
HAL Id: hal-01147327
https://hal.science/hal-01147327

Submitted on 30 Apr 2015

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A Multi-agent System for Autonomous Control of Game
Parameters

Luc Pons, Carole Bernon

To cite this version:
Luc Pons, Carole Bernon. A Multi-agent System for Autonomous Control of Game Parameters. IEEE
International Conference on Systems, Man and Cybernetics (SMC 2013), IEEE, Oct 2013, Manchester,
United Kingdom. pp.583-588, �10.1109/SMC.2013.105�. �hal-01147327�

https://hal.science/hal-01147327
https://hal.archives-ouvertes.fr

Open Archive TOULOUSE Archive Ouverte (OATAO)
OATAO is an open access repository that collects the work of Toulouse researchers and
makes it freely available over the web where possible.

This is an author-deposited version published in : http://oatao.univ-toulouse.fr/
Eprints ID : 12835

To link to this article : DOI :10.1109/SMC.2013.105
URL : http://dx.doi.org/10.1109/SMC.2013.105

To cite this version : Pons, Luc and Bernon, Carole A Multi-agent
System for Autonomous Control of Game Parameters. (2013) In: IEEE
International Conference on Systems, Man and Cybernetics - SMC
2013, 13 October 2013 - 16 October 2013 (Manchester, United
Kingdom).

Any correspondance concerning this service should be sent to the repository

administrator: staff-oatao@listes-diff.inp-toulouse.fr

http://oatao.univ-toulouse.fr/
http://oatao.univ-toulouse.fr/12835/
http://dx.doi.org/10.1109/SMC.2013.105
mailto:staff-oatao@listes-diff.inp-toulouse.fr

A Multi-Agent System for Autonomous Control

of Game Parameters

Luc Pons, Carole Bernon

IRIT, University of Toulouse

Toulouse, France

{Luc.Pons,Carole.Bernon}@irit.fr

Abstract—Control of game parameters to reach domain-
related objectives cannot be easily handled with classic control
theory approaches. Given the dynamics and complexity of modern
game engines, diversity of human players and their constantly
changing nature, this paper advocates for means to tune game
parameters in real time, with no use of game or users models.
The proposed approach, based on a multi-agent system, is used
to control two dynamic systems before analyzing the results.

I. INTRODUCTION

In recent years, video games engines have become more
and more complex. They can now aggregate many different
concepts, as well as many rules defining what the game-play
consists in, and what are the tasks players have to perform.
Mechanisms and concepts of game engines are parametrized,
and an important part of the designer’s job is to get from
the game-play idea to actual parameter values. The increasing
amount of possibilities offered by game engines makes it
difficult to properly implement a game that will match ideas
of designers [1].

Additionally, the ability of a game to adapt autonomously
to players becomes a requirement. This is especially true
in games having a more serious aspect, such as military
training or professional education, where the experience should
constantly match players’ skills and abilities to be optimally
efficient [2], [3], [4].

Automated parameter adjustment is a candidate solution for
answering these points [5]. In the field of control, proportional-
integral-derivative (PID) controllers have been used with suc-
cess to determine appropriate policies on system inputs to
match objectives on their outputs [6]. However, PID controllers
generally connect one input to one output in a linear fashion,
making them inefficient in the control of more complex
systems.

Model Predictive Control (MPC) has then been proposed
to deal with non-linear systems, incorporating time delays, and
high order dynamics. A model of the system to be controlled
is needed in order to anticipate the modification to apply on
the control policy.

However there are several major challenges to overcome
before offering a satisfactory solution. Video games, just like
simulations, can present a high degree of complexity. With
many autonomous interacting entities, as well as time-delayed
interactions and multi-objective tasks for players to perform, it
may be difficult, if not impossible, to predict the consequences

of an arbitrary change in the parameters, and thus, to create
an appropriate model.

