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Gradient discretization of Hybrid Dimensional Darcy
Flows in Fractured Porous Media with discontinuous
pressures at the matrix fracture interfaces

K. Brenner*, J. Hennicker*’, R. Masson*, P. Samier'

February 2, 2015

Abstract

We investigate the discretization of Darcy flow through fractured porous media on
general meshes. We consider a hybrid dimensional model, invoking a complex network
of planar fractures. The model accounts for matrix-fracture interactions and fractures
acting either as drains or as barriers, i.e. we have to deal with pressure discontinuities at
matrix-fracture interfaces. The numerical analysis is performed in the general framework
of gradient discretizations which is extended to the model under consideration. Two
families of schemes namely the Vertex Approximate Gradient scheme (VAG) and the
Hybrid Finite Volume scheme (HFV) are detailed and shown to satisfy the gradient
scheme framework, which yields, in particular, convergence.

1 Introduction

This work deals with the discretization of Darcy flows in fractured porous media for which the
fractures are modelized as interfaces of codimension one. In this framework, the d — 1 dimen-
sional flow in the fractures is coupled with the d dimensional flow in the matrix leading to the
so called, hybrid dimensional Darcy flow model. We consider the case for which the pressure
can be discontinuous at the matrix fracture interfaces in order to account for fractures acting
either as drains or as barriers as described in [8], [10] and [2].

The discretization of such hybrid dimensional Darcy flow model has been the object of
several works. In [8], [9], [2] a cell-centred Finite Volume scheme using a Two Point Flux Ap-
proximation (TPFA) is proposed assuming the orthogonality of the mesh and isotropic perme-
ability fields. Cell-centred Finite Volume schemes have been extended to general meshes and
anisotropic permeability fields using MultiPoint Flux Approximations (MPFA) in [11], [13],
and [1]. In [10], a Mixed Finite Element (MFE) method is proposed and a MFE discretization
adapted to non-matching fracture and matrix grids is studied in [4].

In this work, we extend the Gradient scheme framework introduced in [5] to the case of
hybrid dimensional Darcy flows with discontinuous pressures. This framework accounts for a
large class of non conforming and conforming discretizations including conforming finite ele-
ment methods, symmetric finite volume schemes, and mixed and mixed hybrid finite element
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methods. The framework is first described, then applied to extend to our model the Vertex Ap-
proximate Gradient scheme (VAG) and the Hybrid Finite Volume Scheme (HF'V') introduced
in respectively [5] and [6] for the finite volume discretization of anisotropic diffusion problems
on general meshes.

In section 2 we introduce the geometry of the matrix and fracture domains and present
the strong and weak formulation of the model. Section 3 is devoted to the introduction of the
general framework of gradient discretizations and the derivation of the error estimate 3.3. In
section 4 we define and investigate the families of VAG and HF'V discretizations. Having in
mind applications to multi-phase flow, we also present a Finite Volume formulation involving
conservative fluxes, which applies for both schemes.

2 Hybrid dimensional Darcy Flow Model in Fractured
Porous Media

2.1 Geometry and Function Spaces

Let © denote a bounded domain of R?, d = 2, 3 assumed to be polyhedral for d = 3 and polyg-
onal for d = 2. To fix ideas the dimension will be fixed to d = 3 when it needs to be specified,
for instance in the naming of the geometrical objects or for the space discretization in the next
section. The adaptations to the case d = 2 are straightforward.

Let T' = J;.,; I and its interior I' = T\ 9T denote the network of fractures I'; C 2, i € I,
such that each I'; is a planar polygonal simply connected open domain included in a plane P;
of R% Tt is assumed that the angles of T; are strictly smaller than 27, and that I'; N T; = ) for
all @ # 7 .

For all ¢ € I, let us set 3; = 9I';, with ny, as unit vector in P;, normal to ¥; and outward
to Fz Further Zi,j = Ez N Zj, j el \ {Z}, 2@0 = Ez N 89, Ei,N = 21 \ (Ujel\{i} Ei,j U 2@0),
Y= U(m)gx[’i# ¥ij and Xo = [J;c; 2io- It is assumed that ;5 = T; Nos.

