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Abstract

The flexibility of wireless connectivity is appealing in

the context of industrial networks. This paper discusses

the use of a wireless protocol to interconnect remotely lo-

cated fieldbuses. The focus of this paper is to analyze the

feasibility and design issues related to this type of hybrid

network architecture. Therefore, we concentrate on deriv-

ing appropriate bridging strategies for a network topol-

ogy composed of remotely located CAN buses intercon-

nected through a wireless local area network following the

IEEE802.11g protocol. Using this very simple and cost-

effective architecture, we show in this study that by intel-

ligently leveraging the features of CAN and IEEE802.11g

in the interconnection policies employed, the missed dead-

lines can be limited for the CAN frames carried by the

wireless network.

1. Introduction

Industrial fieldbus technologies are widely rolled out

to offer real-time communication capabilities on the fac-

tory floor. A large set of protocols offer deterministic

and timely bounded transmissions using tailored medium

access schemes and architectures (e.g. PROFIBUS,

PROFINET, TTEthernet, etc.). Controller Area Network

[1] is one of the mainstream standards for embedded

communications. Despite the fact that it has been orig-

inally developed for automotive communications, CAN

has found its place in factory automation applications

to handle sensor-actuator communications because of its

ease of use and the low cost of its controllers.

Recent developments for industrial communications

consider introducing wireless transmissions into the

global network architecture [4][10][14]. First studies have

assessed the capabilities of mainstream wireless technolo-

gies such as WiFi (IEEE802.11 [5]), Bluetooth or Zig-

Bee (IEEE802.15.4) [14] for real-time communications.

In parallel, new real-time wireless protocols have been de-

signed [2] [6] [7] [8] [9] [13]. Recently, a TDMA-oriented

solution called WirelessHART has been commercialized

for factory automation applications [13]. The main pit-

fall of wireless communications is of course the increased

unreliability the medium suffers from due to interference

and pathloss compared to shielded wires.

There are several main motivations for developing a

wireless fieldbus technology. First, wireless networks are

much easier to deploy than wired networks. Second, mo-

bile entities such as robots can communicate seamlessly.

The works on wireless real time protocol design clearly

aim at leveraging these two features. Another interest-

ing benefit of wireless transmissions is to provide a cost-

effective network to interconnect distant heterogeneous or

homogeneous legacy fieldbuses. The focus of this paper is

to discuss this last use case of wireless communications.

A wireless interconnection will benefit architectures

where several fieldbuses, located far from each other, need

a backhaul network to exchange data. Either legacy wire-

less technologies such as WiFi or dedicated wireless pro-

tocols such as WirelessHART may be chosen, depending

on the nature of the traffic exchanged between the remote

buses. For hard real-time data, a dedicated reliable wire-

less solution has to be picked [2][6], while for soft real-

time data, a cheaper and probably less reliable wireless

technology can be chosen. But for both cases, we argue

that the key point to achieve a timely behaviour of the end-

to-end flows in the network is to carefully define the bridg-

ing strategies of the wireless gateways interconnecting the

fieldbuses with the wireless network.

This statement is illustrated in this paper with

the interconnection of CAN buses through a standard

IEEE802.11g wireless network using CSMA/CA (Carrier

Sense Multiple Access with Collision Avoidance) medium

access control in ad hoc mode. In this study case, soft

real-time data is exchanged between the remote CAN net-

works using low-cost wireless Access Points. The paper

proposes and discusses different bridging strategies that

account for the specifics of CAN and CSMA/CA. The

aim of this study is to highlight their impact on end-to-

end communication delays in a network where periodic

flows are to be received in a timely manner. Of course,

CSMA/CA being far from deterministic, the end-to-end

(E2E) communication delay is not bounded anymore. But

we show through simulations that intelligent encapsula-

tion strategies of CAN frames into WiFi frames signifi-



cantly improve the communication delay on the wireless

network. Moreover we clearly show that this architecture

is a good candidate for soft real-time traffic.

In our previous work [11], interconnection of CAN

buses via legacy Ethernet has been studied. The motiva-

tion of studying interconnection through CSMA/CA for

WiFi relies on the following facts:

First, a collision on Ethernet is far less time-consuming

than on CSMA/CA since it is very quickly detected by

emitters. Second, throughput on both technologies is dif-

ferent (e.g. 100 Mbps vs. up to 54 Mbps), at least

doubling the transmission duration of a frame. Third,

the overhead of collision avoidance and acknowledge-

ment procedure triggers an additional timing overhead for

CSMA/CA compared to CSMA/CD.

