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Energy Storage Systems (ESS) like electrochemical ba eries can be used as bu ers to reduce power uctuations in di erent applications. For wind or solar power generation, an ESS can mitigate the uctuations of the renewable power source. In an hybrid electric vehicle (HEV), it absorbs the fast uctuations of the driving power pro le to keep the combustion engine close to an e cient operating point.

In these two applications, the control of the ESS is o en treated as an optimization problem where the objective is to maximize the performance of the overall system. Performance criterions can be, for example, the fuel e ciency for a HEV, or a measure of the uctuations at the output of a combined wind-storage system (cf. gure 1 introduced in the next section).

e control decides how and when to charge and discharge the ba ery to maximize the performance objective.

However, most ESS, and electrochemical ba eries in particular, can only perform a limited number of charge/discharge cycles over their lifetime. is aging phenomenon causes a degradation of the ba ery parameters: decrease of the capacity, increase of the series resistance. is can lead to an eventual ESS replacement. is is why aging is crucial for evaluating and then minimizing the life-cycle cost of an ESS [START_REF] Kovaltchouk | Enhanced Aging Model for Supercapacitors taking into account Power Cycling: Application to the Sizing of an Energy Storage System in a Direct Wave Energy Converter[END_REF][START_REF] Aubry | Energy Storage System Sizing for Smoothing Power Generation of Direct Wave Energy Converters[END_REF].

Unfortunately, ba ery aging is seldom taken directly in the control optimization. O en, it is only a er simulating the behavior of the system, that an aging study is conducted. Before discussing existing work on aging control, we need to give an overview of aging modeling.

Models for Cycling Aging

e purpose of limiting ba ery aging requires a model for the aging phenomenon. Ba ery aging can be studied at the microscopic scale of the degradation processes, which is a research eld by itself. However, for control, we need simpler models that are de ned on the system level. Our work relies on aging models from the literature which are well in line with the datasheets provided by ba ery manufacturers.

e veri cation of such models using (accelerated) aging test benches is again another eld of expertise.

A commonly used empirical model for cycling ag-ing is the "Ah throughput" model. It is widely described in the literature [3, §4] [4, §4], with some variations like "weighted Ah throughput" models to account for technology-speci c aggravating aging factors. is model considers that a ba ery can exchange a xed amount of charge over its life. As such, the model consists in integrating over time the current that goes in and out of the ba ery (thus the name "Ah-throughput"). We use a common variation which consists in counting the exchanged energy instead of the charge (Wh vs. Ah). is energy counting model integrates the absolute power P st o of the battery:

E exch (t ) = t 0 |P st o |dt (1) 
and this exchanged energy is then compared with the energy exchanged during one full charge-discharge cycle, i.e. two times the energetic capacity of the battery (2E r at ed ). e ratio gives N c cl , the number of equivalent full cycles:

N c cl (t ) = E exch (t )/(2E r at ed ) (2) 
is number increases with time, and when it reaches N l if e , the maximum number of full chargedischarge cycles, the ba ery is considered to be in end-of-life and should be replaced 1 . N l if e is typically between 500 and 5000 for ba eries. An important property of this counting method is that it allows a number of cycles that is inversely proportional to the amplitude of these cycles (o en called Depth of Discharge). is fact is o en veri ed on the "aging curves" provided by manufacturers of lead-acid batteries.

e reader can nd a deeper analysis on the link between energy counting and cycle counting in Serrao et al. [START_REF] Serrao | A novel model-based algorithm for battery prognosis[END_REF] and our thesis [6, §2.2].

Now that an aging model is established, we can turn to our main contribution: the mitigation of cycling aging through the ESS control.

