit in the nonlinear
diffusion term, which can be done thanks to the powerful flow interchange
argument of Matthes, McCann and Savaré [13] in a similar way as in the
work of Di Francesco and Matthes [9]. We will then address the nonpoten-
tial case in which the drift may contain a nongradient (but regular) part.
This case cannot be attacked by the semi-implicit minimization scheme and
we will prove existence by suitably regularizing the diffusion and using stan-
dard parabolic energy estimates. Finally, we will derive an uniqueness result
from displacement convexity of the energy.

The paper is organized as follows. In section 2, we consider the potential
case, introduce a semi-implicit scheme a la Jordan-Kinderlehrer-Otto [10]
and state a first existence result. Section 3 is devoted to the proof of this
existence result. Section 4 extends the result to the case of systems (again
in the case where all drifts are gradients). Section 5 proves existence for
the non-potential case. The final section 6 shows uniqueness by a simple
displacement convexity argument.

2 The potential case and the semi-implicit
JKO scheme

Our aim is to solve the following nonlinear diffusion equation:
oup = div(pV (E'(p) + Ulp]) ). plico = o (2.1)

on (0, +00) x T¢ where T¢ := R?/Z4 denotes the flat torus (we take periodic
boundary conditions to simplify the exposition, we refer to the work of the
second author [11] for extensions to R? or a bounded domain) which we
identify with the unit cube [0, 1]? equipped with the quotient distance:

d*(z,y) = kienzfd |z —y + k|

Denoting by P(T¢%) the set of Borel probability measures on T¢, we assume
the following assumption on the map p € P(T¢) — U(p):

Vp € P(TY), Ulp] € W**(T%), and U[p] > 0, (2.2)
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p:&gd){HVU[p]HLoo + AU 4[|} < 400 (2.3)

and there exists a constant C' such that for all (p,v) € P(T?) x P(T?)
IV U16] = T ey < CWis(p,0), (2.4

with Ws(p, ) denoting the 2-Wasserstein distance between p and v i.e.

1
2

Wy(p,v) ;== inf ){/qurd d%x,y)dw(m,y)}

yel(p,v

where II(u,v) is the set of transport plans between p and v i.e. the set of
Borel probability measures on T? x T¢ having ;1 and v as marginals. It is well
known, see [23, 24, 20], that W, metrizes the weak star topology on P(T¢)
so that (P(T?),Ws,) is a compact metric space.

As for the nonlinear diffusion term div(pV(E’'(p))) it is convenient to
rewrite it as:

div(pV(E'(p))) = AF'(p)

where F'(t) := tE'(t) — E(t) so that F"(t) = tE"(t). The typical energies F
we have in mind are the following classical examples

e Entropy: E(t) :=tlog(t) so that F'(t) =t, F"(t) = 1 (which thus gives
a linear diffusion driven by the laplacian),

e Porous media E(t) = t™ with m > 1 so that F'(t) = (m — 1)t™,

_ m—1ym+1
F(t) = ot

We shall assume that E is a continuous convex function on R, with
E(0) = 0, E is of class C? on (0,400) and that there are constants C' > 0
and m > 1 such that

Tf,F@%#E%%~Mﬂgcu+ﬂmv“ﬂa+m) (2.5)

E//(t) Z

Of course, these assumptions are satisfied in the examples above correspond-
ing respectively to linear diffusion and the porous medium equation.
Finally, we assume that the initial condition py € P(T¢) satisfies

LLEMM»M<+w (2.6)

which with (2.5) in particular implies that py € L™(T¢) and F’(po) € L*(T?).



A weak solution of (2.1) then is a curve t € (0,+00) — p(t,.) € P(T9)
such that F'(p) € Li ((0,+00) x T?) and

loc

“+oo
| [ @or+ 26F (o) = VUL Vop) do dt = = | 9(0,2)p0(a)

(2.7)
for every ¢ € C%([0, +00) x T%).

Theorem 2.1. Assume (2.2)-(2.3)-(2.4)-(2.5)-(2.6), then (2.1) admits at

least one weak solution.

The complete proof of this result is given in section 3. This proof is
strongly based on a semi-implicit version of the Jordan-Kinderlehrer-Otto
(JKO) scheme [10] as in Di Francesco and Fagioli [8]. More precisely given a
time step h > 0, we construct inductively a sequence p; € P(T?) by setting

P = po and, given pf we select prH as a solution of

: 1 2 k k
nf {5p W2 h) + €0 + UCploh) | (2.8)

where

€(p) = {fw E(p(z)) dx, if E(p) € L',

400, otherwise,

U(plv) = /ﬂ‘d Ulvldp.  (2.9)

Note that assumption (2.5) ensures that &£ controls from above [, p"dx if
m > 1 and [, plog(p)dx if m =1, so in any case sublevels of £ are weakly
relatively compact in L™(T4).