7 >
1 N 3N

5
~ T, )

22,0 | 2 g

Figure 1: Example of a 2D domain 2 and 3 intersecting fractures I';, 7 = 1, 2, 3. We might define
the fracture plane orientations by a™ (1) = a3, a (1) = a3 for I'y, at(2) = a1, a™ (2) = ay for
Iy, and a*(3) = as,a™(3) = ay for I's.

We will denote by dr(x) the d — 1 dimensional Lebesgue measure on I'. On the fracture
network I', we define the function space L?(T") = {v = (v;)ier, v; € L*(T;),i € I}, endowed with
the norm HUH%%F) = el ||Ui||%2(rl-) and its subspace H'(T") consisting of functions v = (v;)ses
such that v; € H'(T;), i € I with continuous traces at the fracture intersections. The space



HY(T) is endowed with the norm [[v||%: 1y = 37ic; vill7r,)- We also define it’s subspace with
vanishing traces on ¥y, which we denote by Hy (T').

On Q\T, the gradient operator from H'(Q\T') to L?(2)? is denoted by V. On the fracture
network I', the tangential gradient, acting from H(T') to L*(T")?"!, is denoted by V., and such
that

Vv = (Vyvi)ier,

where, for each i € I, the tangential gradient V.. is defined from H'(T;) to L?(T';)?~! by fixing
a reference Cartesian coordinate system of the plane P; containing I';. We also denote by div,,
the divergence operator from H y; (I';) to L*(T';).

We assume that there exists a finite family (I'y)qe, such that for all & € x holds: I', C T’
and there exists a lipschitz domain w, C Q\F such that I'y, = 0w, NTI'. For a € x and an apro-
priate choice of I, C I we assume that I’y = |J;c; ;. Furthermore should hold T = Uaey Lo
We also assume that each I'; C I' is contained in I',, for exactly two o € x and that we can
define a unique mapping ¢ — (o (i), ™ (7)), such that I'; C Tp+ (5 N Loy and o (i) # a~ (1)
(cf. figure 2.1). For all i € I, a®(i) defines the two sides of the fracture I'; in Q \ T and we
can introduce the corresponding unit normal vectors n,+(;) at I'; outward to wa+(;), such that
n,+ () + o) = 0. We therefore obtain for a € x and a.e. x € I', a unique unit normal vector
n,(x) outward to w,.

Then, for a € x, we can define the trace operator on I'y:

Yo r H/(Q\T) — L*(Ta),

and the normal trace operator on I', outward to the side a:
Yoa + Hgjy (2 I — D'(T,).

We now define the hybrid dimensional function spaces that will be used as variational spaces
for the Darcy flow model in the next subsection:

V=HQ\T) x H'(I),

and its subspace _
V= Hjo(Q\T) x Hy, (D),

where B _
H}o(Q\T) ={ve HY(Q\T) | v =0 on 00},
as well as
W =W, x Wy,
where

Wi = {am € Hgjy(Q\T) | 1maQm € L*(Ty) for all o € x} and
Wy = {qf = (CIfi)ieI ’ qf: € Hdiv( ) Viel

and Z/ V v-qQf; +U- dlvﬂquz) =0V EHzO(F)}

el



On V', we define the positive semidefinite, symmetric bilinear form
(et 1), (Vs 07) )y = / Vit - Vo + / Vs - Voopdr(x)
Q r
+ 3 [t = 1) i 07)dr ()
aex o

for (wm,us), (Um,vy) € V, which induces the seminorm |(vy,, vs)|y. Note that (-,-)y is a scalar
product and | - |y is a norm on V°.
We define for all (p,,, Pf), (dm,dy) € W the scalar product

((pm,pf),(qm,qf))w:/pmqmdx+/diVPm-divqmdx
Q Q
—|—/pqudT(X)+/diVTpf'diVqudT(X)
r r
+ Z/ ('Yn,apm : '7n,aqm)d7-(x)7

aex

which induces the norm ||(gm, qs)||w, and where we have used the notation div,p; = div,,py.;
onT; foralli € I and py = (Psi)ier € Wy.