In such cases, another possible approach is to use the
knowledge of domain experts to build an appropriate control
policy. Expert systems consist of a rule base, that associates ac-
tions with specific situations, as well as mechanisms observing
the current state of the controlled system [7]. Conveniently, this
approach does not necessitate a model of the controlled system,
nor a deep understanding of its inner dynamics. Various
improvements have been made over the years, such as the
addition of fuzzy predicates in the rule base [8]. This however
requires a complete knowledge of the repairing actions when
the system does not satisfy objectives. Such knowledge is
generally not available in complex interactive systems like
games, especially since a human is constantly interacting with
the game.

Interaction makes controlling the game engine even more
difficult. Human beings and conditions they are in cannot be
efficiently modeled, and what seems difficult for someone may
be simple for someone else [9]. Modification of parameters’
values can have distinct consequences depending on which
human is interacting with the game. Besides, humans are by
nature changing, and when they learn something new, a new
strategy must be adopted in order to efficiently control the
parameters of the game engine.

Moreover, the inner dynamics of video games change over
time and an observed property of the game system may not
remain true at some other point in time.

Other artificial intelligence techniques have been used
to overcome these limitations. Neural networks have been
advocated when no model of the controlled system is available,
and when no efficient control policy is known in advance.

Neural networks (NN) can approximate any non linear
system, given that they receive appropriate training feedback.
When controlling a system S with an input I, its output can
be given to a neural network. The network can then be trained
to find the previously given input I. In other words, the NN
is trained to find the inverse model of S [10], [11]. Another
possibility is to train the NN to find a predictive model of the
control system. But whatever the use of the NN, a training
phase with appropriate data is always needed. Data need to be
available in a sufficient quantity, and should be representative
enough so the NN can generalize to novel situations. Given
the diversity of human players, such data may not be available
and the cost of setting up a training phase for the NN may

prevent one from applying this technique for controlling game
engines.

From these considerations, we advocate the need for a
system able to control parameters of a game in a real-time
and autonomous fashion, without making use of a model of
the game being controlled, nor of users playing the game.

The remainder of this paper is structured as follows. The
concepts used are first defined before detailing why and how
the control system is designed as a self-organizing multi-agent
system. Sections IV and V then apply the proposed control on
two different kinds of application: a prey-predator system and
a video game. Finally, an analysis concludes the paper.

II. PROBLEM DEFINITION

In order to apply a control policy on input parameters
of systems like video games, the parameters manipulated by
this control system, as well as the objectives that need to be
satisfied, have to be defined first. This section also describes
the terminology used throughout the paper, as well as the
concepts that need to be understood by any domain expert
wishing to apply the approach.

A. Parameters and Measures

When building a parameter adaptation system, the first step
consists in identifying all the parameters it is possible to adjust.
Each of these parameters needs to be uniquely identified and
associated with a range defining the values allowed for this
specific parameter. The set of all manipulable parameters IN
constitutes the input of the system to be controlled; it is defined
as follows:

IN = {p1, ..., pm}; pi ∈ [pimin
, pimax]⊂ R

Parameter adjustment aims at influencing the state of the
game engine in certain directions. In addition to the input
parameters previously defined, such a state is characterized by
observations. Observations can either be emerging properties
of the game engine, or they can result from interactions
between human players and the game engine. In either case,
they cannot be directly inferred from the values of the input
parameters. Moreover, some games may have some stochastic
aspects, making observations mandatory to determine their
current state. Each atomic observation of the game must
be identified and associated with a range. The set of these
observable values is defined as the output set OUT as follows:

OUT = {o1, ...,on};oi ∈ [oimin
,oimax]

B. Objectives and Constraints

The objective of the control system then needs to be
defined. Objectives of game designers are often multiple
and contradictory. Instead of defining a general state of the
game as an objective, several independent objectives are here
considered, each one related to an atomic observation of the
game engine.

Human requirements on artificial systems can be hard to
express. Humans often have a general idea of their expectations
that cannot be easily expressed in a numerical form, more
suitable for an intelligent control system. Solutions with fuzzy

predicates have been proposed [12]. Fuzzy predicates allow the
definition of properties that are not necessarily true or false,
but can take instead any intermediate value.