Previous Work on Aging Control

e problem we have described in section 1.1 was already underlined by some authors [START_REF] Serrao | Optimal energy management of hybrid electric vehicles including ba ery aging[END_REF][START_REF] Borhan | Optimization-based power management of a wind farm with ba ery storage[END_REF][START_REF] Koller | De ning a degradation cost function for optimal control of a ba ery energy storage system[END_REF]. We can summarize some keys aspects of their contributions: Serrao et. al [START_REF] Serrao | Optimal energy management of hybrid electric vehicles including ba ery aging[END_REF] (HEV context) and Borhan et. al [START_REF] Borhan | Optimization-based power management of a wind farm with ba ery storage[END_REF] (wind power context) both use weighted charge counting to model cycling aging, while Koller et. al [START_REF] Koller | De ning a degradation cost function for optimal control of a ba ery energy storage system[END_REF] (peak shaving context) use a piece-wise a ne model with quadratic cost because it enables e cient optimization solving.

All these approaches a empt to reduce the aging by adding the aging increase as a penalty in the optimization criterion, which otherwise contains only a performance criterion (like the HEV fuel e ciency).

e control designer is thus forced to tune a weighting factor to nd a satisfactory compromise between performance and aging.

We propose instead to express aging limitation as an inequality constraint rather than a cost penalty.

is can ease the implementation of aging limitation, because the control designer can directly set a desired maximum number of cycles N l if e , with no need for tuning.

Reformulating aging limitation as a constraint

Based on the cycle counting model (2), we can indeed express aging limitation as an inequality constraint. Given T l if e , the expected lifetime of the project involving the ESS, the non replacement of the storage during the operational period is expressed by N c cl (T l if e ) ≤ N l if e . is translates into a constraint on the mean absolute storage power: [START_REF] Bindner | Lifetime Modelling of Lead Acid Ba eries[END_REF] where P exch is what we call the mean exchangeable power. It is the ratio of the lifetime exchangeable energy of the storage with the duration of the project:

1 T l if e T l i f e 0 |P st o |dt = |P st o | T l i f e ≤ P exch
P exch = 2E r at ed N c cl /T l if e (4) 
Inequality ( 3) is the condition that should be satis ed by the ESS control algorithm (which sets P st o at each time) to limit the aging. However, this is an integral constraint on a very long time horizon (T l if e typically in the range of 5 to 20 years). is horizon is much longer than a usual ESS control horizon (on the order of the energy/power ratio of the ESS, i.e. minutes to hours). It cannot be practically solved by common control algorithms such as Model Predictive Control (MPC) or Stochastic Dynamic Programming (SDP). As such, expressing the lifetime constraint (3) 2 Problem Description 2.1 Modeling

Wind-storage system

We our study on the of a system for a day-ahead production commitment. e storage is used to mitigate the uctuations of the wind power plant (see [START_REF] Haessig | Energy storage sizing for wind power: impact of the autocorrelation of day-ahead forecast errors[END_REF][START_REF] Haessig | Aging-aware NaS ba ery model in a stochastic wind-storage simulation framework[END_REF] for previous work on this context). Figure 1 shows the variable and energy ows of this system, with the three main ones highlighted in red:

• P mis is the di erence between the wind power production P pr od and the commitment P * r id made one day in advance, based on a production forecast2 .

• P st o is the power absorbed by the storage (convention P st o > 0 when charging, P st o < 0 when discharging).

• P de is the commitment deviation (P r id -P * r id ) for which the wind operator must pay penalties to the grid operator (cf. [START_REF] Haessig | Energy storage sizing for wind power: impact of the autocorrelation of day-ahead forecast errors[END_REF] for detailed context).

e commitment deviation can be wri en as:

P de = P mis -P st o (5) 
Stored Energy Exchangeable Energy overflow Figure 2: Graphical representation of the dynamical models for the Energy Storage System and its aging. On the le , the usual stock of stored energy [START_REF] Haessig | Dimensionnement & gestion d'un stockage d'énergie pour l'a énuation des incertitudes de production éolienne[END_REF]. On the right, the auxiliary stock of "exchangeable energy" ( 8), which we introduce to enforce aging limitation [START_REF] Bindner | Lifetime Modelling of Lead Acid Ba eries[END_REF].

to highlight how the storage can be seen to act directly as a mitigation of the day-ahead forecast error P mis .

