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Scale invariance is a widely used concept to analyze real-world data from many different applications and multifractal analysis has become the standard corresponding signal processing tool. It characterizes data by describing globally and geometrically the fluctuations of local regularity, usually measured by means of the Hölder exponent. A major limitation of the current procedure is that it applies only to locally bounded functions or signals, i.e., to signals with positive regularity. The present contribution proposes to characterize local regularity with a new quantity, the p-exponent, that permits negative regularity in data, a widely observed property in real-world data. Relations to Hölder exponents are detailed and a corresponding p-leader multifractal formalism is devised and shown at work on synthetic multifractal processes, representative of a class of models often used in applications. We formulate a conjecture regarding the equivalence between Hölder and p-exponents for a subclass of processes. Even when Hölder and p-exponents coincide, the p-leader formalism is shown to achieve better estimation performance.

CONTEXT, GOALS AND CONTRIBUTIONS

Scale invariance and Multifractal Analysis. Multifractal analysis [START_REF] Jaffard | Wavelet techniques in multifractal analysis[END_REF][START_REF] Riedi | Theory and applications of long range dependence[END_REF] has recently matured to a standard signal processing tool that provides a fine characterization of the scaling properties of time series (cf. e.g., [START_REF] Jaffard | Wavelet techniques in multifractal analysis[END_REF][START_REF] Riedi | Theory and applications of long range dependence[END_REF][START_REF] Wendt | Bootstrap for empirical multifractal analysis[END_REF]). In essence, multifractal analysis relies on the notion of local regularity, theoretically grounded in the definition of the Hölder exponent h(t) [START_REF] Jaffard | Wavelet techniques in multifractal analysis[END_REF][START_REF] Riedi | Theory and applications of long range dependence[END_REF]: The closer h(t) is to 0, the more irregular a signal X is at time position t; conversely, the larger h(t), the more regular X at t. Multifractal analysis does, however, not aim at characterizing X via the fluctuations of its local regularity along time, i.e., via the function h(t). Instead, it provides practitioners with a characterization of X via the multifractal spectrum D(h), consisting of a global geometrical description of the fluctuations of h(t). The practical estimation of D(h) is achieved through a procedure referred to as a multifractal formalism. It relies on the use of multiresolution quantities TX (a, t), i.e., of quantities that measure the behavior of X around t at scale a, such as wavelet coefficients. The asymptotic behavior of the time average of the moments of order q of TX (a, t) in the limit of fine scales theoretically defines the scaling function ζ(q) = lima→0 log(1/na k |TX (a, k)| q )/ log a, whose Legendre transform provides an estimate of D(h) in form of an upper bound (cf. Section 2 and [START_REF] Jaffard | Wavelet techniques in multifractal analysis[END_REF][START_REF] Riedi | Theory and applications of long range dependence[END_REF]).

The definition of ζ(q) above in essence amounts to assuming a scaling behavior with respect to the analysis scale a,

1/na k |TX (a, k)| q ≃ cqa ζ(q) , a → 0, (1) 
connecting multifractal analysis as an analysis tool and scale invariance as a modeling paradigm. In practice, the asymptotic power law above is assumed to hold over a finite yet large range of scales am ≤ a ≤ aM , with aM /am ≫ 1, thus enabling the estimation of the scaling exponents ζ(q) and further of D(h).