This paper proposes the use of similar mechanisms. An
objective involving a specific measure on the game engine
should not be necessarily satisfied or unsatisfied. For that
purpose, satisfaction functions are introduced. A satisfaction
function takes the value of an output, and yields a satisfaction
value, arbitrarily chosen within the [0,100] interval, 100 being
the state of complete objective satisfaction.

Depending on the “shape” of the function, an objective can
be strict, with a high satisfaction only on a single value, or it
can be loose, with a satisfaction slowly decreasing as the value
strays from the objective.

The set of all objectives OBJ is defined as follows:

OBJ = {ob j1, ...,ob jn};ob ji: [oimin
,oimax]→ [0,100]

In addition to the objectives to be satisfied, a control system
should consider a set of constraints on the inputs. Each input
has a range of validity for its value, but there can be some
additional constraints, reflecting specific requirements from
the domain. In this paper, constraints on input parameters
are expressed similarly to objectives, that is, with the use of
satisfaction functions.

For each input parameter, a satisfaction function can be
defined, mapping all possible values to a degree of satisfaction.
The set of all constraints CONS is defined as follows:

CONS = {cons1, ...,consm};consi: [pimin
, pimax]→ [0,100]

The aim of the parameter adjustment is to find the values
of IN that maximize all the time the satisfaction of both OBJ
and CONS. In other words, it is to tune all the parameters so
all the constraints and objectives are satisfied.

C. Correlations between Parameters

To dynamically control the target system, designers of
the game engine have to express the knowledge they possess
about its dynamics. More precisely, they are asked to list
the correlations that may exist between input parameters and
output measures. A correlation is defined between an input I
and an output O if a variation of I is likely to trigger a variation
of O. A correlation is said to be positive if an increase (resp.
decrease) of I is likely to trigger an increase (resp. decrease)
of O; otherwise, it is said negative.

This definition only considers monotonic correlations. De-
pending on the game engine, there may be non-monotonic
correlations between outputs and inputs. In such cases, these
non-monotonic correlations are neglected, and the approach
is solely based on identified monotonic correlations. The
implications of this choice are discussed in more details in
section VI.

III. SOLUTION DESIGN

The control system proposed here is based on a Multi-
Agent System (MAS) which aims at dynamically tuning all
the parameters’ values of the system controlled.

An agent is an autonomous entity which evolves in an
environment from which it has only a local and incomplete
perception. An agent possesses skills that enable it to carry on
a behavior which is generally dictated by a local objective.

A Multi-Agent System is a system composed of a set
of interacting agents [13]. Two levels can then be distin-
guished: the lower level – or agent level – involving agents
taken individually, and the global level, where the MAS is
considered as a whole, a collective. The behavior of this
collective is generally something more than the individual
behaviors. Thanks to its logical distribution, a MAS can deal
with problems composed of a large number of interacting
sub-problems and allows a simpler modeling of the domain.
Furthermore, interactions between agents can give birth to
emergent phenomena (e.g., patterns, organizations, behaviors)
at the global level which make MAS interesting for dealing
with problems for which no algorithmic solutions can be given
in advance and therefore have to be designed in a bottom-up
way.

This property of emergence is used here since we consider
the control of a dynamic and open system as a complex
problem for which no specific solution exists yet. The control
system presented in this paper is therefore based on Adap-
tive Multi-Agent Systems (or AMAS [14]) in which self-
organization principles are used [15] to make the collective
behavior emerge from local ones. The engine of this self-
organization is the ability an agent has to always try and help
the agent it considers as being the least satisfied in the system
(which maybe itself in some cases); in this sense, agents in an
AMAS are said to have a “cooperative attitude”.

This section presents the agents involved in the control
system, their interactions and how they deal with time delays
that have to be taken into account during the control process.

A. Agent Design

The relevant concepts identified in section II which rep-
resent both the nature of entities composing the system, on
an abstract level, and the raw knowledge on its dynamics are
mapped onto several agents:

• Input-agents represent the input parameters of the
target system pi ∈ IN. An input-agent is aware of the
bounds {pimin

, pimax} of the parameter it is modeling,
and possesses the ability to effectively change its
value.