Using similar arguments as in the proof of [12], example 11.3.4, one can prove the following
Poincaré type inequality

Proposition 2.1 The seminorm |.|y satisfies the following inequality
[omll g1 @vry + lvgll @y < Cpl(vm, vg)lv, (1)
for all (vy,,v;) € VO

The convergence analysis presented in section 4 requires some results on density of smooth
subspaces of V' and W, which we state below. Let us define the subspace Cg® of functions in
C2°(Q\ T) vanishing on a neighbourhood of the boundary 92, where C°(Q\T) C C®(Q\T)
is the set of functions ¢, such that for all x € 2 there exists » > 0, such that for all connected
components w of {x +y € R | |y| <7} N (Q\T) one has ¢ € C=(©). Let us also define the

subspace C° of functions in I1;c;C*(I;) vanishing on a neighourhood of ¥y and continuous on
I.

Proposition 2.2 CF x O is dense in V°.

0o __ (100 ¢ : o __ —
Let us further set_ C;M_,T = G7(Q\T). On I we define the function space C, = {q; =
(ari)ier | ari € C(T0) 5 Yierqri nx, =0on X\ Xg, g -nyg, =0o0n X, i € [},

Proposition 2.3 Cy < Cyy, is dense in W.

2.2 Single Phase Darcy Flow Model

2.2.1 Strong formulation

In the matrix domain Q\ T, let us denote by A,, € L>(Q)**? the permeability tensor such that
there exist \,, > A, > 0 with

A€ < (Am(x)€,€) < Aplé]? for all € € R x € Q,

4



Analogously, in the fracture network T', we denote by Ay € L>®(T )(d=1x(@=1) the tangential
permeability tensor, and assume that there exist Ay > A, > 0, such that holds

MEP < (Ap(x)€,€) < Afl¢f* for all £ e R x €T

At the  fracture  network T, we  introduce  the  orthonormal  system
(11(x), T2(x), n(x)), defined a.e. on I'. Inside the fractures, the normal direction is assumed
to be a permeability principal direction. The normal permeability A\¢,, € L®(I") is such that
Apn S Apn(x) < Asn for ae. x € T with 0 < Apn < Asn. We also denote by dy € L>®(T) the
width of the fractures assumed to be such that there exist d; > d ¢ > 0 with

d; < dg(x) < dy

for a.e. x € I'. Let us define the weighted Lebesgue d — 1 dimensional measure on I' by
drs(x) = ds(x)dr(x). We consider the source terms h,, € L*(Q) (resp. h; € L*T)) in the

matrix domain \ T (resp. in the fracture network I'). The half normal transmissibility in the
fracture network is denoted by T = 2’;%.

The PDEs model writes: find (u,,us) € VO, (qm,qy) € W such that:

div(gm) = hm on Q\ T,
am = — N, Vu, on Q\ T,
Tnalm = Tr(Vallm —ug) onl,, a€x (2)
diVT<qf) - ZaEx Tn,alm = dfhf on I

qr = —df AfV-,-lLf on F,

Above and in the following, for all q,, € W, and for all o € x, we denote again by vy Q. the
extension of vy, oQ,m, by 0 on whole I'.

2.2.2 Weak formulation

The hybrid dimensional weak formulation amounts to find (u,,, us) € V satisfying the following
variational equality for all (v,,,vs) € V'

p
/ A, Vu,, - Vv, dx + /AfVTuf . VT’deTf(X)
Q

r

+ Z /RX Ty (('Voaum —uy)(YaUm — Uf)>dT(X) (3)

acyx

—/hmvmdx—/hfvfdrf(x) =0.
\ Q r

Proposition 2.4 The variational problem (3) has a unique solution (uy,,us) € VO (from Lax
Milgram Theorem) which satisfies the a priori estimate

s )l < € (Wl 2y + sz )

with C' depending only on Cp, A,,,, A, d;, dy, and Ay ,,. In addition (Qm, qy) = —(AmVm, dsAyVouy)
belongs to W.