This paper is organised as follows. Section 2 describes

the architecture of interest. Section 3 proposes different

bridging strategies. The performance of these strategies is

analysed in Section 4. Section 5 concludes the paper and

gives directions for future work.

2. Case study architecture

2.1. Network architecture

IEEE802.11

ad hoc connection

NC3

NW2

NW3
NW1

CAN Bus 1 CAN Bus 2

CAN Bus 3

Gw1 Gw2

Gw3

NC1 NC2 NC4 NC5 NC6

NC7 NC8 NC9

pure CAN flows pure CAN flows

pure IEEE802.11 flows

hybrid flows

Figure 1. Architecture example

An example of the hybrid architecture targeted in this

paper is described in Figure 1. Remote embedded net-

works follow the widely available CAN standard [1]. The

wireless local area network interconnecting the remote

embedded buses follows the mainstream IEEE802.11g

standard [5]. A gateway is implemented between each

CAN bus and the IEEE802.11 network. The exam-

ple in Figure 1 includes three CAN buses and three

pure wireless nodes NW1 . . . NW3. Four nodes includ-

ing one gateway are connected to each CAN bus (e.g.

NC4, NC5, NC6, Gw2 for CAN bus 2).

All wireless transmitters (GW1, NW1, . . .) are inter-

connected in ad hoc mode (no access point architecture).

2.2. Definition of the flows

Three kinds of flows are transmitted over this architec-

ture:

• pure CAN flows are transmitted between stations

connected on the same CAN bus: they do not tran-

sit on IEEE802.11,

• pure IEEE802.11 flows are transmitted between

wireless stations: they do not transit on CAN,

• hybrid flows are transmitted between stations con-

nected on different CAN buses: they transit on both

technologies, via the gateways.

A pure CAN flow fCi is defined by the following ele-

ments:

• an identifier IdCi between 0 and 2047,

• a source node srcCi and a set of destination nodes

destCi which all belong to the same CAN bus as the

source node srcCi,

• a period PCi which is the duration between the gen-

eration of two consecutive frames of the flow,

• a critical delay DCi which is the maximum allowed

duration between the generation of a frame and its

reception by its destination nodes,

• the size SCi in bytes of the payload of each frame of

the flow.

A hybrid flow fHj is defined by the same elements as a

pure CAN flow: an identifier IdHj , a source node srcHj ,

a set of destination nodes destHj , a period PHj , a criti-

cal delay DHj and the size SCj in bytes of the payload

of each frame of the flow. The only difference is that des-

tination and source nodes belong to different CAN bus.

A pure IEEE802.11 flow fWk is defined by the follow-

ing elements:

• a source node srcWk and a set of destination nodes

destWk which are all connected to IEEE802.11,

• an average inter-frame duration PWk, following an

exponential distribution (Poisson traffic),

• the size SWk in bytes of the payload of each frame

of the flow.

Table 1 presents the set of flows which are transmitted on

the network architecture in Figure 1. Hybrid flows are

depicted with dotted lines while other ones with full black

lines. There are three pure CAN flows (one per CAN bus),

four hybrid flows and three pure IEEE802.11 flows. The

four hybrid flows are generated by stations from CAN bus

1. Three of them (fH1, fH2 and fH3) have their desti-

nation nodes on CAN bus 2, while the last one (fH4), has

its destination node on CAN bus 3.

This configuration will be used as an illustrative exam-

ple in the rest of the paper.

2.3. CAN protocol

The Controller Area Network (CAN, [1]) is a serial

communication protocol suited for networking sensors,

actuators and other nodes in real-time systems. The CAN

specification defines several versions of the protocols for

the physical and the data link layer. In this paper, we focus

on CAN 2.0 A.



Pure CAN flows

IdCi srcCi destCi PCi DCi SCi

fC1 10 NC1 NC2 4 4 8

fC2 11 NC5 NC6 4 4 8

fC3 12 NC7 NC9 4 4 8

Hybrid flows

IdHi srcHi destHi PHi DHi SHi

fH1 1 NC1 NC4, NC6 8 8 8

fH2 2 NC2 NC5, NC6 8 8 8

fH3 3 NC3 NC4 8 8 8

fH4 4 NC3 NC7, NC8 8 8 8

Pure IEEE802.11 flows

srcWi destWi PWi SWi

fW1 NW1 NW3 2 200

fW2 NW2 NW3 2 200

fW3 NW3 NW1 2 200

Table 1. Characteristics of the flows

The CAN addressing system is based on message iden-

tifiers: a frame neither has a destination nor a source ad-

dress. Frames are broadcasted on the bus. Stations get the

frames they are interested in by filtering out the identifiers.
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Figure 2. CAN frame (sizes in bits)

The frame format is depicted in figure 2. Only the three

following fields are relevant to the remainder of the paper:

• the identifier field, as mentioned earlier, identifies the

data carried by the frame,

• the DLC field gives the length (in bytes) of the data

field,

• the data field carries the payload of the frame.

