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ABSTRACT

Scale invariance is a widely used concept to analyze real-world data

from many different applications and multifractal analysis has be-

come the standard corresponding signal processing tool. It charac-

terizes data by describing globally and geometrically the fluctuations

of local regularity, usually measured by means of the Hölder expo-

nent. A major limitation of the current procedure is that it applies

only to locally bounded functions or signals, i.e., to signals with

positive regularity. The present contribution proposes to character-

ize local regularity with a new quantity, the p-exponent, that permits

negative regularity in data, a widely observed property in real-world

data. Relations to Hölder exponents are detailed and a correspond-

ing p-leader multifractal formalism is devised and shown at work on

synthetic multifractal processes, representative of a class of models

often used in applications. We formulate a conjecture regarding the

equivalence between Hölder and p-exponents for a subclass of pro-

cesses. Even when Hölder and p-exponents coincide, the p-leader

formalism is shown to achieve better estimation performance.

Index Terms— scale invariance, multifractal analysis, negative

local regularity exponent, wavelet Leaders, estimation performance

1. CONTEXT, GOALS AND CONTRIBUTIONS

Scale invariance and Multifractal Analysis. Multifractal anal-

ysis [1, 2] has recently matured to a standard signal processing tool

that provides a fine characterization of the scaling properties of time

series (cf. e.g., [1, 2, 3]). In essence, multifractal analysis relies on

the notion of local regularity, theoretically grounded in the defini-

tion of the Hölder exponent h(t) [1, 2]: The closer h(t) is to 0, the

more irregular a signal X is at time position t; conversely, the larger

h(t), the more regular X at t. Multifractal analysis does, however,

not aim at characterizing X via the fluctuations of its local regularity

along time, i.e., via the function h(t). Instead, it provides practition-

ers with a characterization of X via the multifractal spectrum D(h),
consisting of a global geometrical description of the fluctuations of

h(t). The practical estimation of D(h) is achieved through a proce-

dure referred to as a multifractal formalism. It relies on the use of

multiresolution quantities TX(a, t), i.e., of quantities that measure

the behavior of X around t at scale a, such as wavelet coefficients.

The asymptotic behavior of the time average of the moments of or-

der q of TX(a, t) in the limit of fine scales theoretically defines the

scaling function

ζ(q) = lima→0 log(1/na

∑

k |TX(a, k)|q)/ log a,

whose Legendre transform provides an estimate of D(h) in form of

an upper bound (cf. Section 2 and [1, 2]).

The definition of ζ(q) above in essence amounts to assuming a

scaling behavior with respect to the analysis scale a,

1/na

∑

k

|TX(a, k)|q ≃ cqa
ζ(q), a → 0, (1)

connecting multifractal analysis as an analysis tool and scale invari-

ance as a modeling paradigm. In practice, the asymptotic power

law above is assumed to hold over a finite yet large range of scales

am ≤ a ≤ aM , with aM/am ≫ 1, thus enabling the estimation of

the scaling exponents ζ(q) and further of D(h).
Multifractal analysis has been successfully used as a tool to an-

alyze, describe, model and classify temporal dynamics of signals

in numerous real-world applications of very different types, includ-

ing hydrodynamic turbulence [4], biomedical data and body rhythms

[5, 6], geophysical data [7, 8], fMRI [9, 10], finance [11] and image

textures [12]. For reviews and examples, see e.g., [13, 14].

Related works: recent developments and open issues. Multi-

fractal analysis has received significant research efforts at both the

theoretical and application levels. Most of the recent developments

aiming at improving multifractal analysis, either in theoretical foun-

dations or in applied schemes, focus on exploring the benefits of

varying the multiresolution quantities TX(a, t) serving as the basic

analysis unit. Increments, oscillations, wavelet coefficients, contin-

uous wavelet transform modulus maxima [15, 16] and more recently

wavelet leaders [3] were used in the vast majority of cases. These de-

velopments were mainly concerned with parameter estimation per-

formance and robustness (cf. [3, 17] and references therein), or,

more recently, with analysis refinement (e.g., detection of oscillat-

ing singular behaviors in data [18].) Along another line, procedures

avoiding the Legendre transform based formalism (which yields the

convex hull of D(h) only) have been investigated. Notably, large

deviation principle based approaches were studied, aiming at the es-

timation of non convex multifractal spectra (cf. e.g., [2, 19]).

However, none of these developments reflected two fundamental

facts. First, by definition, the Hölder exponent is positive, h(t) ≥ 0.