Energy Storage System

For the purpose of energy management, we need a simple energetic model of the ESS. We use a discrete time model, with ∆ t as the time step:

E st o (k + 1) = E st o (k ) + (P st o (k ) -P losses )∆ t (6)
where E st o is the energy stored in the ESS. P losses represents all the energy losses of the storage (in particular: self-discharge and Joule losses) and, in general, is a complex function of P st o and E st o , and depends on the technology. Since we do not focus on these losses here, we consider a lossless storage: P losses = 0. e amount of stored energy E st o is constrained by the rated energy E r at ed :

0 ≤ E st o ≤ E r at ed (7) 
and we can de ne the State of Energy:

SoE = E st o /E r at ed (∈ [0, 1]
). e dynamical model de ned by ( 6) is graphically represented on the le side of gure 2.

Exchangeable Energy

As explained in section 1.4, aging limitation can be expressed as an integral constraint (3) on an horizon that is too long. We thus introduce a new auxiliary state variable to embed constraint (3) in a manageable way. We call it the exchangeable energy stock, with the following dynamical behavior:

X st o (k+1) = sat X st o (k )+(P exch -|P st o (k )|)∆ t (8)
where P exch is the mean exchangeable power (4) and "sat" enables the over ow of this stock beyond a threshold X max :

sat(x ) =      x if x X max X max if x > X max (9) 
We illustrate this dynamics on the right side of gure 2. A key stage is requiring this stock to be non empty: 0 ≤ X st o , which translates into a constraint on the control variable P st o :

|P st o (k )| ≤ P exch + X st o (k )/∆ t ( 10 
)
is constraint is indeed simpler than (3) because it only involves the current value of the state variable X st o . One can show that combining constraint [START_REF] Haessig | Energy storage sizing for wind power: impact of the autocorrelation of day-ahead forecast errors[END_REF] with the dynamical equation ( 8) gives a su cient condition to respect the original aging limitation (3).

X st o interpretation: We propose to interpret this new variable X st o as a bu er of exchangeable energy. When the ba ery is heavily used (|P st o | ≥ P exch ), this stock decreases. When the ba ery is less used (|P st o | < P exch ), the stock regenerates. If X st o reaches zero, this forces |P st o (k )| ≤ P exch , which is a conservative way to respect condition [START_REF] Bindner | Lifetime Modelling of Lead Acid Ba eries[END_REF].

enite range of X st o explains that in the long run, the average of |P st o | is indeed smaller than P exch .

One downside of this formulation is that it introduces the parameter X max , the size of the exchangeable energy stock, which must be chosen. If it is too small, constraint (10) falls back to |P st o (k )| ≤ P exch which is stricter than [START_REF] Bindner | Lifetime Modelling of Lead Acid Ba eries[END_REF]. A too big value yields a big stock that the control optimization must manage, so it brings back the problem of a too long optimization horizon. At the end of the article (section 3.4), we extend this qualitative reasoning with numerical results on the e ect choosing X max . We argue that a "big enough" size gives enough freedom so that the system performance is eventually the same as with the original constraint (3).

Forecast Error Persistence

Day-ahead forecast error P mis is a stochastic input for the ESS control. Also important, it exhibits persistence (e.g. positive correlation) along several hours [START_REF] Haessig | Energy storage sizing for wind power: impact of the autocorrelation of day-ahead forecast errors[END_REF]. We capture both the randomness and the persistence using an Autoregressive AR(1) model:

P mis (k + 1) = ϕP mis (k ) + w (k ) (11) 
where w (k ) is a Gaussian white noise. is AR(1) model has two parameters: the standard deviation σ P of P mis (i.e. the RMS forecast error) which is linked to the variance of w, and the AR coe cient ϕ which is the correlation between two successive hours. Both must be estimated on actual time series [START_REF] Haessig | Energy storage sizing for wind power: impact of the autocorrelation of day-ahead forecast errors[END_REF].

