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Abstract— We study a multi-class time-sharing discipline with
relative priorities known as Discriminatory Processor Sharing
(DPS), which provides a natural framework to model service
differentiation in systems. The analysis of DPS is extremely
challenging and analytical results are scarce. We develop closed-
form approximations for the mean conditional and unconditional
sojourn times. The main benefits of the approximations lie in its
simplicity, the fact that it applies for general service requirements
with finite second moments, and that it provides insights into the
dependency of the performance on the system parameters. We
show that the approximation for the mean (un)conditional sojourn
time of a customer is decreasing as its relative priority increases.
We also show that the approximation is exact in various scenarios,
and that it is uniformly bounded in the second moments of the
service requirements. Finally we numerically illustrate that the
approximation is accurate across a broad range of parameters.

I. INTRODUCTION

The Discriminatory Processor Sharing queue (DPS) is a
versatile queueing model providing a natural framework to
model service differentiation in systems. It is a multi-class
extension of the well-studied egalitarian Processor Sharing
(PS) policy, where the various classes are assigned positive
weight factors. The service capacity is shared simultaneously
among all customers present in proportion to the respective
class-dependent weights. More precisely, given there are K
classes of customers, if at time t there are nk(t) class-k
customers present in the system, k = 1, . . . ,K, under DPS

each class-k customer is served at rate gk/
∑K

j=1 gjnj(t),
where g1, . . . , gK , are the class-dependent weights. The DPS
queue has received lot of attention due to its application to
model the impact of service differentiation in systems.

When all the weights are equal, the DPS queue is equivalent
to the PS queue. The PS queue has gained a prominent
role in evaluating the performance of a variety of resource
allocation mechanisms (see for example [18], [14], [27]), and
in recent years it has received renewed attention as a conve-
nient abstraction for modeling the flow-level performance of
bandwidth-sharing protocols in packet-switched networks, in
particular TCP, see for example [10], [23]. In multiple practical
situations, the actual service shares that users obtain may
show substantial variation among users with heterogeneous
characteristics. For example, TCP flows that share a common

bottleneck link but traverse distinct routes, may experience
diverse packet loss rates and round-trip delays. Besides TCP-
related effects, the heterogeneity in bandwidth shares may also
be due to deliberate service differentiation among competing
flows (for example different quality-of-service in the Internet).
For instance packet scheduling algorithms, such as Weighted
Fair Queueing (WFQ) and Weighted Round-Robin (WRR),
have been proposed as potential instruments to implement
differentiated bandwidth sharing.

In this context, the Discriminatory Processor-Sharing (DPS)
provides a natural approach for modeling the flow-level perfor-
mance of TCP. The DPS model was introduced by Kleinrock
in [17]. Despite the simplicity of the model description and the
fact that the properties of the egalitarian PS queue are quite
thoroughly understood, the analysis of DPS has proven to be
extremely difficult. For example, results on an important basic
metric like the mean sojourn time in the system have only
been derived in a very implicit manner or under certain limit-
ing regimes (time-scale decomposition, heavy-traffic, overload
etc.).

In a seminal paper Fayolle, Mitrani & Iasnogorodski [9]
studied the mean conditional (on the service requirement) and
unconditional sojourn time. For general service time distribu-
tions, the authors obtained the mean conditional sojourn time
as the solution of a system of integro-differential equations. In
addition, the authors provided a thorough analysis for the case
of exponentially distributed service requirements. However,
except for the case of two classes, no closed-form expression is
available and numerical analysis is needed in order to calculate
the mean sojourn times. Since we use the results of [9] in order
to evaluate the accuracy of our approximation, we will give
further details on them in Section 2. Avrachenkov et al. [3]
established that the mean queue lengths of all classes are finite
under the usual stability condition, regardless of the higher-
order moments of the service requirements. Asymptotics of
the sojourn time have also received considerable attention
for example in [5] and [4]. An important result in this area
establishes the asymptotic equivalence between the sojourn
time distribution and the service time distribution. Time-scale
separations have been studied in [24] and [6]. In particular,
the authors of [6] approximate the distribution of the sojourn
time for a DPS queue with admission control. However the
expressions derived in [6] need to be solved numerically. The



performance of DPS in overload and its application to model
TCP flows is considered in [2]. The application of DPS to
analyse the performance of TCP is also considered in [16]. For
more applications of DPS in communication networks see [7],
[8], [13]. DPS under a heavy-traffic regime (when the traffic
load approaches the available capacity) was analysed in Gr-
ishechkin [11] assuming finite second moments of the service
requirement distributions. Subsequently, assuming exponential
service requirement distributions, a direct approach to establish
a heavy-traffic limit for the joint queue length distribution was
described by Rege & Sengupta [19] and extended to phase-
type distributions in [25]. We refer to the next section for more
details on heavy-traffic results. Game-theoretic aspects of DPS
have been studied in [26] and [12]. For an extensive overview
of the literature on DPS we refer to the survey [1].