3 Gradient Discretization of the Hybrid Dimensional Model

3.1 Gradient Scheme Framework

A gradient discretization D of hybrid dimensional Darcy flow models is defined by a vector space
of degrees of freedom Xp = Xp,, x Xp,, its subspace satisfying ad hoc homogeneous boundary
conditions Xp = X3, x X3 , and the following gradient and reconstruction operators:

e Gradient operator on the matrix domain: Vp,, : Xp, — L*(Q)?
e Gradient operator on the fracture network: Vp, : Xp, — L*(T)*!

e A function reconstruction operator on the matrix domain:

H’Dm : Xpm — LQ(Q)

e Two function reconstruction operators on the fracture network:
pr : pr — L2(F) and pr : pr — L2(F)

e Reconstruction operators of the trace on I', for o € x:
g, Xp,, — L*(Iy).

The space Xp is endowed with the semi-norm

10D, v )1 = VD00, 1220 + VD0, (122 (i
+ Z/ (H%mUDm — ﬁDfUDf)QdT(X)7
agcx @

which is assumed to define a norm on X9

The following properties of gradient discretizations are crucial for the convergence analysis
of the corresponding numerical schemes:

Coercivity: Let D be a gradient discretization and

ITLp,, v, |22 + ITIp, v, || 21y

Cp = max
oo Jexe 1(wp,r w00

A sequence (D');ey of gradient discretizations is said to be coercive, if there exists C'p > 0 such
that Cp < Cp for all [ € N.

Consistency: Let D be a gradient discretization. For u = (ty,,uy) € V° and vp = (vp,,,vp,) €
X3 let us define

s(vp,u) = ||Vp,,vp,, — vum||L2(Q)d + ||fovpf - VTUf”LQ(F)dfl
+ |p,,vp,, = tmllr20) + Mo v, — uyllr2r)
+ “HDfUDf - uf||L2(F) + ZaEX ||H%7,Lva - VQUmHL?(Fa).

and Sp(u) = inf,,exo s(vp,u). A sequence (D')en of gradient discretizations is said to be
consistent, if for all u = (up, us) € V° holds

lim SDZ (U) =0.

l—00



Limit Conformity: Let D be a gradient discretization. For all q = (qm.qy) € W, vp =
(vp,,,vp,) we define

(
w(vp,q) = /(VDvam “Qm + (HDmUDm)ddim> dx
+ j(VDfUDf “qr + (prvpf)diVqu> dT(X)
r

+2 / Tt (T, v, — TIp,vp, — 115, v, )d7(x)

\ acx

9 mm(vv, q)l-
A sequence (D')en of gradient discretizations is said to be limit conforming, if for all q =
(s 1y) € W holds

and Whp(q) = SUpPg_yp e x0

=00

Proposition 3.1 (Regularity at the Limit) Let (D')jen be a coercive and limit conforming
sequence of gradient discretizations and let (UD%,UDQIEN be a uniformly bounded sequence in

X%l. Then, there exists (v, vy) € VO and a subsequence still denoted by (vmn,vD})leN such
that

( Ip vp — vy in LP(Q),

Vp, vpi = Vu, in L*(Q)*,
{ Upop, —=wvp in L*(T),
fol)péc —~ Vv in LX)

Op,vp, — I, vpy, = vp = %0n  in L*(T,), for all a € x.

\

3.2 Application to (3)

The non conforming discrete variational formulation of the model problem is defined by: find
(up,,,up,) € X3 such that

/

/ Amv'Dmqu . V'D"LU'Dde + / Avaquf . VDf’UDdef (X)
Q r

+ Z/F Tf(H%mqu - ﬁDquf)<H%mUDm - ﬁpfvpf)dT(X) (4)

aEex @

_/hmHDmUDmdx_/thDfUDdef(X):Oa
Q T

for all (vp,,,vp,) € X3.

Proposition 3.2 Let D be a gradient discretization, then (4) has a unique solution (up,,,up,) €
X2 satisfying the a priori estimate

|, up)llp < C (i) + slaqr)

with C' depending only on Cp, A, A, dy, Ef, and Ag ..