Control Optimization

Now that we have expressed the system dynamics, we can formulate the control optimization problem. Our control objective is to keep the total output of the wind-storage system (P r id = P pr od -P st o ) around the day-ahead commitment P * r id , in a ±P t ol interval. e control, acting on the storage power P st o , should minimize on average a penalty at each instant:

= 1 K E      K -1 k=0 cost (k )      with K → ∞ (12) 
where cost (k ) is the following penalty function:

cost (k ) = max 0, |P de (k )| -P t ol (13) 
which penalizes in absolute value each deviation outside the tolerance band. is penalty with a free tolerance band is inspired by a grid code for windstorage systems in French islands [START_REF] Haessig | Energy storage sizing for wind power: impact of the autocorrelation of day-ahead forecast errors[END_REF] and can be similarly found in the Hungarian grid code [13, §5.A].

is optimization includes the temporal constraints introduced with the dynamical equations ( 6), ( 8) and [START_REF] Haessig | Aging-aware NaS ba ery model in a stochastic wind-storage simulation framework[END_REF]. e expectation E{} is needed because of the stochastic input w in [START_REF] Haessig | Aging-aware NaS ba ery model in a stochastic wind-storage simulation framework[END_REF]. erefore, minimizing is a stochastic dynamic optimization problem [START_REF] Bertsekas | Dynamic Programming and Optimal Control[END_REF], which we solve using our open source Stochastic Dynamic Programming (SDP) package stodynprog [START_REF] Haessig | Computing an Optimal Control Policy for an Energy Storage[END_REF]. Note that using SDP is not a requirement for solving the formulation of aging limitation we present here. Another control framework, like the popular Model Predictive Control (MPC, with Koller et. al work [START_REF] Koller | De ning a degradation cost function for optimal control of a ba ery energy storage system[END_REF] as one example) could be used as well. 3 Aging Control Results

Input Data

We use the publicly available NREL "Eastern Wind Dataset" [START_REF]Eastern Wind Integration and Transmission Study[END_REF] as a test case for our aging control method. It provides 3 years of production and dayahead forecast data 3 at an hourly timestep (∆ t = 1 h) for many wind farms in the US. We choose farm #7277 and normalize the powers by its production capacity (132.3 MW) so that production and forecasts are expressed in per unit (pu). is farm has a mean production of 0.343 pu and RMS forecast error is σ P = 0.195 pu. e AR coe cient ϕ, which gives the correlation of forecast errors between two successive hours, is estimated at 0.79. is high positive temporal correlation is typically observed with day-ahead forecasts and it adversely impacts the system performance [START_REF] Haessig | Energy storage sizing for wind power: impact of the autocorrelation of day-ahead forecast errors[END_REF]. On gures 3 and 4, we represent a 10 days extract of this input data (forecast in gray, production in light blue).

Test Case

We consider a storage of capacity E r at ed = 1 h 4 . Deviation tolerance P t ol is set to 0.2 pu (shaded area on gures 3 and 4). is 20 % tolerance is in line with the 3 this dataset is in fact synthetic: production and forecasts are reconstructed from numerical weather models [START_REF] Aws Truewind | Development of Eastern Regional Wind Resource and Wind Plant Output Datasets: March 3[END_REF]. 4 E r at ed is expressed in hours when working in per units. Actual capacity is 1 h×the rated power of the wind farm, which is a typical value in such a context of day-ahead production hedging. grid code for French islands. For aging limitation, we require a maximum of N l if e = 3000 equivalent full cycles over the period T l if e = 20 years. is gives an exchangeable power P exch = 0.034 pu, which is quite small compared to the RMS forecast error σ P . We choose this (moderately) ambitious aging limitation so that it cannot be reached "by chance", without an explicit action in the energy management. is way we can show the e ectiveness of our aging control. Finally, we set X max to 1.71 h (P exch 50 h) but we explain this choice further, in section 3.4. We simulate the wind-storage system with di erent controls and collect three performance statistics (reported in table 1):

• Aging: the number of equivalent full cycles N c cl e (T l if e ), which we would like to be less than N l if e = 3000.