Consequently, its use as a measure of local regularity induces a major

a limitation for the application of multifractal analysis to real-world

data: It permits the analysis of the fluctuations of local regularity for

locally bounded functions only. Second, the choice of a particular

multiresolution quantity TX(a, t) is tied to the way local regular-

ity is measured and can therefore imply a change in the definition

of the exponent used to measure local regularity. Often, in appli-

cations, real-world data are well modeled by stochastic processes



whose sample paths do not constitute locally bounded functions, this

is the case e.g., for fractional Gaussian noise or multifractal ran-

dom walks [20], frequently used to model Heart Rate Variability

[6], fMRI fluctuations [9, 10] or Mandelbrot’s multiplicative cas-

cades, used to model, e.g., dissipation in hydrodynamic turbulence

[4], rainfalls [7], cloud textures [15], to list but a few examples. In

these situations, the Hölder exponent is of limited practical use, and

so are the associated multiresolution quantities.

Recently, an alternative measure of regularity, the p-exponent

hp(t), has been introduced theoretically in the context of multifrac-

tal analysis [21]. One of its potential advantages is that it enables to

weaken the positive regularity and boundedness requirement and ad-

mits a certain range of negative exponents. It has, to the best of our

knowledge, not been used in applications and remains poorly studied

in terms of practical applicability and estimation performance.

Goals, contributions and outline. In this context, the goals of

the present contribution are three-fold: First, it aims at defining the

p-exponent, reviewing the key differences with the Hölder exponent,

and devising the corresponding multiresolution quantities and multi-

fractal formalism (cf. Section 2). Second, the principles and limita-

tions of the p-exponent based multifractal formalism are illustrated

on sample paths of a stochastic process chosen as a representative

model for scale invariance in applications (cf. Section 3). Third,

equality between Hölder and p-exponents is conjectured for a class

of model processes. In the case of coinciding exponents, it is shown

numerically that the p-leader formalism achieves better estimation

performance than the wavelet leader formalism, now considered as

a benchmark for practical multifractal analysis (cf. Section 4).

2. LOCAL REGULARITY, MULTIFRACTAL ANALYSIS

2.1. Hölder regularity

Wavelet coefficients. Let {X(t)}t∈R denote the signal to be

analyzed. Let ψ denote the mother wavelet, characterized by

its uniform regularity index and number of vanishing moments

Nψ , a strictly positive integer defined as: ψ ∈ CNψ−1 and

∀n = 0, . . . , Nψ − 1,
∫

R
tkψ(t)dt ≡ 0 and

∫

R
tNψψ(t)dt )= 0. Let

{ψj,k(t) = 2−j/2ψ(2−jt − k)}(j,k)∈N2 denote the collection of

dilated and translated templates of ψ that form an orthonormal basis

of L2(R). The (L1-normalized) discrete wavelet transform coeffi-

cients dX(j, k) of X are defined as dX(j, k) = 2−j/2〈ψj,k|X〉. For

a detailed introduction to wavelet transforms, readers are referred to,

e.g., [22] . Early formulations of multifractal analysis were based on

the structure functions of wavelet coefficients, of order q ≥ 0,

η(q) = 1/nj

∑

k

|dX(j, k)|q, (2)

but have been shown to suffer from poor practical performance (cf.

e.g., [16, 23, 1, 3]), this is thus not further discussed here.

Hölder exponent. Assume that {X(t)}t∈R consists of a locally

bounded function (or sample path of a stochastic process), i.e., be-

longs to L∞(R). Then X is said to belong to Cα(t) at time position

t ∈ R, with α ≥ 0, if there exist a constant C > 0 and a polynomial

Pt satisfying Deg(Pt) < α such that, in a neighborhood of t:

|X(t+ a)− Pt(t+ a)| ≤ C|a|α, |a| → 0. (3)

The Hölder exponent of X at t is defined as:

h(t) = sup{α : X ∈ Cα(t)} ≥ 0. (4)

It characterizes the local regularity of X at t in the sense that the

larger (smaller) h(t), the smoother (rougher) X around t. The sim-

plest example of a singularity at datum t0 whose Hölder exponent is

h (when h is not a even integer) is supplied by the cusp-type function

X(t) = X(t0) +B|t− t0|h.

Multifractal spectrum and wavelet leaders. Though deeply

rooted in the notions of local regularity and Hölder exponents, mul-

tifractal analysis does not aim at characterizing X through regularity

as a function of time h(t). Instead, it provides practitioners with a

global and geometrical description of the fluctuations along time of

the Hölder exponent h, in terms of the multifractal spectrum D(h).
Technically, D(h) is given by the Hausdorff dimensions of the sets

of points where the Hölder exponent takes the value h (for details,

the interested reader is referred to [23, 2, 1].)