The main theoretical result for gradient schemes is stated by the following Proposition:



Proposition 3.3 (Error Estimate) Let (um,us) € VO, (qm,qy) € W the solution of (2). Let
D be a gradient discretization and (up,,,up,) € X, be the solution of (4). Then, there exists
C > 0 depending only on Cp, A,,, Af,xm, Xf, dy, 8f, Apn, and Xf,n such that one has the
following error estimate:

p,, up,, = tmllr2e) + [[p,up, — uyllr2r)

+p,up, — ugllr2wy + 2 e, 1M, up,, — Yatmllz2(ra)
+|\Vum — VDmUDmHLZ(Q)d + HVTUf — vaquHLz(p)dfl
S C(Sp(um, Uf) + Wp(qm, qf)).

4 Two Examples of Gradient Schemes

Following [5], we consider generalised polyhedral meshes of Q2. Let M be the set of cells that are
disjoint open subsets of © such that |Jy. ., K = Q. For all K € M, xj denotes the so-called
“center” of the cell K under the assumption that K is star-shaped with respect to xx. Let
F denote the set of faces of the mesh which are not assumed to be planar, hence the term
“generalised polyhedral cells”. We denote by V the set of vertices of the mesh. Let Vg, Fk,
V,, respectively denote the set of the vertices of K € M, faces of K, and vertices of o € F. For
any face o € Fi, we have V, C Vi. Let M, (resp. Fs) denote the set of the cells (resp. faces)
sharing the vertex s € V. The set of edges of the mesh is denoted by £ and &, denotes the set
of edges of the face o € F. Let F. denote the set of faces sharing the edge e € &£, and M,
denote the set of cells sharing the face ¢ € F. We denote by F.,; the subset of faces 0 € F
such that M, has only one element, and we set &.,; = er Fons Es, and Vo = UO,e Fou, Voo 118
assumed that for each face o € F, there exists a so-called “center” of the face x, such that

X, = Z Bos Xs, With Z Bos =1,

S€EVs SEVo

T, . defined by the face center x, and each of its edge e € &,.

where 3,5 > 0 for all s € V,. The face o is assumed to match with the union of the triangles

The mesh is assumed to be conforming w.r.t. the fracture network I' in the sense that there
exist subsets Jr,, ¢ € I of F such that

= o (5)

We will denote by JFr the set of fracture faces (J,.; Fr,-
Similarly, we will denote by &p the set of fracture edges (J, . 7 €0 and by Vr the set of fracture
vertices |, ez Vo

We also define a submesh 7 of tetrahedra, where each tetrahedron D , . is the convex hull
of the cell center xx of K, the face center x, of 0 € Fi and the edge e € &,. Similarly we
define a triangulation A of I'; such that we have:

T = U DK,U,e and A= U Ta,e~

KeF,oceFk,e€Es ocEFr,e€Es

We introduce for D € T the diameter hp of D and set h+ = maxpe7 hp. The regularity of our
polyhedral mesh will be measured by the shape regularity of the tetrahedral submesh defined



by 07 = maxper Z—g where pp is the insphere diameter of D € T.

The set of matrix x fracture degrees of freedom is denoted by dofp X dofo. The real
vector spaces Xp,, and Xp ; of discrete unknowns in the matrix and in the fracture network
respectively are then defined by

XDm = Span{ey | Ve dOfDm}
Xp, =span{e, | v € dOfpf},

where

e — (51/;1,)/,L€dofDm fOI‘ vV E dOfDm
v = (5y#)uedof,Df for v € dofp,.

For up,, € Xp,, and v € dofp  we denote by u, the vth compoment of up,, and likewise for
up, € Xp, and v € dofo.
We also introduce the direct product of these vector spaces

X’D = Xpm X pr,

for which we have, by construction, dim Xp = #dofp + #dof p, .
To account for our homogeneous boundary conditions on 9€2 and ¥, we introduce the subsets
dof psy,, C dofp,,, and dof p;,, C dofp,, and we set dof p;. = dof p,,,, X dof py, ., and

X% ={u€ Xp|u, =0 for all v € dof p,, }.

4.1 Vertex Approximate Gradient Discretization

We first establish an equivalence relation on each M,, s € V, by

K =pm,L <= thereexists n € N and a sequence (0;);=1,, in Fs\Fr,
such that K € M,,,L € M, and M,,,, N M,, # 0
fori=1,...,n— 1.