Motivated by the difficulty in analyzing the system in exact
form, in this paper we derive a closed-form approximation
for the mean (un)conditional sojourn time in the system. We
first obtain a light-traffic approximation using the framework
obtained in [11]. To the best of our knowledge, we are the
first to obtain a light-traffic approximation of a time-sharing
system, that is, when all users in the system simultaneously
get served. We then use results from the heavy-traffic literature
in order to obtain a polynomial approximation for any value
of the load of the mean conditional sojourn time for service
requirements with finite second moments. Unconditioning on
the service time distribution, this allows us to readily obtain
an approximation for the mean unconditional sojourn time.
We will show that in some cases our approximation becomes
exact, namely when there is only one class in the system or
when all the weights are the same. The approximation provides
insights into the performance of the system. We show that
the approximation for the mean conditional sojourn time of
a class-k user is decreasing (resp. increasing) as the weight
gk (resp. gj , j 6= k) increases. Another important observation
is that the approximation is uniformly bounded in the sec-
ond moments of the service requirements. This was a major
property of PS, which is in sheer contrast with FCFS queues,
where the mean waiting time explodes as the second moment
grows. Finally, we numerically investigate the accuracy of the
approximation by comparing it with the exact results obtained
in [9]. We consider different service time distributions, and
our results show that our approximation works extremely well
across various parameter values. An important benefit of the
approximation is that it provides insights into the dependency
of the performance on the system parameters (weights, service
time distributions, etc), and we thus believe it will provide an
interesting tool in order to implement service-differentiation in
real systems.

The remainder of the paper is organized as follows. In Sec-
tion II we provide a detailed model description and gather
results from Fayolle et al. [9] and Grishechkin [11] that will
be used in the paper. In Section III we develop a light-traffic
analysis. The light-traffic interpolation approximation for the
(un)conditional sojourn time is presented in Section IV. In
Section V we numerically test the accuracy of the obtained
approximations.

II. MODEL DESCRIPTION AND PRELIMINARIES

We consider a multi-class single-server queue with K classes
of customers. Class-k customers, k = 1, . . . ,K, arrive
according to independent Poisson processes with rate λk ≥ 0.

We denote the overall arrival rate by λ =
∑K

k=1 λk. A class-
k customer has a generally distributed service requirement
denoted by Bk and we assume E[B2

k] < ∞, k = 1, . . . ,K.
The traffic intensity for class-k customers is denoted by
ρk := λkE[Bk] and the total traffic intensity is denoted by

ρ :=

K
∑

k=1

ρk =

K
∑

k=1

λkE[Bk] = λ

K
∑

k=1

αkE[Bk] = λE[B],

where αk = λk/λ denotes the probability that an arrival is of
class k and the random variable B is the service requirement
of an arbitrary arriving customer.

The K customer classes share a common resource of capacity
one. There are strictly positive weights g1, . . . , gK associated
with each of the classes. Whenever there are nk class-k
customers, k = 1, . . . ,K, in the system, each class-k customer
is served at rate gk

∑K
j=1 njgj

.

We denote by Sk(λ, b) the conditional sojourn time of a
tagged class-k customer with a given service requirement b,
when the arrival rate is λ. We are interested in approximating
Sk(λ, b) := E[Sk(λ, b)], the mean conditional sojourn time of
the tagged class-k customer. We further denote by Sk(λ) :=
∫∞

0
Sk(λ, b)dFk(b), the mean unconditional sojourn time of

the tagged class-k customer, where P(Bk ≤ b) = Fk(b) is the
distribution function of Bk.

The analysis of DPS is extremely difficult compared to that
of egalitarian PS, which arises as a special case when all gk
are equal. Fayolle et al. [9] obtained that the derivatives of the
mean conditional sojourn times of the various classes satisfy
the following system of integro-differential equations:

S
(1)

k (λ, b)

= 1 +

K
∑

j=1

∫ ∞

0

λj
gj
gk

S
(1)

j (λ, y)[1− Fj(y +
gj
gk

b)]dy

+

∫ b

0

S
(1)

k (λ, y)
K
∑

j=1

λj
gj
gk

[1− Fj(
gj
gk

(b− y))]dy, (1)

for k = 1, . . . ,K, where S
(1)

j (λ, b) :=
∂Sj(λ,b)

∂λ . The natural

boundary conditions are Sk(λ, 0) = 0, k = 1, . . . ,K.