The practical measurement of D(h) relies on a procedure re-

ferred to as the multifractal formalism: It requires the definition of

multiresolution quantities, the wavelet leaders LX(j, k), defined as

the local supremum of wavelet coefficients taken within a neighbor-

hood over all finer scales [1, 3]:

LX(j, k) = sup
λ′⊂3λj,k

|dX(λ′)|, where (5)

λj,k = [k2j , (k + 1)2j) and 3λj,k =
⋃

m{−1,0,1} λj,k+m.

The LX(j, k) match the Hölder exponent in the sense that

for t = 2jk, LX(j, k) ∼ C2jh(t) as 2j → 0. This implies that
1
nj

∑nj
k=1 LX(j, k)q ∼ cq2

jζ(q) as 2j → 0 as in (1) and that the

Legendre transform of ζ(q) yields an (upper-bound) estimate of the

multifractal spectrum, L(h) = minq (1 + qh− ζ(q)) ≥ D(h).
Limitation. The key limitation in the practical use of the Hölder

based multifractal formalism resides in its applicability to locally

bounded functions only. This requirement implies the equivalent

condition that the minimum regularity hm = inft h(t) of the data is

non-negative, which can be practically checked prior to application

of the multifractal formalism by using the wavelet coefficient based

estimate

hm = lim
2j→0

log2 supk|dX(j, k)|/ log2 2j . (6)

2.2. p-exponent regularity

p-exponents. We extend local regularity measures to negative val-

ues by replacing the bounded function requirement by the condition

that X(t) locally belongs to Lp(R) for p ≥ 1: X is said to belong to

T p
α(t) with α > −1/p at time t if there exist C,R > 0 and a poly-

nomial Pt (of degree N less than or equal to α) such that ∀a ≤ R

T
(p)
X (a, t) =

(

1

a

∫ t+a/2

t−a/2

|X(u)− Pt,N (u− t)|pdu
)1/p

≤ Caα.

(7)

The p-exponent hp(t) of X at t is defined as [21]:

hp(t) = sup{α : X ∈ T p
α(t)} (8)

and constitutes a natural substitute for the Hölder exponent when

dealing with functions which are not bounded but locally belong

to Lp and admits negative local regularity exponents hp > −1/p.

Obviously, the Hölder exponent coincides with the p-exponent for

p = +∞: h(t) ≡ h∞(t); furthermore, hp′ ≤ hp if p′ ≥ p [21, 24].

p-multifractal spectrum and p-leaders. Mimicking the def-

inition of D(h), mutatis mutandis, the p-multifractal spectrum

D(p)(hp) is defined as the Hausdorff dimensions of the sets of

points where the p-exponent takes the value hp.



The practical measurement of D(p)(h) requires the definition of

new multiresolution quantities, the p-leaders [25, 26, 21]:

L(p)(j, k) =

(

2j
∑

λ′⊂3λj

|dλ′ |p2−j′

)1/p

, (9)

that match p-exponent local regularity in the sense that

for t = 2jk, L(p)(j, k) ∼ C2jhp(t), 2j → 0. (10)

The p-scaling function is defined similarly as in (1):

S(p, q, j) = 1/nj

nj
∑

k=1

L(p)(j, k)q ∼ C(p)
q 2jζp(q), 2j → 0; (11)

and the Legendre transform of ζp(q) yields an (upper-bound) esti-

mate of D(p)(hp),

L(p)(hp) = min
q

(1 + qhp − ζp(q)) ≥ D(p)(hp). (12)

The demonstration of that results follows from the proof given in

[27], which is generic for any well-behaved multiresolution quantity.

In practice, X ∈ Lp(R) must be verified prior to application of

the p-leader multifractal formalism, by checking that η(p) ≥ 0 [21,

25, 26], or equivalently that its Legendre transform L(h) satisfies

L(h) ≤ 1 + ph. (13)

Cumulants and estimation. Following the original intuition in

[28], a polynomial expansion ζp(q) =
∑

m≥1 c
(p)
m qm/m! enables

a simplified analysis of ζp(q) through the expansion coefficients

{c(p)l , c
(p)
2 , c

(p)
3 , . . .}. Reproducing the calculations in [28] for p-

leaders immediately yields that these coefficients are directly related

to the dependence with respect to scales 2j of the cumulants of order

m, denoted by C
(p)
m (j), of the logarithm of the p-leaders:

C(p)
m (j) = Cumm lnL(p)(j, k) = c(0,p)m + c(p)m ln 2j . (14)

This scaling behavior is used for the practical estimation of the coef-

ficients c
(p)
m by linear regressions of the estimates of C

(p)
m (j) against

ln 2j , for j ∈ [j1, j2]. In view of (11), the ζp(q) are also estimated

by linear regressions of log2 S(p, q, j) versus log2 2
j = j. These

estimation procedures, implemented by ourselves, are used to obtain

the results produced in Sections 3 and 4.