• Ovtol, shorthand for "Over tolerance": the proportion of hourly time steps spent above the tolerance threshold (|P de (k )| > P t ol ).

• Ovtol MAE: Mean Absolute Error above the tolerance threshold. is is in fact the criterion minimized by the control, given penalty function (13).

Simulation Results

For each control strategy, we run the simulation with the entire 3 years dataset and we report the statistics in table 1. e controls we compare, along their respective results, are:

1. C1: optimal control with no aging limitation. is gives the best performance for (0.013 pu), but aging is twice above the target of 3000 cycles/20 yr.

2. C2: we overload C1 with our aging limitation [START_REF] Haessig | Energy storage sizing for wind power: impact of the autocorrelation of day-ahead forecast errors[END_REF] 3. C3: optimal control with aging limitation (using X st o ): Aging limit is respected, and the performance (0.014 pu) is not far from the best performance without aging limitation (C1).

As a baseline reference, C0 gives the performance statistics in the absence of storage. ese simulations show the e ectiveness of our aging control C3 at keeping cycling aging just below the user imposed limit, while still keeping the best possible performance, like the regular optimal control C1. To illustrate the qualitative behavior of these two controls, we represent an extract of trajectories with C1 and C3 on gures 3 and 4 respectively. e time periods when |P de | > P t ol are highlighted in orange. One can see that the time spent outside the tolerance band is quite similar between the two. Looking at the SoE (bo om panels), there are more uctuations for C1 than C3, but the slow (daily) variations are similar. However, we underline that strategy C3 cannot be reduced to a simple linear low-pass ltering of C1. We can observe that with C3, the ba ery spends more time at rest (P st o = 0 so P r id = P pr od and SoE (t ) is constant). All in all, the "thri ier" ba ery management C3 is responsible for the reduction in the number of cycles by a factor of two compared with C1.

Choosing the Aging Control Horizon

We have so far le undiscussed the choice of the only tunable parameter of our method: X max , the size of the exchangeable energy stock X st o . Let us remind that this stock is used to give freedom to the control to allocate more ba ery power (i.e. consume cycles) when needed, while still keeping |P st o | below P exch on average.

For be er reasoning, we express this stock size as a time T X using the relation

X max = P exch × T X (14) 
Parameter T X is the time it takes to recharge the entire stock, starting from zero (X st o stock is indeed recharged, according to [START_REF] Borhan | Optimization-based power management of a wind farm with ba ery storage[END_REF], at a rate equal to P exch ). us, from the perspective of aging control, it represents the time horizon on which the ESS control algorithm can borrow exchangeable energy from the future. erefore, we call T X the aging control horizon.

We study its e ect by varying its value from zero to 500 hours in our age limiting control C3. We show the resulting performance statistics on gure 5 (red curve). For a too small horizon (T X < 1 h), there is a major performance loss due to the conservativeness of our aging limitation method. As the horizon is increased, the performance loss decreases.

en, for an horizon T X greater than about 100 hours, there is an optimal plateau as T X → ∞. We thus claim that our method becomes equivalent to an optimal control satisfying the initial aging constraint (3) that spans over T l if e (20 years here).

ese numerical results support the qualitative reasoning proposed at the end of section 2.1.3. Also, this justi es a posteriori our choice of T X = 50 hours in our previous simulations: it yields an (almost) optimal performance while being small enough to ensure the fastest convergence of the SDP optimization algorithm 5 .