The only known analytical solution for this system of equations
has been obtained under the assumption of exponentially
distributed service requirements. In this case we denote by
µj := 1/E[Bj ], ∀j. In [9] it is proved that

Sk(λ, b) =
b

1− ρ
+

m
∑

j=1

gkcjβj + dj
β2
j

(

1− e−βjb/gk
)

, (2)

where −βj , j = 1, 2, . . . ,m, are the m distinct negative roots
of

K
∑

j=1

λjgj
µjgj + s

= 1, (3)



and where cj and dj , j = 1, . . . ,m, are a function of the input
parameters and βj , j = 1, . . . ,m.

Furthermore, for the mean unconditional sojourn time with
exponentially distributed service requirements, it is shown
in [9] that Sk(λ), k = 1, . . . ,K, is the unique solution of
the following system of equations:

Sk(λ)



1−
K
∑

j=1

λjgj
µjgj + µkgk



−
K
∑

j=1

λjgjSj(λ)

µjgj + µkgk
=

1

µk
.

(4)

A closed-form solution for this system of equations (4) is
available only for the case of K = 2, and is given by

S1(λ) =
1

µ1(1− ρ)

(

1 +
µ1ρ2(g2 − g1)

µ1g1(1− ρ1) + µ2g2(1− ρ2)

)

,

(5)
and

S2(λ) =
1

µ2(1− ρ)

(

1 +
µ2ρ1(g1 − g2)

µ1g1(1− ρ1) + µ2g2(1− ρ2)

)

.

(6)

The above shows how hard and challenging it is to study ana-
lytically the DPS model. For this reason, as mentioned in the
introduction, research has focused on analysing the DPS queue
in limiting regimes, like tail asymptotics, heavy-traffic limits,
fluid limits etc. In this paper, we take a different approach,
and we develop light-traffic interpolation based approximations
for Sk(λ, b) and Sk(λ). In the numerical section we will
use Equations (2), (4)-(6) in order to numerically verify the
accuracy of our light-traffic interpolation approximations.

The approximation is obtained by interpolating the mean
sojourn times obtained in both a light-traffic regime and a
heavy-traffic regime.

The light-traffic regime consists in letting ρ ↓ 0, or equivalently
λ ↓ 0. Hence, it concerns the performance when the system
is almost empty. No results are available for the DPS queue.
Therefore, in Section III we analyze the mean conditional
sojourn time in the light-traffic regime.

The heavy-traffic regime consists in letting ρ ↑ 1, or equiv-
alently λ ↑ 1/E[B]. Hence, it concerns the performance
when it is close to congestion. Heavy-traffic results have
been obtained in [11], [19], [25]. For our analysis, we use
the results by Grishechkin [11, Theorem 4.1] who studied a
general M/G/1/GPS system of which our model is a particular
case. In particular, for the DPS queue as studied in this paper
Grishechkin derives the distribution of the conditional sojourn
times, scaled by 1− λE[B] = 1− ρ, as λ ↑ 1/E[B]. In
particular, the mean of this distribution is given by

E[ lim
λ↑1/E[B]

(1−λE[B])Sk(λ, b)] =
b

gk

E[B2]
∑K

j=1 αjE[B2
j ]/gj

. (7)

For our interpolation result, we are interested in
limλ↑1/E[B](1 − λE[B])Sk(λ, b) = limλ↑1/E[B](1 −
λE[B])E[Sk(λ, b)]. Although we cannot verify that the limit
and expectation can be interchanged, we use the expression in
(7) as an approximation for limλ↑1/E[B](1 − λE[B])Sk(λ, b).
Numerical experiments as performed in [25] indicate that
indeed the limits can be interchanged.

III. LIGHT-TRAFFIC ANALYSIS

In this section we analyse the mean conditional sojourn time of
the tagged class-k customer under the light-traffic regime. The
light-traffic regime concerns the performance of the system
for small values of the arrival rate λ, i.e., when the system
is almost empty. We will approximate Sk(λ, b) by a Taylor
series expansion of Sk(λ, b) at λ = 0. Assuming that the first
n derivatives of Sk(λ, b) with respect to λ at λ = 0 exist we
have the following approximation for the mean conditional
sojourn time of a class-k customer when λ is close to zero:

S
LT

k (λ, b) := Sk(0, b)+λS
(1)

k (0, b)+ · · ·+
λn

n!
S
(n)

k (0, b). (8)

Here S
(m)

k (0, b),m = 1, . . . , denotes the m-th derivative of

Sk(λ, b) with respect to λ at λ = 0, i.e.,
∂mSk(λ,b)

∂λm

∣

∣

∣

λ=0
. In

this paper we set n = 1 in (8) as this will already provide us
with an accurate approximation of the performance. We note
that in previous literature higher order approximations have
been obtained for non-preemptive systems, see [20].