Bit-stuffing is used to avoid the transmission of long se-

quences of bits with identical value. The computation of

the frame length has to take into account these additional

bits. In this paper, we use the upper bound given in [3].

The length C of a frame carrying S bytes of data is:

C = (55 + 10× S) (1)

The medium access control (MAC) is CSMA/CR: the

start of frame transmissions on the bus are synchronous.

When two or more stations start a transmission simulta-

neously, the one with the smallest frame identifier wins

and the others stop their transmission. This mechanism

guarantees strict priority order on identifiers. It implies

limitations on the bandwidth and the maximal length of

the bus (e.g. 1 Mbps for 40 meters).

2.4. IEEE 802.11 MAC protocol

IEEE 802.11-2012 [5] defines several standards to offer

a wireless connectivity at transmission rates ranging from

11Mbps (e.g. legacy versions such as IEEE 802.11b) up

to 600Mbps (IEEE 802.11n).

The fundamental medium access in IEEE 802.11 is a

Distributed Coordination Function (DCF) which is based

on Carrier Sense Multiple Access with Collision Avoid-

ance (CSMA/CA). Additional protocols are defined to

meet specific requirements but all use the service provided

by DCF. In this work, we firstly concentrate on the basic

DCF medium access to characterize the wireless medium

access. In future work, it will be interesting of course to

analyze how real time applications can leverage the QoS

capabilities of enhanced protocols (e.g. EDCA, HCCA).

In DCF mode, a station performs carrier sensing to

detect ongoing communications. If the channel is free

for a period of time called Distributed InterFrame Space

(DIFS), it transmits its frame immediately. If the chan-

nel is sensed busy, it defers its transmission until the end

of the current transmission. Then, the station selects a ran-

dom backoff b following an exponential backoff scheme.

If the medium is idle for a DIFS period of time, the back-

off is decremented every aSlotTime duration. The back-

off interval time is decremented as long as the channel is

idle and is frozen as the node detects a transmission. At

the end of this transmission, when the channel remains

idle during DIFS, decrementation resumes. As b reaches

zero, the transmission is attempted immediately by the

station.

After a successful transmission, the receiver sends an

ACK after a duration called Short Inter Frame Space

(SIFS). As SIFS is shorter than DIFS (DIFS =
SIFS + 2 × aSlotT ime), there is no station that sees

the channel idle until the end of the ACK transmission.

If no ACK is received by the transmitter after an Ex-

tended Interframe Space (EIFS = SIFS + DIFS +
ACKTxTime1), the transmission is attempted again.

A new backoff b is then uniformly chosen in the range

[0, w−1] where w is the contention window. This window

depends on the number of failed attempts experienced by

the current transmission. At the first attempt w is equal to

the minimum contention window CWmin. Each unsuc-

cessful transmission involves the multiplication of w by 2

until a maximum value of CWmax is reached.

This Basic Access mechanism can be extended by the

RTS/CTS message exchange to avoid the hidden terminal

problem. In our architecture, all wireless transmitters are

fixed and positioned in such a way that the hidden terminal

problem doesn’t occur. Thus, there is no motivation for

implementing RTS/CTS mechanism in our case study.

In this paper, all wireless nodes (gateways, pure wire-

less emitters) function in ad hoc mode using DCF medium

access protocol following the specification of the OFDM-

PHY layer of 802.11g (20 MHz channel spacing). Table

2 gives the main timing parameters of the protocol. Since

WiFi access points are static, we can consider that they are

located at a distance where they can operate at the highest

rate of 54 Mbps. We assume proper channel assignment

has been performed so as to mitigate inter-node interfer-

ence. In this ideal case study, transmissions are error-free

and the transmission duration (in µ s) at 54 Mbps of a

1with ACKTxTime the transmission time of an ACK at the lowest

mandatory transmission rate



MPDU of x octets is derived according to [5]:

d(x) = 20 + 4

⌈

22 + 8(34 + x)

216

⌉

(2)

SIFS DIFS EIFS CWmin CWmax

16 µs 34 µs 78 µs 15 1023

Table 2. DCF parameters for OFDM-PHY

Future works will concentrate on the impact of channel

errors which are handled by the IEEE802.11 DCF proto-

col. Additional transit time due to retransmissions will

arise in this case.