Finally, we can observe on gure 5 a performance gap of about 0.001 pu between C3 and C1 (control the performance of the optimal agingconstrained control C3. A too small T X (under ∼100 h) yields a too conservative aging limitation which decreases the performance.

As a baseline, control C1 with no aging limitation shows the performance di erence due to the aging limitation constraint. without aging limitation, blue line). We claim that this is the price of the aging constraint (a constrained minimum is always worse or equal than a constraintfree one). A further study could be to vary the aging limit (3000 cycles on 20 years in this article) to generate a trade-o curve between the performance and the limit. is would outline a Pareto front between these two con icting objectives (minimizing output deviations and cycling aging).

Conclusion

We introduced a formulation of cycling aging (based on exchanged energy counting) with two advantages: it ts naturally in the ESS control optimization and it enables the control designer to directly set a maximum number of ba ery cycles over the project lifetime. We illustrated the e ectiveness of our scheme with a simulation on an open dataset. On this example, cycling is reduced by 50 % with a less than 10 % decrease in performance.

Further studies could include looking at the tradeo between the limitation of storage aging and the performance. Also, we plan to adapt our formalism to other aging models, in particular weighted charge counting [START_REF] Bindner | Lifetime Modelling of Lead Acid Ba eries[END_REF][START_REF] Sauer | Comparison of di erent approaches for lifetime prediction of electrochemical systems-Using lead-acid batteries as example[END_REF], and more importantly calendar aging. Calendar aging can be included in control optimization when it depends on operational conditions like SoE (particularly true for super capacitors [START_REF] Kovaltchouk | Enhanced Aging Model for Supercapacitors taking into account Power Cycling: Application to the Sizing of an Energy Storage System in a Direct Wave Energy Converter[END_REF]).
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 1 Figure 1: Wind-storage system used as a context for storage aging limitation
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 3 Figure 3: Wind-storage system ful lling a day-ahead production commitment. Simulation with control C1: optimal ESS control with no aging limitation
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 4 Figure 4: Wind-storage system ful lling a day-ahead production commitment. Simulation with control C3: optimal aging-constrained ESS control
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 5 Figure 5: E ect of the aging control horizon onthe performance of the optimal agingconstrained control C3. A too small T X (under ∼100 h) yields a too conservative aging limitation which decreases the performance.As a baseline, control C1 with no aging limitation shows the performance di erence due to the aging limitation constraint.

  introducing X st o in the dynamics. Aging limitation is indeed e ective, but the performance is severely decreased because C1 doesn't anticipate X st o evolution. As a consequence, X st o value is o en zero, or close to, which implies a overly conservative limitation of |P st o | through inequality[START_REF] Haessig | Energy storage sizing for wind power: impact of the autocorrelation of day-ahead forecast errors[END_REF].

Table 1 :

 1 Performance comparison 

	Control	Aging and performance statistics Aging Ovtol Ovtol MAE
	C0	-	27.5 %	0.032 pu
	C1	6 372	8.49 %	0.013 pu
	C2	2 998 19.97 %	0.023 pu
	C3	2 966	9.97 %	0.014 pu

A common and equivalent expression is to de ne a State of Aging (SoA) as the N c cl (t ))/N l if e ratio. SoA starts at 0 zero, and end-of-life is reached when SoA(t ) = 1

see ANEMOS.plus project report[START_REF] Giebel | e state-of-theart in short-term prediction of wind power: A literature overview[END_REF] for a state of the art on wind power forecasting

more precisely, we use a "policy iteration" algorithm[START_REF] Bertsekas | Dynamic Programming and Optimal Control[END_REF][START_REF] Haessig | Computing an Optimal Control Policy for an Energy Storage[END_REF]. It includes iterations along time in each "policy evaluation" step, and the number of those iterations is dictated by the time constants of all stocks, e.g. T X .
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