By standard lower semicontinuity and compactness arguments, it is clear
that (2.8) possesses solutions so that one can indeed generate a sequence
(PF)ken by the semi-implicit JKO scheme (2.8). It is even uniquely defined
(but we won’t really need it in the sequel) because each pf remains absolutely
continuous with respect to Lebesgue’s measure, so that p — W3(p, pf) is in
fact strictly convex (see Proposition 7.19 of [20]) and the other terms &
and U(.|pF) are convex. We finally extend in a piecewise constant way the
sequence (pf)ren i-e. set:

pn(t,.) == pf for t € ((k — 1)h,kh] and k € N. (2.10)

The proof detailed in the next section consists in showing that as h — 0, one
may recover a limit p which satisfies (2.1). This is the same strategy as in [§]
but the tricky part consists in passing to the limit in the nonlinear diffusion
term F’(py). This will be done thanks to the powerful flow interchange
argument of Matthes, McCann and Savaré [13] in a similar way as in the
work of Di Francesco and Matthes [9].
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3 Existence proof

The proof of Theorem 2.1 is divided into three parts. The first two parts
concern a priori estimates on p, and the last part consists in showing that
passing to the limit in the Euler-Lagrange equation of (2.8) actually enables
us to recover a solution of (2.1). The discussion on uniqueness is deferred
to the final section 6. Of course, it is enough to work on a fixed finite
time interval (0,7"), which we shall implicitly do below, we thus also set
N := [£] + 1. In what follows C' (respectively Cr) is a generic (resp. only
depending on T') constant whose value may vary from one line to another

3.1 Basic a priori estimates

From the very definition of the JKO semi-implicit scheme (2.8) we have for
every k:

21hW2( WL o) < E(pr) — €(p’i+1)+/TdU[pi}d(p —pith. (3.1)

Recall then that the 1-Wasserstein distance W is defined by:

Wilp)i=_inf { [ iz}

yel(p,v)
so that by Cauchy-Schwarz’s inequality
Wi(p,v) < Wa(p,v).

The well-known Kantorovich duality (see [23, 24, 20]) states that W) can be
also be expressed as

Wi(p,v) = sup { ¢d(p —v), ¢ 1-Lipschitz on Td}
Td

so that [, ¢d(p — v) is less than the Lipschitz constant of ¢ times Wy (p, v).
Thanks to these considerations, assumption (2.3) and Young’s inequality, we
get

[ Uk~ ) < OWah ol < WG )+ PR (32)

Together with (3.1), this gives

VR ) < E) — £ + O (33)



summing between 0 and N and using the fact that E is bounded from below
and (2.6) gives

N-1

1

m W3 (ot pn) < E(po) — E(py ) + CNR < C(1+T), (3.4)
k=0

as well as

E(py) < E(po) + Ckh, (3.5)

which, thanks to (2.6) and (2.5), also gives

sup ||pn(t, )||fm <C(A+T) if m > 1, (3.6)
te€[0,7
and
sup / pn(t, x)log(pp(t,x))de < C(1+T), if m = 1. (3.7)
tefo,7] J1d

With (3.4), we also have the Holder like estimate:

Walpn(t, ), pu(s,.)) < OV A+ D)/Jt —s| + b, ¥(s,8) € [0, T2 (3.8)

Using (3.8) and refined versions of Ascoli-Arzela Theorem (see [1]) and (3.6)-
(3.7), one deduces the existence of a vanishing sequence h,, — 0 and of a
p € COV2([0,T), (P(T?), W) N L>((0,T), L™(T%)) such that

o = pin L7((0,T) x T4, Tim sup Walpn,(t, ), p(t,)) =0.  (3.9)

" tel0,T]

Now, using (2.4), we deduce that VU|py,,| converges to VU |p] in L>°((0,T") x
T?) and then

on, VUlpn.] = pVU][p] in L™((0,T) x T%). (3.10)

3.2 Refined a priori estimates by flow interchange

This is the key step in the proof which enables us to obtain strong con-
vergence, in what follows we essentially follow similar arguments as in Di
Francesco and Matthes [9]. For v € P(T%), set

Jpa v(z)log(v(z))de, if viog(v) € L,
400, otherwise.