Let_us then denote by M, the set of a&classes of equivalence of M, and by K, the element
of M containing K € M. Obviously M, might have more than one element only if s € Vr.
Then we define

dof p,, :MU{KU | aefp,KeMU}u{fs | s eV, K, Ems},
dofp, = FrUVr,

4of iy, = {Fo | 5 € Ver K, € ML},

dof piy, = Vo N Veat.

We thus have
XD,”:{UK | KGM}U{UKU | UGFF,KEMJ}
U{um \sev,Fseﬂs}, (6)

pr:{ug‘ae}"p}u{usbevp}.



Now we can introduce the piecewise affine interpolators (or reconstruction operators)
Ir: Xp,, — H'(Q\I) and Ha: Xp, — HY(I),

which act linearly on Xp  and Xp I such that Ilaup Jat affine on each 7,,. € A and satisfies
on each cell K € M

HTqu XK) = Uug,

(
Hrup,, (xs) = ug, Vs € Vg,
rup,, (X,) = ur, Vo € Fx N JFr,
HTqu (XJ) = Z ﬁmsu?s Yo € ]:K\]:F,
s€Vo

while Il7up,, is affine on each Dk, . € T and satisfies for all v € dofp ;
Maup, (%)) = u,,

where x, € Q is the grid point associated with the degree of freedom v € dofp U dofp 5 The
discrete gradients on Xp, and Xp, are subsequently defined by

va = VHT and fo = VTHA. (7)

Cell touching a fracture face. Illustra-
tion of the simplices on which:

Red: Vp,, is constant.

Grey: Vp, is constant.

(J UK,
We define the VAG-FE scheme’s reconstruction operators by
L HDm = HT?
o llp, = ﬁDf = la, (8)

o II;, =1.Ily foralla € x.

For the family of VAG-CV schemes, reconstruction operators are constant by volumes. We
introduce, for any given K € M, a partition

?:w;{u( U waJU( U wKo>.

SEVK \Veat ceFNFr



Similarly, we define for any given ¢ € Fr a partition

azwau< U ww).

SEVO'\Vezt
With each s € V \ V., and K, € M, we associate an open set wr,, satistying
or, = |J @k,
KeKs
Similarly, for all s € Vp \ Ve, we define wy by
mo= | @
O’G-qu]:r‘
We obtain the partition

ﬁ:( U wy>u< U wy>.

vedof p, \dof pir,, vedofp \dof pir

We also introduce for each T = T, .o € A a partition T = Ule T;, which we need for
the definition of the VAG-CV matrix-fracture interaction operators. We assume that holds
IT\| = |To| = |T5| = 4|T'| in order to preserve the first order convergence of the scheme.

Finally, we need a correlation between the degrees of freedom of the matrix domain, which
are situated on one side of the fracture network, and the set of indices x. For K, € dofp
we have the one-element set x(K,) = {a € x | ng, = n, on o} and therefore the notation

a(K,) =a € x(K,).

The VAG-CV scheme’s reconstruction operators are

e Ilp, up, = Z u, 1y,

v€dof p,, \dof pir,,
[ prqu = Z uylwya

vedofp \dof pir (9)
° HDquf = Z (Uo—lTl + uslTQ + US/1T3),

T 1EA

0,5,5

° H%mqu = Z Z (UKU 1T1 + UF, 1T2 + Ufs, 1T3)605(Kg)0é1ra’
T 1EA KeEM,

0,8,8

Remark 4.1 The VAG-CV scheme leads us to recover two-point fluxes for the matriz-fracture
interactions.

Proposition 4.1 Let us consider a sequence of meshes (MY)en and let us assume that the
sequence (T')en of tetrahedral submeshes is shape reqular, i.e. 011 is uniformly bounded. We
also assume that lim;_,o, hn = 0. Then, the corresponding sequence of gradient discretizations
(DYYien, defined by (6), (7), (8), is coercive, consistent and limit conforming.

Proposition 4.2 Let us consider a sequence of meshes (M')en and let us assume that the
sequence (T')ien of tetrahedral submeshes is shape regular, i.e. O is uniformly bounded. We
also assume that lim;_, . hw = 0. Then, any corresponding sequence of gradient discretizations
(DY)1en, defined by (6), (7), (9), is coercive, consistent and limit conforming.
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Remark 4.2 It can be shown that for solutions (um,us) € VO and (qm,dqy) € W of (2) such
that u,, € C*(K), uy € C*@), qm € (CHK))?, q; € (C*(7))?* for all K € M and allo € Ty,
the VAG schemes are consistent and limit conforming of order 1, and therefore convergent of
order 1.