We have based our analysis on Reiman and Simon [22] where
it is shown how to obtain the derivatives of arbitrary order
m ≥ 0 at λ = 0 under a general admissibility condition. It can
be seen that our model, being based on an M/G/1, satisfies
this condition. Hence, we consider the system in steady state.
We assume the system starts at t = −∞, and Sk is the sojourn
time of the tagged class-k customer who arrives in the system
at time t = 0. Using [22] we have Sk(0, b) = ψ(∅) and

S
(1)

k (0, b) =

∫

R

(ψ({t})− ψ(∅))dt, (9)

where

ψ(∅) := E[Sk| no arrivals on R], (10)

ψ({t}) := E[Sk| exactly one arrival on R at t]. (11)

Equation (10) represents the situation where nobody enters the
system except the tagged customer. Therefore, ψ(∅) is equal
to the service requirement of the tagged customer, which we
denote by b. Hence,

Sk(0, b) = b. (12)

Regarding (11), we denote by Sk,t,ut,but
the sojourn time of

the tagged class-k customer when there is exactly one arrival at
time t on R, ut describing the class of the customer arriving at
time t and but

denoting the service requirement of the customer
arriving at time t. Hence, ψ({t}) = E[Sk,t,Ut,BUt

], where Ut

and BUt
are dependent random variables and are distributed

as follows: with probability αi we have Ut = i and BUt
is

distributed as Bi, i = 1, . . . ,K. We can write Sk,t,ut,but
as

follows:

Sk,t,ut,but
=







































t+ but
+ b if t ≤ 0 ≤ t+ but

and b
gk

>
t+but

gut
gk+gut

gk
b if t ≤ 0 ≤ t+ but

and b
gk
≤

t+but

gut

b if t+ but
< 0

b+ but
if 0 < t < b and b−t

gk
>

but

gut

t+ (b− t)
gk+gut

gk
if 0 < t < b and b−t

gk
≤

but

gut

b if 0 < b < t,

(13)



which can be seen as follows: The first expression describes
the case where the customer arrives before the tagged customer
and leaves after the tagged customer arrives, but before the
tagged customer leaves. Hence, by the work conserving prop-
erty, the tagged customer stays in the system until all the work
present at time 0 is done, that is, but

− (−t) + b. We recall
that the work-conserving property states that as long as the
system is non-empty, the server does not idle. The second term
describes the case where the other customer is in the system
at time 0 and is still present as the tagged customer departs.
Hence, the tagged class-k customer is served at rate gk

gk+gut

, so

that its sojourn time is b
(

gk
gk+gut

)−1

. The fourth expression

describes the case where the customer arrives after the tagged
customer and leaves before the tagged customer. Hence, by
the work-conserving property of the system, the sojourn time
of the tagged class-k customer is given by the total amount
of work that needs to be done, that is, b + but

. The fifth
term describes the case where the customer arrives after the
tagged customer, and departs after the tagged customer departs.
Then, the sojourn time of the tagged customer is composed of
t, the time it was in the system until the customer arrived,

plus (b − t)
(

gk
gk+gut

)−1

, the remaining service requirement

multiplied by the inverse of the rate at which the the tagged
class-k customer is served. The third and sixth case is when
the tagged customer does not coincide with the other customer.
Hence, the sojourn time is given by its service requirement, b.

From Equations (9) and (13) we then obtain the following
expression for the first derivative.

Lemma III.1. We have

S
(1)

k (0, b) (14)

=

∫

R

(ψ({t})− ψ(∅))dt =

∫

R

(E[Sk,t,Ut,BUt
]− b)dt

= E

[

1

2

(

1 +
gk
gUt

)

min{BUt
, b
gUt

gk
}2

−
(

b
gUt

gk
+

gk
gUt

BUt

)

min{BUt
, b
gUt

gk
}+

gk + gUt

gk
bBUt

]

.

Proof: To calculate S
(1)

k (0, b) we need to calculate
∫∞

−∞
E[Sk,t,Ut,BUt

]dt, where Sk,t,ut,but
is as given in Equa-

tion (13). We first focus on the calculation corresponding to
the first term of (13), that is, the case when t ≤ 0 ≤ t+ BUt

and t <
gUt

gk
b − BUt

, (where the inequalities of the random
variables hold sample-path wise). We have

∫ 0

−∞

E

[

1

[

−BUt
≤ t <

gUt

gk
b−BUt

](

t+BUt
+ b

)

]

dt

=

∫ ∞

0

E

[

1

[

BUt
≥ t > BUt

−
gUt

gk
b

](

− t+BUt
+ b

)

]

dt

= E

[

∫ ∞

0

1

[

BUt
≥ t > BUt

−
gUt

gk
b

](

− t+BUt
+ b

)

dt

]