Ent(v) := {



For v € P(T%) with Ent(v) < +oo let us denote by e'®v := n(t,.), the
solution at time ¢ of the heat equation:

om = An, n |i—o= . (3.11)

It is well-known since the seminal work of [10] that the heat flow can be
viewed as the gradient flow of Ent for W5 (see [1] for the theory of gradient
flows in metric spaces). Moreover the fact that Ent is displacement convex!,
gives (see [1] Theorem 11.1.4, [6], [16]), the following evolution variational
equality:

1d*
o7 — W3y, ) < Ent(p) — Ent(e'®v), V¢t >0, u € P(TY) (3.12)
where we have used the notation:
d* : ft+s) = f(#)
— t P— 1 .
g/ (£) = lim sup s

Taking ' pF™! as a competitor in the minimization (2.8) gives

1 d+ d*
< tA k+1 k i tA k+1
0 oh di <W2 (e pp, aph))i_o—i_ dt <5(€ Ph ))t_o

. (3.13)
PO (e o o))

lt=0

Since etApk+1 is smooth for ¢ > 0, we can directly compute:

d /!
G = = [ BV x

which, with (2.5) gives that for some positive constant A > 0

GEE) <A [ (e P

1See section 6 for a precise definition. Here, we are working on T¢, but we should not
worry about it, it is just if we were working on R? with periodic functions only. The optimal
transport map between absolutely continuous periodic measures is well-known, it is given

by the gradient of a convex function F' such that F(z) — L is periodic (see Cordero-

Erausquin [5]) and which is characterized by a Monge—Ampere equation. Displacement
convexity of the entropy on the T? can therefore be proved as in the euclidean case.
Another way to see this is to remark that Bochner’s formula on T¢ is just the same as
in R, this does not change the Ricci curvature and thus, thanks to a celebrated result
of Lott and Villani [12] and Sturm [22] (see in particular the proof of Theorem 4.9), this
does not change the displacement convexity of Ent (with respect to Lebesgue’s measure).



We then have

d+ 1 m
(8(6”/}2*5) > )\liminf/ ) IV ((e"*2pht)2)|2dadt. (3.14)
o Jr

B % s—0t

In a similar way, for ¢ > 0, we have

d
G = [ awigpess
Td

and the right hand side is uniformly bounded from above thanks to (2.3).
With (3.12)-(3.13)-(3.14) this gives:

1
AR lim inf/ / IV ((e"*2pF 1) 2)|2dadt < (Ent(pf) — Ent(pf ™)) + Ch.
0 Jrd

s—0t

. . m
Since e*2p;*! converges strongly to pi ! in L™ as s — 07, (e**ph™)% con-

verges strongly to (p;*!)% in L2. By lower semicontinuity we deduce that

V(pi™)% € L? and
b [ 9GP < CEnt(ah) — Bnt(o}™) + b (3.15)
Summing from k£ =0 to N — 1 and using the fact that Ent(pg) is finite gives
/OT y IV (pr)2)|?dedt < CNh+ C(Ent(py) — Ent(p))) < C(1+T)

which, with (3.6), also gives

T
| 0n0.% e < O (3.16)

We then observe that since the injection of H(T¢) in L?*(T?) is compact
and since 1 — n= maps continuously L2(T%) into L™(T?), sublevel sets
of p > [|pn(t,.)% || gr(rey are strongly relatively compact in L™(T%). Now
arguing as in Di Francesco and Matthes [9] i.e. using the refined version of
Aubin-Lions Lemma provided by Theorem 2 of Rossi and Savaré [19] gives
that the family (pp,), is relatively compact in L™((0,T') x T%). The conclusion
of this step is that (3.9) can be strenghtened to

pn, — p strongly in L™((0,T) x T4). (3.17)

Now, thanks to the second part of (2.5) and Krasnoselskii’s Theorem (see [7],
chapter 2) p — F'(p) is continuous from L™ to L' and then (3.17) implies
that

F'(pn,) — F'(p) strongly in L*((0,T) x T%). (3.18)



3.3 Passing to the limit in the Euler-Lagrange equa-
tion

Now, we write the Euler-Lagrange equation for (2.8) as in the seminal work
of Jordan, Kinderlehrer and Otto [10] for the Fokker-Planck equation and
Otto [17] for nonlinear diffusions. Let & be a C* vector field on T¢ and
denote by X; the flow of &:

d
2 Xi(2) = € (@), Xo(w) = 2.

Define then v, := X, p’,ffl so that the change of variables formula gives

Pyt = 1 (Xy) det(DX;). (3.19)
Since p;*! solves (2.8), we have

02 T (Whph)  + T (6w0) + T (i) - G20)

Let then v € TI(pf, pi™) be such that
W3 ok ph) = / d*(z, y)dy; (2, y).
TdxTd

Choosing k(z,y) € Z¢ such that d*(x,y) = |y + k(x,y) — z|?, by definition of
v, we then have

W2 (v, k) < / Xu(y) + k() — oPdrk (. y)

Td x Td
and since X, (y) =y + t&(y) + o(t), we get

(W) < [ e (S ek B2

[t=0

As for the differentiation of £(1;), following [10]-[17], using (3.19) we write

phitt
= E(——rf—— DX
£@) /T (det(DXt)> det(DX:)
observing that for p > 0 and o > 0
d P\ N (P
@ B(5)a=-F(3)
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then thanks to (2.5), (3.6), the fact that det(X;) = 1 +tdiv(§) + o(t) (with a
uniform o(t)) and Lebesgue’s dominated convergence Theorem, one obtains:

d+

aEw) == / (P )div(©). (3.22)
In a similar way,

d+

E(u(”t)>|to =/ VU AR (3.23)