Multifractal analysis has been successfully used as a tool to analyze, describe, model and classify temporal dynamics of signals in numerous real-world applications of very different types, including hydrodynamic turbulence [START_REF] Mandelbrot | Intermittent turbulence in self-similar cascades: divergence of high moments and dimension of the carrier[END_REF], biomedical data and body rhythms [START_REF] Ivanov | Multifractality in human heartbeat dynamics[END_REF][START_REF] Kotani | Multifractal heart rate dynamics in human cardiovascular model[END_REF], geophysical data [START_REF] Schertzer | Physically based rain and cloud modeling by anisotropic, multiplicative turbulent cascades[END_REF][START_REF] Ba Toledo | Wavelet-based multifractal analysis of nonlinear time series: The earthquake-driven tsunami of 27 february 2010 in chile[END_REF], fMRI [START_REF] Shimizu | Wavelet-based multifractal analysis of fMRI time series[END_REF][START_REF] Ciuciu | Scale-free and multifractal dynamic properties of fMRI signals during rest and task[END_REF], finance [START_REF] Calvet | Multifractal volatility: Theory, forecasting and pricing[END_REF] and image textures [START_REF] Wendt | Wavelet leaders and bootstrap for multifractal analysis of images[END_REF]. For reviews and examples, see e.g., [START_REF] Abry | Multiscale network traffic analysis, modeling, and inference using wavelets, multifractals, and cascades[END_REF][START_REF] Lopes | Fractal and multifractal analysis: A review[END_REF].

Related works: recent developments and open issues.

Multifractal analysis has received significant research efforts at both the theoretical and application levels. Most of the recent developments aiming at improving multifractal analysis, either in theoretical foundations or in applied schemes, focus on exploring the benefits of varying the multiresolution quantities TX (a, t) serving as the basic analysis unit. Increments, oscillations, wavelet coefficients, continuous wavelet transform modulus maxima [START_REF] Arneodo | A wavelet-based method for multifractal image analysis. I. Methodology and test applications on isotropic and anisotropic random rough surfaces[END_REF][START_REF] Muzy | The multifractal formalism revisited with wavelets[END_REF] and more recently wavelet leaders [START_REF] Wendt | Bootstrap for empirical multifractal analysis[END_REF] were used in the vast majority of cases. These developments were mainly concerned with parameter estimation performance and robustness (cf. [START_REF] Wendt | Bootstrap for empirical multifractal analysis[END_REF][START_REF] Soares | Towards the detection of microcalcifications on mammograms through multifractal detrended fluctuation analysis[END_REF] and references therein), or, more recently, with analysis refinement (e.g., detection of oscillating singular behaviors in data [START_REF] Abry | Detecting oscillating singularities in multifractal analysis : Application to hydrodynamic turbulence[END_REF].) Along another line, procedures avoiding the Legendre transform based formalism (which yields the convex hull of D(h) only) have been investigated. Notably, large deviation principle based approaches were studied, aiming at the estimation of non convex multifractal spectra (cf. e.g., [START_REF] Riedi | Theory and applications of long range dependence[END_REF][START_REF] Barral | On the estimation of the large deviations spectrum[END_REF]).

However, none of these developments reflected two fundamental facts. First, by definition, the Hölder exponent is positive, h(t) ≥ 0. Consequently, its use as a measure of local regularity induces a major a limitation for the application of multifractal analysis to real-world data: It permits the analysis of the fluctuations of local regularity for locally bounded functions only. Second, the choice of a particular multiresolution quantity TX (a, t) is tied to the way local regularity is measured and can therefore imply a change in the definition of the exponent used to measure local regularity. Often, in applications, real-world data are well modeled by stochastic processes whose sample paths do not constitute locally bounded functions, this is the case e.g., for fractional Gaussian noise or multifractal random walks [START_REF] Bacry | Multifractal random walk[END_REF], frequently used to model Heart Rate Variability [START_REF] Kotani | Multifractal heart rate dynamics in human cardiovascular model[END_REF], fMRI fluctuations [START_REF] Shimizu | Wavelet-based multifractal analysis of fMRI time series[END_REF][START_REF] Ciuciu | Scale-free and multifractal dynamic properties of fMRI signals during rest and task[END_REF] or Mandelbrot's multiplicative cascades, used to model, e.g., dissipation in hydrodynamic turbulence [START_REF] Mandelbrot | Intermittent turbulence in self-similar cascades: divergence of high moments and dimension of the carrier[END_REF], rainfalls [START_REF] Schertzer | Physically based rain and cloud modeling by anisotropic, multiplicative turbulent cascades[END_REF], cloud textures [START_REF] Arneodo | A wavelet-based method for multifractal image analysis. I. Methodology and test applications on isotropic and anisotropic random rough surfaces[END_REF], to list but a few examples. In these situations, the Hölder exponent is of limited practical use, and so are the associated multiresolution quantities.