,

as we make use of Tonelli’s Theorem. It follows that
∫ ∞

0

1

[

BUt
≥ t > BUt

−
gUt

gk
b

](

− t+BUt
+ b

)

dt

=

∫ BUt

(

BUt
−

gUt
gk

b
)+

(

− t+BUt
+ b

)

dt

=

[

−
t2

2
+BUt

t+ bt

]BUt

(

BUt
−

gUt
gk

b
)+

. (15)

We can now consider two cases. If BUt
−

gUt

gk
b > 0, then

Equation (15) is equal to 1
2

(

gUt
b

gk

)2

+
gUt

b2

gk
. If BUt

−
gUt

gk
b < 0,

then Equation (15) is equal to
B2

Ut

2 + bBUt
, and we thus get

E

[∫ ∞

0

1

[

BUt
≥ t > BUt

−
gUt

gk
b

](

− t+BUt
+ b

)

dt

]

= E

[

1

2
min{BUt

, b
gUt

gk
}2 + bmin{BUt

, b
gUt

gk
}

]

.

The other five cases in (13) can be calculated in a similar way
and this will give us the result as stated in (14). �

From (8) and (14) we now derive the following approximation
for the mean conditional sojourn time when λ is small.

Corollary III.2. The light-traffic approximation (of order 1)
of the mean conditional sojourn time for a tagged class-k
customer with service requirement b is given by

S
LT

k (λ, b) = Sk(0, b) + λS
(1)

k (0, b) (16)

= b(1 + ρ) + λE

[

1

2

(

1 +
gk
gUt

)

min{BUt
, b
gUt

gk
}2

−
(

b
gUt

gk
+

gk
gUt

BUt

)

min{BUt
, b
gUt

gk
}+

gUt

gk
bBUt

]

.

We can infer several nice properties from (16). For instance,
we will show in Section IV that (16) is decreasing in gk and
increasing in gj , j 6= k. In other words, the approximation for
the mean sojourn time reduces as its own weight increases, and
it increases as the weight of any other class increases. Another
interesting observation is that the light-traffic approximation of
the mean conditional sojourn time can be uniformly bounded
in the second moment. This important feature helps obtaining
a good performance in the presence of highly variable service
distributions (like the ones observed in nowadays communica-
tion systems). See Section IV-D for details.

IV. LIGHT-TRAFFIC INTERPOLATION

In this section we present the light-traffic interpolation result.
This technique was popularized by Reiman and Simon [20],
[21], [22] and consists in interpolating

tk(λ) := (1− ρ)Sk(λ, b) = (1− λE[B])Sk(λ, b)

by a polynomial t̂k(λ) of order n+ 1:

t̂k(λ) = h0 + h1λ+ . . .+ hn+1λ
n+1. (17)



To determine the coefficients h0, . . . , hn we use the so-called
light-traffic conditions: t̂k(0) = tk(0), and

t̂
(m)
k (0) = t

(m)
k (0), for m = 1, . . . , n, (18)

and the heavy-traffic condition

t̂k
(

(1/E[B])−
)

= tk
(

(1/E[B])−
)

, (19)

where tk
(

(1/E[B])−
)

is given by
b

gk

E[B2]
∑J

j=1 αjE[B2
j ]/gj

,

see (7). Once we have obtained the coefficients we undo the
normalization so that

S
INT

k (λ, b) :=
t̂k(λ)

(1− λE[B])
, 0 ≤ λ < 1/E[B] (20)

provides an approximation for the mean conditional sojourn
time Sk(λ, b). We refer to this approximation as the light-
traffic interpolation of order n+ 1.

Note that in the previous section we derived the light-traffic

derivative of order 1, S
(1)

k (0, b). Hence, this allows us to
obtain the light-traffic interpolation of order 2 as stated in the
following proposition.

Proposition IV.1. The light-traffic interpolation (of order 2)
of the mean conditional sojourn time for a tagged class-k
customer with service requirement b is given by

S
INT

k (λ, b)

= b(1 + ρ) + λE

[

1

2

(

1 +
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)

min{BUt
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b
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j=1 αjE[B2
j ]/gj

. (21)

Proof: We have t̂k(0) = h0 and by Equation (12)
tk(0) = Sk(0, b) = b. Hence, by the light-traffic con-

ditions this implies h0 = b. We further have t̂
(1)
k (0) =

h1 and t
(1)
k (0) = −E[B]Sk(0, b) + S

(1)

k (0, b), where

we have by Lemma III.1 that S
(1)

k (0, b) = E

[
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. This implies h1 = −bE[B] + 1
2E
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.

We have t̂k(1/E[B]) = h0 + h1/E[B] + h2/E[B]2 and

by (7) we have tk(1/E[B]) ≈
b

gk

E[B2]
∑k

j=1 αjE[B2
j ]/gj

.

Hence, from (19) we obtain h2 =
b
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.

The final expression (21) is then obtained from
(h0+h1λ+h2λ

2)/(1−λE[B]) after a few manipulations.