Combining (3.21)-(3.22)-(3.23) and (3.20), and applying the previous to both
¢ and —¢ gives the Euler-Lagrange equation

[, @=nrkn) = =n [ Pk +h [ VU6
TdxTd Td

(3.24)
for every smooth vector field £&. Now let ¢ € C°([0,7) x T?) (which we
extend by ¢(0,.) on (—h,0)), we then have

/0 » Odpn = Z/d(qb(kzh, ) = é((k — 1)h,.)p"

—Z OR o = o™ = | 6(0, )0

N

-y / (6 — ok ) — [ 000

k=0
Using a second order Taylor-Lagrange formula gives

/ (6(kh, )bk, y))dvE (2, y) = / Vo (kh,y)-(z—y)db(z, y)+ R
Td x Td Td % Td
with

RE| < D26 W2(AE, o),

With (3.3) this gives that Z,]::O|R,’j| < Crh, so that applying (3.24) to
¢ = Vo(kh, ) and using the fact that, with (2.4), Cauchy-Schwarz inequality
and (3.4), Yr_, [VU[pf] — VU[p k“]HLoo < Cr, we finally get

[ Loom= [ [.roms

+ / VUlpr] - Vopn — | ¢(0,.)po + dn
0 Td Td

where d;, goes to zero as h — 0. Thanks to (3.10), (3.17) and (3.18) we may
pass to the limit on the vanishing sequence h,, to find that the limit p is a
solution of (2.1). This completes the proof of Theorem 2.1.

11



4 Extension to systems

Let us now consider the extension of (2.1) to systems for the evolution of [
densities p := (p1,...,p) of interacting species:

Oypi = div(ps V(Ei(pi) + Uilp])) = 0, pili=o = pio, i =1,...,1, (4.1)

on (0,400) x T¢. Let us assume that for every i = 1,...,l the map p €
P(T4! — Uy(p) fullfills

Vp € P(TY, Ui[p] € W**(T?), and Uj[p] > 0, (4.2)
sup {[[VUilp]l[ree + [[(AUi[p])+ ]Iz} < 400 (4.3)
pEP(T)!

and there exists a constant C such that for all (p,v) = ((p1,...,p), (v1,..., 1)) €
P(T%)! x P(T?)! and every i

IVUl] = VUl qray < C S Walps, ). (4.4)

j=1

As in the previous section, we assume that for each 7, F; is a continuous
convex function on R, with E;(0) = 0, E; is of class C* on (0, +00) and that
there are constants C' > 0 and m; > 1 such that

m;—2

E!'(t) > , LE(t) — Ei(t) < C(L+t™), ¥Vt € (0,+00). (4.5)

Finally we assume that the initial condition py € P(T¢) satisfies

> /T Eifpiole) dr < +oo (4.6)

which with (4.5) in particular implies that p; o € L™(T%). The semi-implicit
JKO scheme then takes the following form: given a time step h > 0, we
construct inductively a sequence pf € P(T?)! by setting p) = py and, given
pf € P(T) we select pi*! as a solution of

l
. 1 2 k k
Lt {5 2; W (i, pha) + E(p) + Ulplok) } (4.7)

where
Elp) = {22—1 Jpa Ei(pi(x)) dz, if E;(p;) € L',

+00, otherwise,

12



and
= v|dp;.
U(plv) Z/Td pi

Extending in a piecewise constant way the sequence (pf)rey defines the
P(T9)!-valued curve:

pn(t,.) = pf for t € ((k — 1)h,kh] and k € N. (4.8)

Arguing exactly as in the proof detailed in section 3, there is strong conver-
gence in IL_, L™ ((0,T) x T?) of a sequence p,, to some limit curve p and
passing to the limit in the Euler-Lagrange for (4.7) exactly gives:

Theorem 4.1. Assume (4.2)-(4.3)-(4.4)-(4.5)-(4.6), then (4.1) admits at
least one weak solution.

5 The non potential case

We are now interested in the case where the drift may not be a gradient.
More precisely, we consider the following nonlinear diffusion equation:

Orp — div(pV (E'(p))) + div(pV[p]) = 0, pli=o = po, (5.1)

n (0,7) x T¢. Denoting by H~*(T?) the dual of H!(T¢), we assume the
following regularity on the drift term V[p]:

Vo e 2P, Vg € W', sup  {[V[plli= + [VV[pllli=} < +oo
pEL?2NP(T4)
(5.2)
and for every R > 0, there exists a modulus wg such that, for every (p,v) €
(L*(T?) N P(T?))? such that ||p||-1(rey < R and ||v||g-1(ray < R, one has