4.2 Hybrid Finite Volume Discretization

We assume here that the faces are planar and that x, is the barycenter of o for all o € F.

The set of indices dofp =~ x dofo for the unknowns is defined by

dofp = MU (U MU)

oeF
dOfo = .Fp U 51‘,

dOfDirm = femtv
dOfDirf = SF N gexta

where for 0 € F and K € M,

T :{MU if o € F\ Fr
7 {K} if o € Fr.
and M, = {K, | K € M,}. We thus have
Xp,, = {uK ‘ K e M} U {UFG | oceFr, K, € MJ}, (10)
pr:{ug‘ae}"p}u{ue]eegp}.

The discrete gradients in the matrix (respectively in the fracture domain) are defined in
each cell (respectively in each face) by the 3D (respectively 2D) discrete gradients

Vop,, (resp. Vp,) as proposed in [6], pp. 8-9. (11)

The function reconstruction operators are piecewise constant on a partition of the cells and
of the fracture faces.

Cell touching a fracture face. Illustra-
tion of the simplices on which:

Red: Vp, is constant.

Grey: Vp, is constant.
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These partitions are respectively denoted, for all K € M, by

O'E-FK\]:eact

and, for all o € Fr, by

Ezwau< U wa,e)

6680' \gezt

With each o € F \ Fepr and K, € M, we associate an open set Wg,, 8.t

wfa = U w K,FU'
KeK,

Similarly, for all e € & \ .y we define w, by

o= |J e

ogEFNFr

We obtain the partition Q = <UV€d0f’Dm\d0sz‘rm wy> U <UVEdOfo\d0fDirf wy).

We also need a correlation between the degrees of freedom of the matrix domain, which
are situated on one side of the fracture network, and the set of indices x. For o € Fr and
K, € M, holds by definition K, = {K} for a K € M, and hence nz = ng, is well defined.

We obtain the one-element set x(K,) = {a € x | ng, = n, on o} and therefore the notation

a(K,) = a € x(K,).
We define the HF'V scheme’s reconstruction operators by

) H’Dmqu = E U,jlwu,
vedofp,, \dof pir,
[ ] HDquf = E uylwy,

VEdOf’Df\dOfDirf

L4 HDquf = E u0'10'7

oEFT

o I} up,, = Z Z On(R,)alr, 1o forall o € x.

ocFr Fo— eﬂa

(12)

Proposition 4.3 Let us consider a sequence of meshes (M')en and let us assume that the
sequence (T')ien of tetrahedral submeshes is shape regular, i.e. O is uniformly bounded. We
also assume that lim;_, hw = 0. Then, any corresponding sequence of gradient discretizations
(DY) 1en, defined by (10), (11) and definition (12), is coercive, consistent and limit conforming.

Remark 4.3 It can be shown that for solutions (up,us) € VO and (qm,dy) € W of (2) such
that u,, € C*(K), uy € C*(7), qm € (C*(K))?, q; € (C1(7))4! for all K € M and all o € Ty,
the HEV schemes are consistent and limit conforming of order 1, and therefore convergent of
order 1.
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4.3 Finite Volume Formulation for VAG and HFV Schemes
For K € M let

dofx = {Fas € Vit U{K,,0 € Fx N Fr} for VAG,
K=\ {K,,0 € Fx)} for HFV.

Analogously, in the fracture domain, for o € Fr let

dof, — V, for VAG,
%le =9 &, for HFV.