From Proposition IV.1 we can make the following observa-
tions.

A. The case of PS

For the standard Processor Sharing queue the mean conditional
sojourn time is known and is given by b/(1−ρ), [15]. If either
(i) there is only one class or (ii) all weights are the same, our
model is equivalent to a processor-sharing queue. Below we
will verify that our approximation as stated in (21) indeed
coincides with b/(1− ρ).

We first consider the case of one class, that is, αi = 0, ∀i 6= k
and αk = 1. Then Equation (21) is equal to

b(1 + ρ) + λkE

[

min{BUt
, b}2 −

(

b+BUt

)

min{BUt
, b}

+bBUt

]

+ b
ρ2

(1− ρ)
= b(1 + ρ+

ρ2

(1− ρ)
) =

b

1− ρ
,

where we used that min{BUt
, b}2−

(

b+BUt

)

min{BUt
, b}+

bBUt
= 0.

We now assume all weights are the same, i.e., gi = gk, ∀i, k =
1, . . . ,K. Equation (21) is then equal to

b(1 + ρ) + λE

[

min{BUt
, b}2 −

(

b+BUt

)

min{BUt
, b}+ bBUt
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= b(1 + ρ+
ρ2

(1− ρ)
) =

b

1− ρ
.

Hence, both cases coincide with the PS queue.

B. Priority queue

We now consider the case when the weight of the tagged
customer grows large, i.e., gk → ∞. Hence, class k is
prioritized in the limit. Then, the approximation simplifies to

lim
gk→∞
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= b(1 + ρk).



Note that the conditional sojourn time as gk → ∞ is known
and its given by b/(1− ρk). Since 1/(1− ρk) =

∑∞
i=0 ρ

i
k, we

directly see that the approximation is the first order approxi-
mation of the exact expression. The relative error is equal to
100% (b/(1− ρk)− b(1 + ρk)) /b/(1 − ρk) = ρ2k100%, and
we thus see that the relative error increases as the load of
class k increases.

C. Monotonicity in the weights

It can be checked that the approximation for the mean condi-

tional sojourn time of a tagged class-k customer, S
INT

k (λ, b),
is decreasing in gk and increasing in gi, i 6= k.

This can be seen as follows. Conditioning on Ut we can write

S
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= b(1 + ρ) +

K
∑

i=1,i$=k

λiE

[

1

2

(

1 +
gk
gi

)

min{Bi, b
gi
gk
}2

−
(

b
gi
gk

+
gk
gi

Bi

)

min{Bi, b
gi
gk
}+ b

gi
gk

Bi

]

+
(λE[B])2

(1− λE[B])

b

gk

E[B2]
∑K

j=1 αjE[B2
j ]/gj

,

where for Ut = k we used that min{Bk, b}
2 −

(

b +
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)

min{Bk, b}+ bBk = 0.

Now, if Bi ≤
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b, then 1
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), which is

decreasing in gk and increasing in gi. If Bi > gi
gk
b, then

1
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(

b gi
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Bi
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1
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2 gi
gk
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gk
)+bBi(

gi
gk
−1), which is decreasing in

gk and increasing in gi (can be derived by taking the derivative

and the fact that Bi >
gi
gk
b). The monotonicity of S

INT

k (λ, b)
in gk and gi now follows immediately.

D. Uniformly bounded in the second moment

A very relevant property of processor sharing is that the mean
sojourn time depends on the service time distribution only
through its mean [14]. This has been an important argument
to claim the interest of time-sharing disciplines with respect
to more classical scheduling policies like FCFS. Indeed, the
classical Pollaczek-Khinchine formula for the mean waiting
time in a FCFS queue shows that it explodes as the second
moment of the service time distribution grows large. For a DPS
queue, Equation (1) does not allow to reach any conclusion
regarding the dependence of the mean conditional sojourn time
on the moments of the service time distribution.

It then becomes interesting to observe that the approxima-
tion (21) is uniformly bounded in the second moments of
the service time distribution. To see this, we first note that
min{BUt

, b
gUt

gk
}2 ≤ BUt

b
gUt

gk
, which directly implies that the

first three terms in (21) are uniformly bounded by a function
that depends on the service requirements only through its
first moment. We are now left with the heavy-traffic term

E[B2]
∑K

j=1 αjE[B2
j ]/gj

. Let j∗ be such that E[B2
j∗ ] ≥ E[B2

j ],

∀j. We then have
E[B2]

∑K
j=1 αjE[B2

j ]/gj
=

∑

j αjE[B
2
j ]
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j=1 αjE[B2

j ]/gj
≤

E[B2
j∗ ]

αj∗E[B2
j∗ ]/gj∗

=
gj∗

αj∗
. We thus finally conclude that (21) can

be upper bounded by an expression that depends only on the
first moment of the service time distributions. This indicates
that the DPS queue provides a satisfactory performance even
in the presence of service time distributions with a high
variability.