Vo] = VIulllzaerey < wrlllp = vlla-1ae)- (5.3)

Typical examples of velocity ﬁelds p > V[ ] that satisfy the above assump-
tions are those of the form V|p = de y)dy with B smooth
enough (but not necessarily a gradlent with respect to x)

As before, E is convex on R, and we define F'(t) := tE'(t) — E(t) so
that F”(t) = tE"(t). We make the following assumptions on F' (which are
satisfied for instance when E(t) = t™ with m > 1 or E(t) = tlog(t)):

F € C*(R,,R), F(0) = F'(0) =0, F is convex, (5.4)
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F" is nondecreasing, and for every p > 0, F"(p) > 0 (5.5)

and there is a constant C' > 0 such that
F'(p) <C(1+p* + F(p), Vp € Ry. (5.6)

As for the initial condition py we assume that it is a probability density
such that
po € HY(T?), Flpo) € LX(T%), F(po) € H'(T?). (5.7)

A nonnegative weak solution of the PDE
Oip = A(F'(p)) + div(pV[p]) = 0, ple=o = po. (5.8)
is by definition a function p € L2((0,7) x T¢ R, ) such that
F'(p) € L*((0,T), H'(T?))

and

T
| [ oo+ VP G)-Fo = pVipl- Vo dadt = [ o0.2)m(a)s
(5.9)
for every ¢ € C*([0,T] x T¢) such that ¢(T,.) = 0.

Before we proceed to the existence proof, we need some preliminary re-
sults. Let us first study the continuity of the drift term p = p(t,z) +—
Vip(t,.)](z). It is easy to see that when (5.2) and (5.3) are satisfied and p"
converges strongly in L2((0,T) x T¢) (hence in L2((0,7T), H=1(T%)) to some
p then V[p"] converges to V[p|] in L?((0,T) x T%), but we wil need a variant
in the sequel:

Lemma 5.1. Assume that (5.2) and (5.3) are satisfied. Let p" be a sequence
in L2((0,T) x T?) such that 0;p™ € L*((0,T), H *(T%)) with

sup [|0up" || L2 ((0,1), 11 (1ay) < +00, (5.10)

and p € L*((0,T) x T?) such that p™ — p in L*((0,T) x T%), then V[p"]
converges to V[p] strongly in L*((0,T) x T9).

Proof. First observe that (5.10) implies that for some constant C' one has

1"t ) = (s, M1 < OVt — 5|, ¥, ¥(t,s) € (0,T)% (5.11)
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Let t € (0,7) and for h € (0,t) define

I I
ﬁ?,h(x) = E/ hpn(S,ZL')dS, pt,h = E/ hp(S,ZE>dS
t— t—

thanks to (5.11), we obtain, for every n, t and h:
l0"(t.) = Pinlli-r < OV, ipt,) = Bupllr-r < OV (5.12)
For fixed h > 0, p, = By, in L*(T?) as n — oo, and since the imbedding
of L*(T?) into H~'(T?) is compact we also have |5}, — B, | sr-1(1ay —= 0 as
n — oo. We then get
(¢, ) = pt, M+ < 20Vh + 158 = Ponlli-rcra)

from which we deduce that ||p"(¢,.) — p(t,.)||z-1 tends to 0. Thanks to (5.3),
this implies that [[V[p"(t,.)] — V[p(t,.)]||r2(re) tends to 0. The claimed L?
convergence then follows from (5.2) and Lebesgue’s dominated convergence

Theorem.
O

We now introduce a regularized nonlinearity to approximate (5.8) by a
uniformly parabolic equation as follows. Let ¢ € (0,1), let . and M. be
respectively the smallest p for which F”(p) > e and the largest p for which
F"(p) < e '. Let then F. be defined by

F<6z-:> + F/((Ss)(p - 56) + %(:0 - 65)2 if P € [07 65]3
Fo(p) = F(p) if p €[5, Me], (5.13)
F(M.) + F'(M.)(p — M.) + & (p — M.)? it p > M.

2¢e

Clearly, by construction F. is convex and C? on R, with
1
e<F'<-onR, (5.14)
€

and F. converges pointwise to F' since d. and M. converge respectively to 0
and +oo. In fact, this approximation also has good I'-convergence properties:

Lemma 5.2. Let 6 € L?((0,T) x T4, R,), then

lim/ / 0(t,x))dxdt = / / ))dxdt (5.15)
e—0t Td Td

moreover if 0. € L*((0,T) x T¢),R.) weakly converges to 0 in € L*((0,T) x
T9), then

liminf/ / (t,z)) dxdt>/ / ))dx:dt (5.16)
e—0t Td Td
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Proof. Fatou’s lemma first yields