Recently, an alternative measure of regularity, the p-exponent hp(t), has been introduced theoretically in the context of multifractal analysis [START_REF] Jaffard | Wavelet analysis of fractal boundaries[END_REF]. One of its potential advantages is that it enables to weaken the positive regularity and boundedness requirement and admits a certain range of negative exponents. It has, to the best of our knowledge, not been used in applications and remains poorly studied in terms of practical applicability and estimation performance. Goals, contributions and outline.

In this context, the goals of the present contribution are three-fold: First, it aims at defining the p-exponent, reviewing the key differences with the Hölder exponent, and devising the corresponding multiresolution quantities and multifractal formalism (cf. Section 2). Second, the principles and limitations of the p-exponent based multifractal formalism are illustrated on sample paths of a stochastic process chosen as a representative model for scale invariance in applications (cf. Section 3). Third, equality between Hölder and p-exponents is conjectured for a class of model processes. In the case of coinciding exponents, it is shown numerically that the p-leader formalism achieves better estimation performance than the wavelet leader formalism, now considered as a benchmark for practical multifractal analysis (cf. Section 4).

LOCAL REGULARITY, MULTIFRACTAL ANALYSIS

Hölder regularity

Wavelet coefficients.

Let {X(t)} t∈R denote the signal to be analyzed. Let ψ denote the mother wavelet, characterized by its uniform regularity index and number of vanishing moments N ψ , a strictly positive integer defined as:

ψ ∈ C N ψ -1 and ∀n = 0, . . . , N ψ -1, R t k ψ(t)dt ≡ 0 and R t N ψ ψ(t)dt = 0. Let {ψ j,k (t) = 2 -j/2 ψ(2 -j t -k)} (j,k)∈N 2 denote
the collection of dilated and translated templates of ψ that form an orthonormal basis of L 2 (R). The (L 1 -normalized) discrete wavelet transform coefficients dX (j, k) of X are defined as dX (j, k) = 2 -j/2 ψ j,k |X . For a detailed introduction to wavelet transforms, readers are referred to, e.g., [START_REF] Mallat | A Wavelet Tour of Signal Processing[END_REF] . Early formulations of multifractal analysis were based on the structure functions of wavelet coefficients, of order q ≥ 0,

η(q) = 1/nj k |dX (j, k)| q , (2) 
but have been shown to suffer from poor practical performance (cf. e.g., [START_REF] Muzy | The multifractal formalism revisited with wavelets[END_REF][START_REF] Jaffard | Multifractal formalism for functions part ii: Selfsimilar functions[END_REF][START_REF] Jaffard | Wavelet techniques in multifractal analysis[END_REF][START_REF] Wendt | Bootstrap for empirical multifractal analysis[END_REF]), this is thus not further discussed here. Hölder exponent. Assume that {X(t)} t∈R consists of a locally bounded function (or sample path of a stochastic process), i.e., belongs to L ∞ (R). Then X is said to belong to Cα(t) at time position t ∈ R, with α ≥ 0, if there exist a constant C > 0 and a polynomial Pt satisfying Deg(Pt) < α such that, in a neighborhood of t:

|X(t + a) -Pt(t + a)| ≤ C|a| α , |a| → 0. (3) 
The Hölder exponent of X at t is defined as:

h(t) = sup{α : X ∈ C α (t)} ≥ 0. (4) 
It characterizes the local regularity of X at t in the sense that the larger (smaller) h(t), the smoother (rougher) X around t. The simplest example of a singularity at datum t0 whose Hölder exponent is h (when h is not a even integer) is supplied by the cusp-type function X(t) = X(t0) + B|t -t0| h . Multifractal spectrum and wavelet leaders. Though deeply rooted in the notions of local regularity and Hölder exponents, multifractal analysis does not aim at characterizing X through regularity as a function of time h(t). Instead, it provides practitioners with a global and geometrical description of the fluctuations along time of the Hölder exponent h, in terms of the multifractal spectrum D(h). Technically, D(h) is given by the Hausdorff dimensions of the sets of points where the Hölder exponent takes the value h (for details, the interested reader is referred to [START_REF] Jaffard | Multifractal formalism for functions part ii: Selfsimilar functions[END_REF][START_REF] Riedi | Theory and applications of long range dependence[END_REF][START_REF] Jaffard | Wavelet techniques in multifractal analysis[END_REF].)

The practical measurement of D(h) relies on a procedure referred to as the multifractal formalism: It requires the definition of multiresolution quantities, the wavelet leaders LX (j, k), defined as the local supremum of wavelet coefficients taken within a neighborhood over all finer scales [START_REF] Jaffard | Wavelet techniques in multifractal analysis[END_REF][START_REF] Wendt | Bootstrap for empirical multifractal analysis[END_REF]:

LX (j, k) = sup λ ′ ⊂3λ j,k |dX (λ ′ )|, where (5) 
λ j,k = [k2 j , (k + 1)2 j ) and 3λ j,k = m{-1,0,1} λ j,k+m .

The LX (j, k) match the Hölder exponent in the sense that for t = 2 j k, LX (j, k) ∼ C2 jh(t) as 2 j → 0. This implies that 1 n j n j k=1 LX (j, k) q ∼ cq2 jζ(q) as 2 j → 0 as in [START_REF] Jaffard | Wavelet techniques in multifractal analysis[END_REF] and that the Legendre transform of ζ(q) yields an (upper-bound) estimate of the multifractal spectrum, L(h

) = minq (1 + qh -ζ(q)) ≥ D(h).
Limitation. The key limitation in the practical use of the Hölder based multifractal formalism resides in its applicability to locally bounded functions only. This requirement implies the equivalent condition that the minimum regularity hm = inft h(t) of the data is non-negative, which can be practically checked prior to application of the multifractal formalism by using the wavelet coefficient based estimate hm = lim

2 j →0 log 2 sup k |dX (j, k)|/ log 2 2 j . (6) 
2.2. p-exponent regularity p-exponents. We extend local regularity measures to negative values by replacing the bounded function requirement by the condition that X(t) locally belongs to L p (R) for p ≥ 1: X is said to belong to T p α (t) with α > -1/p at time t if there exist C, R > 0 and a polynomial Pt (of degree N less than or equal to α) such that ∀a ≤ R

T (p) X (a, t) = 1 a t+a/2 t-a/2 |X(u) -Pt,N (u -t)| p du 1/p ≤ Ca α . (7)
The p-exponent hp(t) of X at t is defined as [START_REF] Jaffard | Wavelet analysis of fractal boundaries[END_REF]:

hp(t) = sup{α : X ∈ T p α (t)} (8) 
and constitutes a natural substitute for the Hölder exponent when dealing with functions which are not bounded but locally belong to L p and admits negative local regularity exponents hp > -1/p. Obviously, the Hölder exponent coincides with the p-exponent for p = +∞: h(t) ≡ h∞(t); furthermore, h p ′ ≤ hp if p ′ ≥ p [START_REF] Jaffard | Wavelet analysis of fractal boundaries[END_REF][START_REF] Leonarduzzi | p-exponent and p-leaders for multifractal analysis[END_REF]. p-multifractal spectrum and p-leaders.