• Output-agents represent the outputs of the target sys-
tem oi ∈ OUT , i.e. single observations of the interac-
tions of a human user with the interactive system. An
output-agent is given means to update its value while
the system activity is taking place.

• Objective-agents are finally introduced to represent
requirements expressed by domain experts, i.e. the
set of objectives OBJ, expressed with satisfaction
functions. The expression of the global solution of

the global problem (i.e. an appropriate control) is here
distributed among all the objective-agents. Therefore,
one agent expresses a single requirement, involving
only a small part of the target system, regardless of
the state of the rest of it.

To solve the problem in a distributed fashion, not only
agents need to have appropriate behaviors, but they also need
to have appropriate communication skills. For that purpose, all
agents can make use of a message mechanism, allowing them
to send messages to agents they are aware of. Next section
details how agents behave.

B. Solving Process Principle

In the design of the global function of a multi-agent
system, the focus is being set on isolated parts of the problem.
Situations in which agents are going to be are considered, and
an appropriate behavior is designed so a simpler problem is
solved among a few selected agents. The solving process is
then distributed among all the agents modeling the problem.
Therefore, one key aspect of the proposed solution is the
definition of the agent behaviors, described hereafter.

1) Objective-agents: Objective-agents are the ones that
trigger the activity in the whole system. Their responsibility
is to compute a satisfaction value for either an input or an
output of the target system (represented by an output-agent,
called “relative” agent hereafter). An objective-agent has a
rather simple behavior: it observes its “relative” agent and uses
its own satisfaction function to compute a satisfaction value.

Its goal is to reach a state in which an optimal satisfaction
value is computed. To do so, it sends a message to its “relative”
agent, requesting this latter to modify its own value in a proper
way; this message contains only the current satisfaction value
of the sender and the requested variation sign (either positive
or negative).

2) Output-agents: Output-agents monitor the value of the
outputs of the target system. An output-agent may receive
one or several requests from objective-agents. When several
requests are received, it adopts a cooperative attitude by
tending to help the least satisfied agent it is aware of. Therefore
it selects the request with the lowest satisfaction value, and
aims at helping its sender.

Since an output-agent has no control on its value, it cannot
modify it freely and it uses the information about the domain
that experts expressed through a set of correlations (see section
II-C) for selecting all the agents it is correlated to. According
to the sign of their correlation, it sends them a message and
therefore propagates the need for help of the initial request
sender.

3) Input-agents: Input-agents are at the bottom of the chain
and act when they receive a request from other agents. An
input-agent uses received requests to determine which is the
least satisfied agent among all the requests senders, and in
which way its own value should be modified.

Being cooperative, an input-agent modifies its value in
order to help the agent it believes to be the least satisfied.
For efficiently exploring the potential search space for this
value, an input-agent uses a component named Adaptive Value
Tracker (AVT) [16].

C. Delayed Perception Management

One major problem in the application of this solving
process among agents, is the potential delay in the effects of
parameter modification. When an agent R receives a request
from an agent S, it may act accordingly, in order to help the
request sender, but the consequences of the action of agent R
may not be directly perceived, resulting in agent S keeping
on sending requests to R even though appropriate actions have
already been taken. This may result in oscillations around the
optimal value.

In order to prevent the delay problem, we suggest that each
agent R receiving a request builds a representation of its sender
S composed of:

• an optimal value O

• a delay value ∆, representing the time needed for
consequences of the action of R to be perceived by
S.

This representation is constantly updated as new requests are
sent, and may not reflect the reality. It is just used to enhance
the behavior of requests receivers by making them independant
of the delays between each other.

The representation of the optimal value O and the delay
∆ allow the input agent to prevent oscillations. The two next
sections detail how ∆ is used, and how it is measured.

1) Delay utilization to find the optimal value: When a
receiver R receives a request r1 from a sender S, it first
examines the expected variation sign v1 contained in the
request: either positive or negative (positive in the case of
figure 1). According to v1, O is increased/decreased to a new
value (dotted line on figure 1).