T
lim inf / / F.(0(t,x))dzdt > / / ))dzdt
e—=0t Jg Jrd Td

on the other hand

T
/ / F.(0(t, z))dzdt </ / O(t, x dxdt+// —F(0))dxdt
0 Jrd T4 {0<6.}

since the second term in the right hand side converges to 0, we easily deduce
(5.15). Let us now assume that 6. € L2((0,7) x T¢ R, ) weakly converges to
6 in € L?((0,T) x T?). Let v > 0 (fixed for the moment) and denote by
the function defined by

vy - JE )it pe[0,7],
) {F(7)+F’(v)(p—v) if p >

by construction F7 is convex and below F'. For ¢ > 0 small enough so that
v € [0, M.], we similarly define

F(p) = {Fg(p) if p € [0,],
) FOY)+F()(p-7)ifp>7y

so that FY is convex and coincides with F7 on [d,, +00). We then have

hrninf/ / ))dzdt > hmlnf/ / FY(0.(t, z))dzdt
e—0t Td e—07t Td

> lim inf/ / F7(0.(t, z))dzdt 4 lim inf// (F.(0.) — F(6.))
e—=0t Jo Jrd e—0t {0.<6.}

the second term converges to 0 whereas by weak lower semi-continuity (thanks
to the convexity of F'7) we have

T T
lim inf / / FI(0.(t, 2))dwdt > / / FI(0(t, 2))dadt,
e=0t  Jo Td 0 Td
T
liminf/ / L(t,x d:pdt>sup/ / F7(6(t, x))dzdt
e—0t Td ~>0 Td

and then (5.16) easily follows from the previous inequality, the fact that
7 converges monotonically to F' and Beppo-Levi’s monotone convergence
Theorem. 0

hence
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Theorem 5.3. Assume (5.2)-(5.3)-(5.4)-(5.5)-(5.6)-(5.7), then (5.8) admits

at least one weak nonnegative solution.

Proof. The proof proceeds in three steps.
Step 1: Regularized equation. We first prove existence of a weak solution
to the regularized equation:

Oup" — A(FL(p%)) + div(p"V[pf]) = 0, p°[e=0 = po- (5.17)
For fixed v € L*((0,T) x T¢,R,) the linear parabolic equation:
Opp° — div(F/ (v)Vp") + div(p"V[V]) = 0, p°li=0 = po (5.18)

admits a unique weak solution which we denote p° := T¢(v), moreover p°
is nonnegative by the maximum principle and p° € L*((0,T), H*(T%)) N
C([0,T), L*(T?)) and 9;p € L*((0,T), H *(T%)) and more precisely, thanks
to (5.2) and (5.14) there is a constant C. such that:

T T
/ /d(\VPE\QJr(PE)Z)dZUdtJr / 0 <C. (5.19)
0 T 0

Thanks to (5.3), it is easy to check that T° is a continuous map of L*((0,T) x
T4 R, ). In addition, (5.19) and the Aubin-Lions lemma (see [2], [21]) im-
ply that T¢(L?*((0,T) x T¢,R,)) is relatively compact in L?((0,7) x T%).
Schauder’s fixed point Theorem then ensures that 7° admits at least one
fixed point pf i.e. a solution of (5.17).

Step 2: A priori estimates. We aim now to derive estimates independent
of e on p°. Let 6 > 0 such that 0 € (J., M.), we then take (p° — &), as
test-function in (5.17) (which is actually licit since this test-function belongs
to L2((0,T), H'(T?))) integrating between 0 and ¢ € [0, 7] this yields

t t t
[ -ogmmiss [ | meower= [ [ v
0 0 J{p=>6} 0 J{p=>0}

hence, using Young’s inequality

1 (3 1 ! (> (>
S ) =0l = 5l + [ [ RGP
0 J{p=>6}

v [t 1 t
olef bl ]
<2 0 {p525}| | 2v Jo {pgzé}( )>
v [t 1 [t
SO_// v62+_// 8—62+(52
5/ R A Lk )
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since F(6) = F”(0) > 0 and F” nondecreasing, we can choose v small
enough so that the first term in the right hand side is absorbed by the left
hand side of the inequality. Gronwall’s lemma then gives

sup [|p*(t, )2 < C (5.20)
te(0,7)

for a constant C' that does not depend on €. Next we take F!(p°) as test-
function which similarly gives:

[ rwan- [ pws [ [ wrer=[ [ oviel e
<ot [ [t [ o)

using (5.20) and chosing v small enough we thus get

up [ pn+ [ vRGE<c (5.21)

telo, T

for a constant C' not depending on e. Next we use (5.6) and (5.20)-(5.21) to
deduce that

sup / Fl(p*) < C (5.22)
Td

t€[0,T

together with Poincaré-Wirtinger inequality, using again (5.21), this gives
IFZ (0 20,0y, 11 (rty) < C- (5.23)
Step 3: Passing to the limit. Let us set
u® = F.(p°), 0 :=Vu® — p°V[p°] (5.24)
so that (5.17) can be rewritten as
O = Au® — div(pV[p°]) = div(c®), plizo = po- (5.25)
We know from the previous step that
16| 2o 0.7y, L2(vey) + 0% | 20,00, 220 y) + 17l 20,7, 10 (ry) < (5.26)

as well as
10e0° (| 20,7y, -1 (Tayy < C. (5.27)
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Passing to subsequences if necessary, we may therefore assume that
p° — pin L2((0,T) x T9), u* — u in L?((0,T), H*(T%)) (5.28)
and thanks to Lemma 5.1 and (5.27), we have
0° = 0 :=Vu—pV|p] in L*((0,T) x T9). (5.29)
Obviously one then has:
Op = div(o) = Au —div(pVp]), pli=o = po. (5.30)

So to establish that p is a weak nonnegative solution of (5.8), it is enough to
prove that uw = F’(p). Thanks to the convexity of F' this amounts to prove
that

T
/ / F(O(t,x)) dxdt>/ / p(t,x)) dxdt+/ / (0 — p)dadt
0 Jrd Td T4

(5.31)
for every 8 € L*((0,T) x T?, R, ). By definition of u we know that

T
/ / F.(0(t,x) dxdt>/ / “(t,x)) dxdt—i—/ / (0 — p°)dadt.
0 Jrd T4 Td

(5.32)

T T
lim/ / uspE:/ / up. (5.33)
¢ Jo Jrd 0 Jrd

For that purpose, let 1° be the potential defined by

Let us prove that

CAYE = /T vE =0, oF € HY(TY. (5.34)

Thanks to (5.20), we have ¢° € L>°((0,T), H*(T?)) with a bound indepen-
dendent of e:
VY| Lo ((0,1), 11 (1) < C (5.35)

As for the time derivative of V1)° we observe that

—A(0)F) = Oip° = div(o°)
so that, thanks to (5.26), we have 9, V¢ € L?((0,T) x T?) and more precisely

10:V Ve || 20,y <1y < o] L2 (0,7)xmey < C
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this proves that Vi is bounded in H'((0,7) x T?), hence converges in
L*((0,T) x T?), up to an extraction if necessary, to v given by

—AyY = p, /T Y =0, ¢ € H(T?. (5.36)

Weak convergence of Vu® and strong convergence of V¢ in L? then give

T T
lim/ /ugpszlim/ /vmvw
€ Jo Jrd € Jo Jrd
T T
Lo L
0o Jrd 0o Jrd

which establishes (5.33). Next, we use Lemma 5.2, letting € tend to 07, using
(5.33) we obtain inequality (5.31) which proves that u = F’(p) and so p is a
weak solution of (5.8), concluding the proof.

[
The previous arguments again clearly adapt to systems. More precisely,

let us consider the system for the evolution of [ densities p := (p1,...,m):
Owpi — A(F(pi)) + div(p:Vi[p]) = 0, pili=o = pio (5.37)

on (0,+00) x T Assuming that each function F; satisfies (5.4)-(5.5)-(5.6),
that the initial conditions are probability densities which satisfy

pio € H'(TY), Fi(pio) € L'(TY), F(pip) € H'(TY), Vi=1,....1, (5.38)
and for every ¢ = 1,...,[, the maps V; satisfy
Vp € LX(T%), Vilp] € WH(T?),  sup {||Vilp]llz= + [VVi[p]l| 1=} < +o0

pEL2(T)!
(5.39)
and for every R > 0, there exists a modulus wg such that, for every (p,v) €
L2(T%)" x L2(T%)" such that ||p||g-1(rep < R and ||v||g-1(ray < R, one has

l
IVilo] = Vilvlllzaeny < wr( 3 llos = villuasy ). (5:40)
j=1

A direct adaptation of the proof of Theorem 5.3 gives

Theorem 5.4. Assume that each function F; satisfies (5.4)-(5.5)-(5.6), and
that (5.38)-(5.39)-(5.40) are satisfied fori = 1,...,1, then (5.37) admits at
least one weak solution (py,...,p) with each p; nonnegative.
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6 Uniqueness

We end the paper by a general uniqueness argument based on geodesic con-
vexity. For the purpose of our paper it is enough to consider an internal
energy that is a functional defined on the subset P,.(T?) of P(T9) (consist-
ing of absolutely continuous with respect to the Lebesgue measure on T¢
elements of P(T¢)) and given by

&) = [ Blp(o)) da. p € PulT)

where £ : Ry — R is a convex function with £(0) = 0 and E smooth on
(0, +00). Given p and v in P,.(T¢), there is a unique optimal transport map
T between p and v (see Cordero-Erausquin [5] and McCann [14] for the case
of a general Riemannian manifold) i.e. a map such that Tp = v and

W) = [ () 0plo)e

Moreover, this map is given by the gradient of a convex function T'(z) =
Vé(x) with ¢ convex on R? and such that x — V¢(z) — x is periodic on R?
(so that T indeed defines a map from T¢ to itself). In fact, on T¢, we should
rather write

1

T(z) = exp,(=Vi(x)) where ¢(x) = §\$|2 — ¢(x).