Mimicking the definition of D(h), mutatis mutandis, the p-multifractal spectrum D (p) (hp) is defined as the Hausdorff dimensions of the sets of points where the p-exponent takes the value hp.

The practical measurement of D (p) (h) requires the definition of new multiresolution quantities, the p-leaders [START_REF] Jaffard | Wavelet techniques for pointwise regularity[END_REF][START_REF] Jaffard | Function spaces vs. scaling functions: tools for image classification[END_REF][START_REF] Jaffard | Wavelet analysis of fractal boundaries[END_REF]:

L (p) (j, k) = 2 j λ ′ ⊂3λ j |d λ ′ | p 2 -j ′ 1/p , (9) 
that match p-exponent local regularity in the sense that

for t = 2 j k, L (p) (j, k) ∼ C2 jhp(t) , 2 j → 0. (10) 
The p-scaling function is defined similarly as in (1):

S(p, q, j) = 1/nj n j k=1 L (p) (j, k) q ∼ C (p)
q 2 jζp(q) , 2 j → 0; [START_REF] Calvet | Multifractal volatility: Theory, forecasting and pricing[END_REF] and the Legendre transform of ζp(q) yields an (upper-bound) estimate of D (p) (hp),

L (p) (hp) = min q (1 + qhp -ζp(q)) ≥ D (p) (hp). (12) 
The demonstration of that results follows from the proof given in [START_REF] Jaffard | The contribution of wavelets in multifractal analysis[END_REF], which is generic for any well-behaved multiresolution quantity. In practice, X ∈ L p (R) must be verified prior to application of the p-leader multifractal formalism, by checking that η(p) ≥ 0 [START_REF] Jaffard | Wavelet analysis of fractal boundaries[END_REF][START_REF] Jaffard | Wavelet techniques for pointwise regularity[END_REF][START_REF] Jaffard | Function spaces vs. scaling functions: tools for image classification[END_REF], or equivalently that its Legendre transform L(h) satisfies

L(h) ≤ 1 + ph. (13) 
Cumulants and estimation.

Following the original intuition in [START_REF] Castaing | Log-similarity for turbulent flows[END_REF], a polynomial expansion ζp(q) = m≥1 c

(p) m q m /m! enables a simplified analysis of ζp(q) through the expansion coefficients {c Reproducing the calculations in [START_REF] Castaing | Log-similarity for turbulent flows[END_REF] for pleaders immediately yields that these coefficients are directly related to the dependence with respect to scales 2 j of the cumulants of order m, denoted by C (p) m (j), of the logarithm of the p-leaders:

C (p) m (j) = Cumm ln L (p) (j, k) = c (0,p) m + c (p) m ln 2 j . ( 14 
)
This scaling behavior is used for the practical estimation of the coefficients c m (j) against ln 2 j , for j ∈ [j1, j2]. In view of [START_REF] Calvet | Multifractal volatility: Theory, forecasting and pricing[END_REF], the ζp(q) are also estimated by linear regressions of log 2 S(p, q, j) versus log 2 2 j = j. These estimation procedures, implemented by ourselves, are used to obtain the results produced in Sections 3 and 4. Hölder versus p-exponents. In general, p-exponents do not coincide for different ps nor with Hölder exponent (see [START_REF] Leonarduzzi | p-exponent and p-leaders for multifractal analysis[END_REF] for a theoretical discussion); thus the associated spectrum yields a novel and versatile collection of characterizations of local regularity fluctuations, further illustrated and studied in Sections 3 and 4.