E. Mean unconditional sojourn time

As a corollary of Proposition IV.1, we obtain the mean
unconditional sojourn time of the tagged class-k customer.

Corollary IV.2. The light-traffic interpolation (of order 2)
of the mean unconditional sojourn time for a tagged class-
k customer is given by

S
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S
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. (22)

V. NUMERICAL RESULTS

In this section we numerically investigate the accuracy of the
approximations obtained in this paper. In Section V-A we
consider the mean conditional sojourn time and in Section V-B
the mean unconditional sojourn time, whose approximations
are stated in Proposition IV.1 and Corollary IV.2, respectively.

As stated in Section II, Fayolle et al. [9] obtain analytical
expressions of the mean conditional and unconditional so-
journ time under the assumption of exponentially distributed
service requirements. We recall that a random variable Bi is
exponentially distributed if P(Bi ≤ bi) = 1 − e(−bi/E[Bi]).
For exponentially distributed service requirements, we will
evaluate the accuracy of the approximations by comparing the
exact formulas as obtained in [9], see Equations (2) and (4),
with the approximations as given in (21) and (22).

In order to obtain a more complete understanding on the
accuracy of the approximation, we will also consider hy-
perexponential distributions. We say that Bi has a hyper-
exponential distribution with mi phases if P(Bi ≤ bi) =
1−

∑mi

k=1 pike
(−bi/E[Bik]), where pik is the probability that a

class-i customer is exponentially distributed with mean E[Bik].
Hyperexponential distributions have a decreasing hazard-rate,
and their second moment can be made arbitrarily large, and
because of these features it has been proposed as an appropriate
distribution to model service time distributions in the Internet.
In order to derive exact expressions for the mean sojourn
time when the service requirements are hyperexponentially dis-
tributed, we make the observation that if classes k = 1, . . . ,mi

are exponentially distributed (where class k has arrival rate
λk and mean service requirement E[Bk]) and have the same



DPS weight, g1 = . . . = gmi
, then they can be seen as a

single (merged) class i with a hyperexponential distribution
with parameters pik = λk/

∑mi

l=1 λl and E[Bik] = E[Bk], for
each phase k = 1, . . . ,mi.

Throughout this section the performance criteria will be the
relative error. For instance, for the mean conditional sojourn

time, we will calculate 100%× Sk(λ,b)−S
INT

k (λ,b)

Sk(λ,b)
, and for the

mean unconditional sojourn time 100%× Sk(λ)−S
INT

k (λ)

Sk(λ)
.

Before explaining in detail the numerical results we have
obtained, we summarize our main conclusions:

• The approximation is accurate over a broad range of
parameter values.

• For a given set of parameters, the relative error for the
mean conditional sojourn time increases as the service
requirement of the tagged customer increases.

• The error increases as the disparity among the weights
increases.

• For any given scenario, the largest relative error occurs
in an intermediate load between 0 and 1.

• The largest relative errors for the mean conditional
sojourn time occur for service requirements b that
are very unlikely to occur. This also explains the
high accuracy of our approximation for the mean
unconditional sojourn time.

A. Conditional sojourn time

In this section we measure the accuracy of the mean condi-
tional sojourn time.

Scenario 1. In Figure I we consider four classes K = 4 with
exponentially distributed service requirements. The parameters
of the classes are fixed, and we vary the total arrival rate in
order for the load to cover the range of stable values. We
consider E[B1] = 2, E[B2] = 5, E[B3] = 7, E[B4] = 10,
g1 = 30, g2 = 25, g3 = 20, g4 = 10, and α1 = 10/36,
α2 = 5/36, α3 = 8/36, α4 = 13/36 such that λi = αi∗λ, i =
1, . . . , 4, where λ is the total arrival rate. In Figure I we plot the
relative error of our approximation for the mean conditional
sojourn time of a tagged class-i customer, for i = 1, . . . , 4,
where the size of the tagged class-i customer, bi, is selected
such that the probability of the event is P(Bi ≤ bi) = 0.01,
P(Bi ≤ bi) = 0.50 and P(Bi ≤ bi) = 0.99, respectively. As
can be seen, the relative error for the mean conditional sojourn
time remains small and always below 6%.

Scenario 2. In Figure II we consider two classes K = 2
with exponentially distributed service requirements. We fixed
the parameters E[B1] = 2, E[B2] = 1, g1 = 1, g2 = 3,
α1 = 0.415, α2 = 0.585 and λi = αi ∗ λ. We let the service
requirement of the class-i tagged customer span between 0
and bi,max where P(Bi ≤ bi,max) = 0.99 and for each b we
plot the largest absolute relative error that can be found for a
ρ ∈ [0, 1). We observe a largest error of at most 6%.