Note in particular that d(z,T'(z)) = |V (x)| and then

Wa(p.v) = / [V9() o)

The Wasserstein geodesic between p and v is then the curve ¢ € [0,1] — 14
given by the McCann’s interpolation:

Dy == Tt#ﬂ» Tt(x> = eXpm(_tvw<x))7
it is indeed a constant speed geodesic:
WQ(Vta VS) = |t - S|W2(p7 V)

and T} is the optimal transport map from p to v;. Then the internal energy
£ is said to be displacement conver whenever for every p and v in P, (T?),
defining 1, as above one has

t €[0,1] — &E(1y) is convex.
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If E satisfies McCann’s condition:
r € (0,+00) — r’E(r~%) is convex nonincreasing (6.1)

then it is well-known that & is displacement convex (see McCann [15]) and
that for p, ¥ and v as above, one has (setting F'(p) = pE'(p) — E(p)):

T t—0Tt Td t

~ i [ 3 (%) det(DT,(x)) — E(p(a)))dz
= [ VP e == [ VBl Veole) da

as soon VE'(p) in L*(p). Similarly, letting S (S(y) = y — VO(y)) be the
optimal map from v to p and using the fact that S(7'(z)) = xi.e. VO(T'(x)) =
T(x) —x=—-VY(z), we get

am—swmz—T;mmww»vmwwwdy

= — [ VEWT() V(T ())p(x) de

Td

= | VE@W(T(x)-Vi(z)p(r) dz

Td

so that summing the two inequalities above gives

0> Ad(VE'(V(T(l’)) — VE (p(x)) - Vi (z)p(x) dz. (6.2)

Now let us consider the system for the evolution of [ densities p =

(P15 1)
i = div(pi(VE;(pi) + Vilp])), (6.3)

on (0,400) x T Let us assume that each F; is a convex function as above,
that V; maps P(T?)" into W1°°(T?) and that for some constant C' one has

Vilpl(z) — Vilpl(y)| < Cd(z,y), ¥p € P(T?) and (z,y) € T* x T*  (6.4)
and
[VVilp] = VVi[v]|| peo ey < CZWQ(W’ v;), Y(p,v) € P(T%)" x P(T%".

(6.5)
Then the following uniqueness result holds:
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Theorem 6.1. Assume that the drifts V;’s satisfy (6.4)-(6.5) and that the
E;’s satisfy McCann’s condition (6.1). Let p and v be two solutions on
(0,T) x T of (6.3) such that

T 1 T 1
/ S oLz + / S il 2oy < +o00 (6.6)

i=1
with
viy = VE{(piy) + Vilpe], wiy = VE[(vi) + Vi[w] (6.7)
then for every t € [0,T] one has the following stability estimate
! 1
Z W3 (pis, vig) < et Z W3 (pi0; Vio), (6.8)
i=1 i=1

which in particular gives uniqueness for the Cauchy problem for (6.3).

Proof. Using Theorem 5.24 and Corollary 5.25 from [20], assumption (6.6)
guarantees that t — W3(p;,v4,) is differentiable for a.e t € (0,7 with

d1
dt 2

where V1), ; is such that T}, := exp,(—V;,) is the optimal map between p; ;
and v;;. Now thanks to McCann’s condition and recalling (6.2), we have

W2 (pis,vie) = N V(@) - (wit(Tii(2)) = vi(2)) pie(x)dz

y Vie(x) - (VE(vig(Tia(r)) = VE(pie)(2)))pie(x)dz <0,

so that, using (6.4)-(6.5) yields
Dy, A></ Vi) - (Vi (Toa(2)) — Vil (@) pi()d
dt2 2 PitsVit) > - it\ L i[Ve) (L4t T ilPt]\T) ) Pit(T)AT
- / Vi) (Vi) (Tia()) = Vil ) ()

[ V@) (@) = Vi) pss ()i

¢ [ 1Vta)ldle. Tl oo
I
+C / |v¢zt |pzt )22 P]tngt

l
=C <W22 (Pi,t, Vi,t) + Wy (,Oi,t, Vz‘,t) Z Wy (Pj,t, Vj,t)) .

J=1
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Summing over ¢ and using Gronwall’s lemma gives the desired inequality
(6.8).
O

Remark 6.2. In the uniqueness result stated in Theorem 6.1, the integrability
condition (6.6) is made as an assumption since it ensures absolute continuity
for the Wasserstein distance of the curves p and v. In the potential case where
V; = VU;, under the assumptions of Theorem 4.1, it can be checked (see [11])
that solutions constructed by the semi-implicit JKO scheme actually satisfy
(6.6).
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