The agent value (solid line in figure 1) is then modified in
the next time steps towards O. When R’s actual value reaches
O, a timer is triggered. The reason for this is that if the value O
is correct, and if the delay ∆ is correct, then once the value O is
reached, a contradictory request should be received after the
delay ∆. Therefore, once the timer is triggered, all requests
coming from S with an expected variation equals to v1 are
ignored, as they are supposed to be caused by some delay.

Once the delay has expired, if requests containing v1 are
still received (rn in figure 1), then the optimal value O is
updated again, and the process is repeated.

2) Delay measurement: Before agents are stabilized, they
alternate between increasing and decreasing phases, since their
perceptions may not be appropriate right away. When an
agent R is in an increasing phase, its value goes up, and it
reaches a maximum m1 at some point tmax in time, before the
decision process triggers a decreasing phase (see figure 2). m1
is considered to be the worst value of the increasing phase
since all the agent knows is that it has gone too high.

In the decreasing phase, requests are received with a
negative expected variation. These requests may, or may not
be taken into account, as described in III-C1. Even though the
agent is decreasing its value, the satisfaction level contained
in the received requests may not be decreasing, due to the
delay in the sender perceptions. At some point tcmax in time, a
request with a minimal satisfaction is received. A link is then

r1 (v1:positive)

�����������	
����

rn (vn:positive)

ignored requests

Time

��

�� �����	��
������	�������
����

�
��
�

Fig. 1. Delay utilization from the request receiver point of view

����������	�
���	��

�
��
���������	����
���

Time

�
��
�
�

��!�"��	#�����$��	#�������������

���	�	%����&����� �����	%����&�����

#�'�%����

Measured Delay (∆)

!"

Fig. 2. Delay measurement from the request receiver point of view

made between the maximum value in increasing phase, and
the request with the minimum satisfaction in the subsequent
decreasing phase.

Therefore, the delay ∆ is obtained with the formula tcmax−
tmax (see figure 2).

IV. APPLICATION ON A PREY-PREDATOR SYSTEM

The prey-predator system is an interesting test-bed for
the proposed approach. It consists of a dynamical non-linear
system modeled by two differential equations, known as the
Lotka-Volterra equations. The equations model the evolution
of two populations evolving in a common environment: preys
and predators. Predators need to consume preys to survive,
and preys spontaneously reproduce. The Lotka-Volterra model
involves four parameters:

• α : preys reproduction rate

• β : preys death rate due to predators

• δ : predators death rate in absence of preys

• γ : predators reproduction rate according to consumed
preys

The population evolution is given by these two equations:

dx(t)

dt
= x(t)(α−βy(t))

dy(t)

dt
=−y(t)(δ − γx(t))

where x(t) is the prey population at time t and y(t) is the
predator population at time t.

The description of the system enables us to determine
correlations between observables (populations) and parameters
(death and reproduction rates) which are given in table I where
+ means a positive correlation and − means a negative one.

TABLE I. CORRELATIONS BETWEEN OBSERVABLES AND PARAMETERS

Prey Population Pred. Population

α +

β +

δ -

γ +

This correlation matrix is a good example of how corre-
lations do not consider side effects. The predator population
is positively correlated to the predator reproduction rate, even
though a high reproduction rate may lead to a sudden increase
in population, and consequently, to prey extinction, and thus,
to predator extinction. Such side effects are deliberately ne-
glected, and only direct correlations are listed in the matrix.

The populations are initially set to 10 prey and 10 predator.
The aim of the multi-agent system is to dynamically tune the
parameters in order so satisfy objectives of both populations:
150 preys and 50 predators. As seen in figure 3, this control
first allows both populations to grow. When the number of
predators reaches its objective, the population is stabilized and
oscillates around 50, while the quantity of preys continues
to grow. When the prey population reaches its objective, it
stops growing and oscillates around 150. Before step 4000,
the model is stable and both objectives are satisfied.