Hölder versus p-exponents. In general, p-exponents do not co-

incide for different ps nor with Hölder exponent (see [24] for a the-

oretical discussion); thus the associated spectrum yields a novel and

versatile collection of characterizations of local regularity fluctua-

tions, further illustrated and studied in Sections 3 and 4.

3. NEGATIVE REGULARITY

Multifractal random walk. The differences and potential bene-

fits in using p-exponents and p-leaders for the characterization of lo-

cal regularity fluctuations are now illustrated on pedagogical exam-

ples, containing negative p-exponents. They are based on fraction-

ally differentiated realizations of multifractal random walk (MRW)

[20, 29], a popular and representative member of the class of mul-

tiplicative cascade based multifractal processes. This class consti-

tutes one of the most prominently used class of multifractal models

for applications. MRW is a non Gaussian process with stationary

h
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h
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Fig. 1. Left column: A single realization of fractionally differen-

tiated MRW with h
(γ)
m = {0.4, 0, −0.1, −0.2, −0.3} (from

top to bottom, respectively). Right column: The theoretical mul-

tifractal spectra (black solid) and Legendre spectra (mean over 50

realizations, N = 219, Nψ = 2, j1 = 10) corresponding with the

functions in the left column for p = {2, 4, 8, ∞} (solid lines; red

circle, green diamond, blue cross and magenta square); the dashed

line segments indicate the theoretical bound 1+hp for the spectrum

of any Lp function (in respective colors for the different p).



increments and its multifractal properties mimic those of the cele-

brated multiplicative log-normal cascades of Mandelbrot. It is de-

fined as X(k) =
∑n

k=1 GH(k)eω(k), where GH(k) are the incre-

ments of fractional Brownian motion with parameter H , and ω is

a Gaussian random process, independent of GH and with non triv-

ial autocovariance Cov[ω(k1), ω(k2)] = c2 ln
(

L
|k1−k2|+1

)

when

|k1−k2| < L and 0 otherwise. MRW has scaling properties as in (1)

for q ∈
[

−
√

2/c2,
√

2/c2
]

, with ζ(q) = (H + c2)q − c2q
2/2 and

its multifractal spectrum is given by D(∞)(h) = 1+(h−c1)
2/(2c2)

(with c1 = H + c2 and hm = c1 −
√
−2c2).

Hölder versus p-exponents. Regarding p-exponent analysis, we

form the following conjecture, strongly backed up by the numerical

simulations reported below, that will be proven in [24]:

Conjecture 1 The p-exponents of multiplicative cascade based mul-

tifractal processes X ∈ Lp0 coincide for all p ∈ [1, p0], hence

D(p)(h) = D(p0)(h) for all p ∈ [1, p0].

Notably, this conjecture implies that when hm ≥ 0, the Hölder and

the p-exponents coincide ∀p ≥ 1 and thus that the Hölder and the

p-exponent based multifractal spectra coincide for MRW, and ∀p ≥
1 : D(p)(h) = D(∞)(h) = D(h).
Numerical experiments. We fix c1 = 0.8 and c2 = −0.08
and use fractional differentiation of order γ to control the mini-

mal regularity and function class embedding of the sample paths,

X(γ) = F−1
[

(ıω)γF [X]
]

, where F stands for the discrete Fourier

transform [30]. We set γ = {0, 0.4, 0.5, 0.6, 0.7}, yielding

h
(γ)
m = hm − γ = {0.4, 0, −0.1, −0.2, −0.3}, c

(γ)
1 = c1 − γ,

c
(γ)
m = cm for m ≥ 2 and p0 = {+∞, +∞, 10, 5, 2.5}, where

p0 denotes the value for p such that X(γ) ∈ Lp0 and ∀ε > 0 :
X(γ) /∈ Lp0+ε. We fix N = 219. Examples of sample paths are

plotted in Fig. 1 (left column) and illustrate the potential of pro-

cesses with negative p-exponents as models for applications, offer-

ing a continuum of moderately to strongly irregular sample paths.