The transmissivities (T%"), ,/cdof, in the matrix domain are then for each K € M real #do fi x
#dofr SPD-tensors, defined by

TV = / AV, 6,V e dx.
K

Then, for any v € dofk the discrete matriz-matriz-fluxes are defined as

Fry(up,) = Y TR (ux —uy).

v'edofi

In the fracture network, the transmissivities (Tgyyl)y,z/’edofg are for each o € JFr real #dof, x
#dof, SPD-tensors, defined by

T:V/ —/AfVDfevafel/de(X>

and for any v € dof, the discrete fracture-fracture-fluxes are defined as

Fo(up,) = Y T2 (g — uy).
v'Edofs
To take interactions of the matrix and the fracture domain into account we introduce the set
of matriz-fracture (mf) connectivities

C = {(Vm,v¢) | Vm € dofp,, Vs 5.t. Xy, =%, }

with dofp, = {v € dofp |x, € T}. For (v, vy) € C we define Cy,, ,,) C C as the stencil of
the corresponding flux defined by the subset C,, of dof%m.

The mf-transmissivities (T,,VZ:;)(%,V})GC(UWUN, (Vm, vy) € C, are defined by

vl v

Ty;nyff = /T( )Tfﬁpfe,/fﬁpfey}dT(X),

where

T(vn) = I'NUger, K for v, = K, (VAG) B
" I'Nno for v, = K, (VAG) or v, = K, (HFV)

The mf-fluxes are subsequently defined as

/ /
Fv;(up,,, up,) = Z T:S;f (ty, —wy,)  forall (vm,vy) €C.
(V£n7l/})ec(um,uf)
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We observe that for VAG-CV and HF'V schemes, these fluxes are two-point fluxes in the sense
that C,,;) = {(Vm,vg)}. For the VAG-FE scheme we obtain multi-point fluxes with the
stencils

Cum = {75} U{ZS/,LU’SSI €& ﬂEF,U e F O}"Lﬂ}"p,L E?S},

for v, = K, € M, and s € Vr, £, denoting the set of edges of cell L, and
C,,, = {K,}U{K,,s€V,},

for v, = K, € M,, 0 € Fr. The discrete source terms are defined by

/ hpIlp, e, dx for v € dofp_,

fthDfQVde<X) for v € dofp, .
r

H, =

Figure 2: mm-fluxes (red), mf-fluxes (dark red) and ff-fluxes (black) for VAG (left) and HF'V
(right) on a 3D cell touching a fracture

The following Finite Volume formulation of (3) is equivalent to the discrete variational
formulation (4): find (up,,,up,) € X3 such that
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forall K e M: > Fg,(up, )= Hg

vedofk
forallce Fr: > Folup,)— > F,..(up,,up,) = H,
vEdofs vm€dofp,,
s.t. (vm,0)€C
for all v, € dofp,, \ (M U dof p;,, ) :
- Z FKVm (qu) - Z FVme (qu7 qu) = HVm
KeMy,, l/fEdOfo

s.t. (vm,vy)eC

for all vy € dofp, \ (Fr U dof p;y,) :

— Y Faup)— Y Fu(up,,up,) = H,.

UE.Fnyf VmGdOfDm
s.t. (vm,vy)eC

\

Here, M,, stands for the set of indices {K € M | v € dofk} and Frou; stands for the set
{oc € Fr | v € dof,}.

5 Conclusion

In this work, we extended the framework of gradient schemes (see [5]) to the model problem (2)
of stationary Darcy flow through fractured porous media and gave numerical analysis results
for this general framework.

The model problem (an extension to a network of fractures of a PDE model presented in
8], [10] and [2]) takes heterogeneities and anisotropy of the porous medium into account and
involves a complex network of planar fractures, which might act either as barriers or as drains.

We also extended the VAG and HF'V schemes to our model, where fractures acting as
barriers force us to allow for pressure jumps across the fracture network. We developed two
versions of VAG schemes, the conforming finite element version and the non-conforming control
volume version, the latter particularly adapted for the treatment of material interfaces (cf. [7]).
We showed, furthermore, that both versions of VAG schemes, as well as the proposed non-
conforming HF'V schemes, are incorporated by the gradient scheme’s framework. Then, we
applied the results for gradient schemes on VAG and HF'V to obtain convergence, and, in
particular, convergence of order 1 for ”piecewise regular” solutions.

For implementation purposes and in view of the application to multi-phase flow, we also
proposed a uniform Finite Volume formulation for VAG and HF'V schemes.

Acknowledgements: the authors would like to thank TOTAL for its financial support and
for allowing the publication of this work.
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