��

�

�

�

���

��

�
�

� �

 �

 �

 �

������������!�
"�#�#$�����%

�
�
�
�
��
��
�
	

Fig. 3. Evolution of populations through time

V. APPLICATION ON A VIDEO-GAME

In order to demonstrate that this approach also allows
to dynamically control actual interactive systems like video
games, which usually nowadays often consist in over a hundred
parameters to tune, we have applied it on a tower-defense game
named ASD - Tower Defense (www.asd-td.com). This typical
tower defense game consists of a set of two-dimensional maps,
that computer-controlled entities seek to cross. The goal of the
player is to place autonomous defenses to prevent entities from
crossing the map. Many parameters are involved in this type
of game (see table II). There are three types of entities (A, B
and C), each having a speed and robustness and each can be
released at different paces. Three types of defenses exist (D,
E, F) and each has a frequency, a range and a strength. No
universal parameter combination can be found to fit the needs

and abilities of all players, since humans can exhibit different
strategies and behaviors, as well as different learning paces.

TABLE II.

Score

A Speed -

Robustness -

Entity Type B Speed -

Robustness -

C Speed -

Robustness -

Range +

D Effectiveness +

Frequency +

Range +

Defense Type E Effectiveness +

Frequency +

Range +

F Effectiveness +

Frequency +

Quantity of A -

Wave Quantity of B -

Characteristics Quantity of C -

Spawning Frequency -

Domain-related measures are identified as objectives to
be reached by any player. For the sake of clarity, only one
objective is used in the experiment presented: the percentage
of computer-controlled entities that a player has successfully
prevented from crossing the map; in other words, the score.

The objective arbitrarily set on the score expresses that
each wave should end with an average ratio of 0.75 entities
destroyed by the player defenses. Between each wave, the
player increases the amount of defenses on the map. The
control system is then in charge of restoring the satisfaction
of the objective by adjusting the relevant parameters.

!����!������ "����#������ "����$������ "����%������

��������	
� ��������
�������������������

&

#(

(&

)(

!&&

&

&*#(

&*(

&*)(

!

(& !&& !(& #&& #(& $&&! $(&

�
��
��

�
����������

�
���
!

���+�

Fig. 4. Evolution of the score during the game session.

Figure 4 shows the evolution of the score in real time, as
the game is played during four waves. Each update of the score
corresponds to one step within the control system, and to one
modification of relevant parameters.

At the beginning of the game, the player places a set of
defenses on the map. When the first wave starts, the game is
too easy, as shown on the chart: the score is 1, and therefore,
the satisfaction is 0. The parameters are adjusted by the MAS,
and consequently, the score starts to decrease, to the point,
around step 25, where it is below the objective. The tuning
of the parameters continues, and the score finally reaches its
objective by the end of the first wave.

Before the beginning of the second wave, the player adds
more defenses on the map. Consequently, the score at the
beginning of the second wave is too high. Parameters are

modified by the MAS, and the objective is satisfied by the
end of the second wave. A similar dynamics is observed in
the third wave.

On the other hand, before the beginning of the third wave, a
large quantity of defenses is removed. Consequently, a reversed
dynamics is observed: the score starts with a low value, and
parameters are adjusted to make the game easier this time. The
score increases during the most part of the wave, to reach 0.7
by the end.

VI. CONCLUSION

The two experiments presented before show that the pro-
posed approach is able to tune parameters of dynamical
systems in order to reach numerical objectives. The objectives
reach various satisfaction levels depending on their nature.
Deterministic systems, such as the prey-predator model (see
section IV), can reach high levels of satisfaction and stability.
By contrast, highly stochastic systems, specially because of
the involvement of a human being, present a lot a variations
over time. However, the real-time aspect of the control system
allows quick compensations of sudden changes on the game
engine measurements, as shown in section V when the player
strategy changes between the waves.

Few information is needed to apply the approach on a
given system. Correlations between inputs and outputs of
the target systems should be listed by domain experts, but
this does not imply that an exhaustive understanding of the
system dynamics is necessary. Listed correlations only describe
obvious and direct consequences of parameter modifications on
certain outputs. They are not supposed to model potential side
effects of parameters’ modification, as these should be handled
by the agent interactions. For instance in the prey-predator
example, an increase of the birth rate of predators may lead
to a diminishing of the prey population (and eventually to the
extinction of both populations), but this is not mentioned in
the correlation list, as it is an indirect correlation. The control
system is still able to deal with these dynamics, and to properly
adjust parameters to maintain the satisfaction of the population
objectives.