The corresponding multifractal spectra and estimates (as detailed in

Section 2) for p = {2, 4, 8, ∞} (mean over 50 realizations) are

plotted in Fig. 1 (right column), together with the theoretical limits

D(p)(hp) ≤ 1 + php for the multifractal p-spectra of Lp functions.

Quality of estimation. First, we observe that in consistency with

Conjecture 1, the results obtained with the wavelet leader and p-

leader formalisms coincide one with another for any of the values of

p considered as long as h
(γ)
m ≥ 0 (p0 = +∞), and the formalisms,

for any p, provide excellent estimates of the multifractal spectrum

D(h) (Fig. 1, row 1–2). Second, as soon as h
(γ)
m < 0 (p0 < ∞), the

wavelet leader based formalism fails to correctly estimate the spec-

trum D(p0)(h) since the theoretical (bounded function) prerequisite

for its application is violated, while the p-leaders estimates L(p)(h)

correctly recover the multifractal spectrum D(p0)(h) for values of p
such that p ≤ p0 (Fig. 1, row 3–5). Once this condition for the func-

tion to be in Lp is violated, the p-leader formalism provides biased

estimates L(p)(h) which are bound to be at best tangent to 1 + ph

(Fig. 1, row 3–5). For example, in row 4, h
(γ)
m = −0.2 and estima-

tions L(p) are found to correctly estimate the theoretical spectrum D
only for p = 2, 4 < p0 = 5, estimates for p = {8,∞} ≥ p0 are

found to differ significantly from the expected spectrum. In row 5,

h
(γ)
m = −0.4 and L(p) estimates are correct for p = 2 < p0 = 2.5

only, while L(p) obtained with p = {4, 8,∞} > p0 are clearly bi-

ased and constrained by the 1 + ph limits. These results are consis-

tent with the theory outlined in Section 2 and demonstrate the practi-

cal effectiveness of the p-leader multifractal formalism in measuring

negative values in local regularity.

4. ESTIMATION PERFORMANCE

The performance of the wavelet leader and p-leader multifractal for-

malisms for estimating the log-cumulants cm, m = 1, . . . , 4 are

compared for 500 realizations from Monte Carlo simulations per-

formed on MRW with process parameters as in Section 3 and γ = 0,

hence with hm > 0 and Hölder and p-exponents and the correspond-

ing spectra coinciding ∀p ≥ 1. A Daubechies’ wavelet with Nψ = 2
is used, linear regressions are performed over the range (j1, j2) =
(3, 18). In Fig. 2, estimation performance are summarized as a func-

tion of p in terms of bias b(θ̂) = Ê[θ̂] − θ (blue dashed lines with

circles), standard deviations s(θ̂) =

√

Ê[θ̂2]− Ê[θ̂]2 (red dashed

lines with crosses) and root mean squared errors (rmse) r(θ̂) =
√

b(θ̂)2 + s(θ̂)2 (black solid lines with squares).

It is observed that, for cm, m ≥ 2, variances systematically

decrease when p decreases and also that biases decrease or remain

constant when p decreases, thus rmse is systematically decreased

when p decreases towards 1. For c1, variances appear to decrease

only slightly with p while biases tend to re-increase when p → 1,

thus yielding a minimum with an optimal trade-off p around 2. In

overall, it is thus observed that, systematically, when p is decreased,

the p-leader based estimation outperforms the wavelet leader based

one, currently considered to achieve benchmark performance. Also,

it provides practitioners with the possibility of tuning the parameter

p to data and applications.

c
1

c
2

c
3

c
4

Fig. 2. Bias (blue dashed circle), standard deviation (red dashed

cross) and root mean squared errors (black solid square) for the esti-

mation of the expansion coefficients c
(p)
m as functions of p.

5. CONCLUSIONS

The present contribution has shown that p-exponent and p-leader

based multifractal analysis extends the classical Hölder and leader

based formulation in two ways: Local regularity analysis is extended

to possibly negative values, commonly observed in real world data.

For processes where Hölder and p-exponents coincide, estimation

performance for multifractal attributes are significantly improved

compared to the reference wavelet leader formalism when tuning p
to small values, close to 1. Connections between Multifractal De-

trended Fluctuation Analysis, another popular tool for multifractal

analysis [17] and p-leader multifractal analysis can be established

and yield theoretical insights in the former tool. Also, while writ-

ten explicitly for 1D signals, p-leader multifractal analysis can be

extended to R
d random fields, notably for image texture analysis.

These developments are under current investigations, cf. [24].
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