NEGATIVE REGULARITY

Multifractal random walk. The differences and potential benefits in using p-exponents and p-leaders for the characterization of local regularity fluctuations are now illustrated on pedagogical examples, containing negative p-exponents. They are based on fractionally differentiated realizations of multifractal random walk (MRW) [START_REF] Bacry | Multifractal random walk[END_REF][START_REF] Bacry | Multifractal stationary random measures and multifractal random walks with log-infinitely divisible scaling laws[END_REF], a popular and representative member of the class of multiplicative cascade based multifractal processes. This class constitutes one of the most prominently used class of multifractal models for applications. MRW is a non Gaussian process with stationary increments and its multifractal properties mimic those of the celebrated multiplicative log-normal cascades of Mandelbrot. It is defined as k) , where GH (k) are the increments of fractional Brownian motion with parameter H, and ω is a Gaussian random process, independent of GH and with non trivial autocovariance Cov[ω(k1), ω(k2)] = c2 ln

X(k) = n k=1 GH (k)e ω(
L |k 1 -k 2 |+1
when |k1 -k2| < L and 0 otherwise. MRW has scaling properties as in [START_REF] Jaffard | Wavelet techniques in multifractal analysis[END_REF] for q ∈ -2/c2, 2/c2 , with ζ(q) = (H + c2)q -c2q 2 /2 and its multifractal spectrum is given by D

(∞) (h) = 1+(h-c1) 2 /(2c2) (with c1 = H + c2 and hm = c1 - √ -2c2
). Hölder versus p-exponents. Regarding p-exponent analysis, we form the following conjecture, strongly backed up by the numerical simulations reported below, that will be proven in [START_REF] Leonarduzzi | p-exponent and p-leaders for multifractal analysis[END_REF]: Conjecture 1 The p-exponents of multiplicative cascade based multifractal processes X ∈ L p 0 coincide for all p ∈ [1, p0], hence

D (p) (h) = D (p 0 ) (h) for all p ∈ [1, p0].
Notably, this conjecture implies that when hm ≥ 0, the Hölder and the p-exponents coincide ∀p ≥ 1 and thus that the Hölder and the p-exponent based multifractal spectra coincide for MRW, and ∀p ≥ 1 :

D (p) (h) = D (∞) (h) = D(h).

Numerical experiments.

We fix c1 = 0.8 and c2 = -0.08 and use fractional differentiation of order γ to control the minimal regularity and function class embedding of the sample paths,

X (γ) = F -1 (ıω) γ F[X]
, where F stands for the discrete Fourier transform [START_REF] Tseng | Computation of fractional derivatives using Fourier transform and digital FIR differentiator[END_REF]. We set γ = {0, 0.4, 0.5, 0.6, 0.7}, yielding h

(γ) m = hm -γ = {0.4, 0, -0.1, -0.2, -0.3}, c (γ) 1 = c1 -γ, c (γ) 
m = cm for m ≥ 2 and p0 = {+∞, +∞, 10, 5, 2.5}, where p0 denotes the value for p such that X (γ) ∈ L p 0 and ∀ε > 0 : X (γ) / ∈ L p 0 +ε . We fix N = 2 19 . Examples of sample paths are plotted in Fig. 1 (left column) and illustrate the potential of processes with negative p-exponents as models for applications, offering a continuum of moderately to strongly irregular sample paths. The corresponding multifractal spectra and estimates (as detailed in Section 2) for p = {2, 4, 8, ∞} (mean over 50 realizations) are plotted in Fig. 1 (right column), together with the theoretical limits D (p) (hp) ≤ 1 + php for the multifractal p-spectra of L p functions. Quality of estimation. First, we observe that in consistency with Conjecture 1, the results obtained with the wavelet leader and pleader formalisms coincide one with another for any of the values of p considered as long as h (γ) m ≥ 0 (p0 = +∞), and the formalisms, for any p, provide excellent estimates of the multifractal spectrum D(h) (Fig. 1, row 1-2). Second, as soon as h (γ) m < 0 (p0 < ∞), the wavelet leader based formalism fails to correctly estimate the spectrum D (p 0 ) (h) since the theoretical (bounded function) prerequisite for its application is violated, while the p-leaders estimates L (p) (h) correctly recover the multifractal spectrum D (p 0 ) (h) for values of p such that p ≤ p0 (Fig. 1, row 3-5). Once this condition for the function to be in L p is violated, the p-leader formalism provides biased estimates L (p) (h) which are bound to be at best tangent to 1 + ph (Fig. 1, row 3-5). For example, in row 4, h (γ) m = -0.2 and estimations L (p) are found to correctly estimate the theoretical spectrum D only for p = 2, 4 < p0 = 5, estimates for p = {8, ∞} ≥ p0 are found to differ significantly from the expected spectrum. In row 5, h (γ) m = -0.4 and L (p) estimates are correct for p = 2 < p0 = 2.5 only, while L (p) obtained with p = {4, 8, ∞} > p0 are clearly biased and constrained by the 1 + ph limits. These results are consistent with the theory outlined in Section 2 and demonstrate the practical effectiveness of the p-leader multifractal formalism in measuring negative values in local regularity.