The described concepts are general enough to be applied on
a wide variety of systems, as they only rely on the identification
of numerical objectives and parameters. The use of satisfaction
functions of objectives and constraints allows designers and
domain experts to express their requirements with ease since
no technical knowledge is required.

Depending on the nature of the system one is trying to
control, there may be non-monotonic correlations. The system
described in this paper is based on the identification of mono-
tonic correlations. Though we argue that in the field of games,
when considering only direct correlations, most of them are
identified as monotonic, there is still room for improvement: a
current work focuses on means to autonomously determine
the correlations between inputs and outputs. Provided that
these correlations could be identified in a reasonably short
time, there would be no need for a domain expert to list
them. Moreover, learned correlations could be used to tune
the parameters regardless of their monotonic aspect.

REFERENCES

[1] J. Schell, The Art of Game Design – A book of Lenses. Elsevier/Morgan
Kaufmann, 2008, ch. Game Mechanics Must be in Balance.

[2] M. Csikszentmihalyi, Flow: The Psychology of Optimal Experience.
NY: Harper and Row, 1990.

[3] L. Vygotsky, “Zone of Proximal Development,” Mind in Society: The

Development of Higher Psychological Processes, pp. 52–91, 1987.

[4] J. Chen, “Flow in Games (and everything else),” Communcations of the

ACM, vol. 50, no. 4, pp. 31–34, April 2007.

[5] R. Hunicke and V. Chapman, “AI for Dynamic Difficulty Adjustment
in Games,” in Proc. of the Challenges in Game AI Workshop, 2004.

[6] K. J. Astrom and T. Hagglund, PID Controllers : Theory, Design, and

Tuning. Instrument Society of America, 1995.

[7] R. Moore, H. Rosenhof, and G. Stanley, “Process Control using the G2
Real-Time Expert System,” in Record of the IEEE Industry Applications

Society Annual Meeting, 1989, pp. 1452–1456 vol.2.

[8] C.-C. Lee, “Fuzzy Logic in Control Systems: Fuzzy Logic Controller –
Part I,” IEEE Trans. on Systems, Man and Cybernetics, vol. 20, no. 2,
pp. 404–418, 1990.

[9] R. Koster, A Theory of Fun for Game Design. Paraglyph Press, 2005.

[10] M. Hagan and H. Demuth, “Neural Networks for Control,” in Proc. of

the American Control Conference, vol. 3, 1999, pp. 1642–1656 vol.3.

[11] M. Nrgaard, O. E. Ravn, N. K. Poulsen, and L. K. Hansen, Neural Net-

works for Modelling and Control of Dynamic Systems: A Practitioner’s

Handbook. Springer-Verlag NY, 2000.

[12] T. Ross, Fuzzy Logic with Engineering Applications. John Wiley &
Sons, 2004.

[13] M. Wooldridge, An Introduction to Multi-Agent Systems. Wiley, 2002.

[14] D. Capera, J.-P. Georgé, M.-P. Gleizes, and P. Glize, “The AMAS
Theory for Complex Problem Solving Based on Self-organizing Coop-
erative Agents,” in 12th IEEE Int. Workshops on Enabling Technologies,

Infrastructure for Collaborative Enterprises, 2003, pp. 383–388.

[15] G. Di Marzo Serugendo, M.-P. Gleizes, and A. Karageorgos, Eds., Self-

organising Software. Springer, 2011.

[16] S. Lemouzy, V. Camps, and P. Glize, “Principles and Properties of
a MAS Learning Algorithm: a Comparison with Standard Learning
Algorithms Applied to Implicit Feedback Assessment,” in Int. Conf.

on Intelligent Agent Technology (IAT). CPS, 2011, pp. 228–235.