Scenario 3. In Figure III we consider again two classes with
exponentially distributed service requirements. As parameters
we fix: E[B1] = 2, E[B2] = 1, λ1 = 0.2, λ2 = 1.5λ1 and b =

Figure II: Scenario 2. Largest absolute relative error as a
function of P(Bi ≤ bi).

Figure III: Scenario 3: Mean conditional sojourn time as a
function of g1

1. We chose g2 = 1−g1 and let g1 vary on the horizontal axis.
In the figure we plot the mean conditional sojourn time and our
approximation. We see that the property stated in Section IV-C

is satisfied, namely as g1 increases S
INT

1 (λ, b) decreases and

S
INT

2 (λ, b) increases. Besides, it can be observed from the
figure that the approximation looses accuracy as one class is
given more priority, i.e., g1 → 0 or g1 → 1.

Scenario 4. In Figure IV we consider two classes with hyper-
exponential distributed service requirements with E[B1] = 2,
E[B2] = 6. Each of the hyperexponential distributions has 3
phases. The parameters are as follows: for class 1 we take
E[B11] = 3.5, E[B12] = 2, E[B13] = 5, p11 = 10/21,
p12 = 5/21, p13 = 6/21, and for class 2 we take E[B21] = 10,
E[B22] = 15, E[B23] = 20, p21 = 4/15, p22 = 8/15,
p23 = 3/15. The weights are set to g1 = 2 and g2 = 5.
We assume that an arriving customer is of class 1 (class 2)
with probability α1 = 21/36 (α2 = 15/36). As in Scenario
1, we select the service requirement of the tagged customer
such that P(Bi ≤ bi) = 0.01, 0.5 and 0.99. We see that the
error increases as the size of the tagged customer increases.
However it is remarkable how accurate the approximation is.

In Figure V we consider Scenario 4. We vary the service
requirement of the class-i tagged customer between 0 and
bi,max where P(Bi ≤ bi,max) = 0.99 and for each b we plot the
largest absolute relative error that can be found for a ρ ∈ [0, 1).
We observe that the error increases as the size of the tagged
customer increases. The largest absolute relative error is of the



Figure I: Scenario 1: Relative error for a tagged class-i customer with service requirement bi such that P(Bi ≤ bi) = 0.01 (left),
P(Bi ≤ bi) = 0.50 (middle), P(Bi ≤ bi) = 0.99 (right).

Figure IV: Scenario 4: Relative error for a tagged class-i customer with service requirement bi such that P(Bi ≤ bi) = 0.01
(left), P(Bi ≤ bi) = 0.50 (middle), P(Bi ≤ bi) = 0.99 (right).

Figure V: Scenario 4. Largest absolute relative error as a
function of P(Bi ≤ bi).

order of 22% for the class with the smallest weight and of the
order of 3% for the class with the highest weight.

B. Unconditional sojourn time

In this section we evalute the accuracy of the mean uncondi-
tional sojourn time.

In Figure VI we consider the same parameter setting as in
Scenario 1, and we observe that the largest relative error for

the mean unconditional sojourn time is less than 3.5%.

In Figure VII we consider two classes with hyper-exponentially
distributed service requirements. The parameters are the ones
considered in Scenario 4. We conclude that the largest relative
error for the mean unconditional sojourn time is around 3%.

As pointed out in the beginning of the section, we observe that
the relative error for the mean unconditional sojourn time tends
to be smaller than the ones observed for the mean conditional
sojourn time. This can be explained by noting that the largest
errors in the mean conditional sojourn time tend to occur for
service requirements that happen with a very low probability.

In Figure VIII we consider two classes with hyper-
exponentially distributed service requirements. The parameters
are the same as in Scenario 4. We chose g2 = 1− g1 and let
g1 vary on the horizontal axis. For each given g1 we calculate
the largest absolute relative error for the mean unconditional
sojourn time as we let ρ range from 0 to 1. We observe that the
relative error for the unconditional sojourn time is at most of
30%, and that this happens when class 2 receives full priority.
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Figure VI: Relative error for the mean unconditional sojourn
time in Scenario 1.

Figure VII: Relative error for the mean unconditional sojourn
time in Scenario 4

REFERENCES

[1] E. Altman, K. Avrachenkov, and U. Ayesta. A survey on discriminatory
processor sharing. Queueing systems, 53(1-2):53–63, 2006.

[2] E. Altman, T. Jimenez, and D. Kofman. DPS queues with stationary
ergodic service times and the performance of TCP in overload. In
Proceedings of IEEE INFOCOM, 2004.

[3] K.E. Avrachenkov, U. Ayesta, P. Brown, and R. Núñez-Queija. Discrim-
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