ESTIMATION PERFORMANCE

The performance of the wavelet leader and p-leader multifractal formalisms for estimating the log-cumulants cm, m = 1, . . . , 4 are compared for 500 realizations from Monte Carlo simulations performed on MRW with process parameters as in Section 3 and γ = 0, hence with hm > 0 and Hölder and p-exponents and the corresponding spectra coinciding ∀p ≥ 1. A Daubechies' wavelet with N ψ = 2 is used, linear regressions are performed over the range (j1, j2) = [START_REF] Wendt | Bootstrap for empirical multifractal analysis[END_REF][START_REF] Abry | Detecting oscillating singularities in multifractal analysis : Application to hydrodynamic turbulence[END_REF]. In Fig. 2 It is observed that, for cm, m ≥ 2, variances systematically decrease when p decreases and also that biases decrease or remain constant when p decreases, thus rmse is systematically decreased when p decreases towards 1. For c1, variances appear to decrease only slightly with p while biases tend to re-increase when p → 1, thus yielding a minimum with an optimal trade-off p around 2. In overall, it is thus observed that, systematically, when p is decreased, the p-leader based estimation outperforms the wavelet leader based one, currently considered to achieve benchmark performance. Also, it provides practitioners with the possibility of tuning the parameter p to data and applications. 

CONCLUSIONS

The present contribution has shown that p-exponent and p-leader based multifractal analysis extends the classical Hölder and leader based formulation in two ways: Local regularity analysis is extended to possibly negative values, commonly observed in real world data. For processes where Hölder and p-exponents coincide, estimation performance for multifractal attributes are significantly improved compared to the reference wavelet leader formalism when tuning p to small values, close to 1. Connections between Multifractal Detrended Fluctuation Analysis, another popular tool for multifractal analysis [START_REF] Soares | Towards the detection of microcalcifications on mammograms through multifractal detrended fluctuation analysis[END_REF] and p-leader multifractal analysis can be established and yield theoretical insights in the former tool. Also, while written explicitly for 1D signals, p-leader multifractal analysis can be extended to R d random fields, notably for image texture analysis. These developments are under current investigations, cf. [START_REF] Leonarduzzi | p-exponent and p-leaders for multifractal analysis[END_REF].
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 1 Fig. 1. Left column: A single realization of fractionally differentiated MRW with h (γ) m = {0.4, 0, -0.1, -0.2, -0.3} (from top to bottom, respectively). Right column: The theoretical multifractal spectra (black solid) and Legendre spectra (mean over 50 realizations, N = 2 19 , N ψ = 2, j1 = 10) corresponding with the functions in the left column for p = {2, 4, 8, ∞} (solid lines; red circle, green diamond, blue cross and magenta square); the dashed line segments indicate the theoretical bound 1 + hp for the spectrum of any L p function (in respective colors for the different p).
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 42 Fig. 2. Bias (blue dashed circle), standard deviation (red dashed cross) and root mean squared errors (black solid square) for the estimation of the expansion coefficients c (p) m as functions of p.
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