3. The bridging strategy

The interconnection between each CAN bus and the

IEEE802.11 network is implemented by a gateway (see

Figure 1). Each gateway has to take into account the ad-

dress mode of both CAN and IEEE802.11 technologies:

CAN frame is addressing data while IEEE802.11 technol-

ogy is addressing the source destination pairs. In order to

cope with the address mode issue, an encapsulation strat-

egy is considered. A frame f1 of an hybrid flow fCWj is

received by the gateway which is connected to its source

CAN bus. This frame is encapsulated into an IEEE802.11

frame f2 and transmitted on the wireless medium to the

remote gateway connected to the destination CAN bus of

f1. This gateway de-encapsulates f1 which is then trans-

mitted on its destination CAN bus.

Here, the two encapsulating gateways work in a sym-

metric way to enable a CAN to CAN remote communi-

cation. The bridging strategy is a generalization of an

IEEE802.1d transparent bridge mechanism for the inter-

connection of two homogeneous networks through a dif-

ferent one.

The following paragraph presents the basic encapsula-

tion strategy. Then, enhancements of this strategy are pro-

posed in order to better use the available resources while

keeping the end-to-end delay of hybrid flows in an accept-

able margin.

3.1. Basic encapsulation strategy

In this basic encapsulation strategy, the source gateway

encapsulates the CAN frame f1 of fHj in the payload

field of the IEEE802.11 frame f2. As soon as f2 arrives at

the destination gateway, f1 is de-encapsulated.

The following derivations are illustrated using the ex-

ample in Figure 1.

A possible scenario is depicted in Figure 3. A subset

of the system is shown, i.e. CAN buses 1 and 2 and the

wireless network. Rising arrows indicate the instant when

frames are ready for transmission on the corresponding

medium.

Let’s focus on the hybrid flows fH1, fH2, fH3, fH4.

All of them have their source node on CAN bus 1.

CAN bus 1

IEEE802.11

fH4fH3

fH4 fH2

CAN bus 2

fH4 fH2 fH1

fH2 fH1

fH1fH2

t timet+0.135 t+0.270 t+0.8 t+1.335t+1.2

fH3 fH4

fH3 fH1

fH2fH3

fH3 fH2

fH1

fH1

fH3fC1

fC1

fW2 fW3

fW2

fW1

fW1 fW3

Figure 3. Scenario with a basic strategy

• One frame from hybrid flow fH3 becomes ready for

transmission on CAN bus 1 while one frame of flow

fC1 is being transmitted. At time t+0.135ms, CAN

bus 1 becomes idle. The frame from fH3 is transmit-

ted since it is the only pending frame. It is fully re-

ceived by Gw1 at time t+0.270ms. It is then encap-

sulated by Gw1 in an IEEE802.11 frame which be-

comes ready during the transmission of a frame from

fW2. After this transmission, frames from fH3 and

fW3 compete for the medium. They select the same

random backoff. Consequently, they collide. At the

end of this collision the frame from fH3 gets access

to the medium thanks to a random backoff which is

smaller than the one of fW3. Then, the frame from

fH3 is received by Gw2, de-encapsulated and trans-

mitted on CAN bus 2 which is idle. This transmission

is achieved at time t+ 0.8ms.

• Similarly, frames from fH4, fH2 and fH1 are gen-

erated in this order. With respect to their priorities,

they are transmitted in the same order on CAN bus

1. Each of them is then encapsulated in a separate

IEEE802.11 frame. These frames have to share the

wireless medium with frames from pure IEEE802.11

flows fW1 and fW3. In this scenario, the selected

random backoffs do not lead to any collision. Frames

from fH2 and fH1 are transmitted last. Finally, they

are de-encapsulated by Gw2 and transmitted on CAN

bus 2. They are received by their destination nodes

at times t+ 1.2ms and t+ 1.335ms.

3.2. Grouping for a better use of the wireless medium

This basic strategy is very simple but it doesn’t use ef-

ficiently the wireless medium. Indeed, encapsulating one

single CAN frame (let’s say 10 bytes) in an IEEE802.11

frame (up to 2312 bytes of payload) generates a signifi-

cant overhead: typically, assuming no collision and a null

backoff, the overall time needed for one frame with a 10

bytes payload (DIFS + transmission of the frame + SIFS

+ transmission of ACK) is obtained from formula (2):

34 +

(

20 + 4

⌈

22 + 8(34 + x)

216

⌉)

+ 16 + 24 = 102 µs

Given a payload of 50 bytes, the same sequence needs

110 µs.

A straightforward solution which limits this overhead

consists in encapsulating more than one CAN frame in one

IEEE802.11 frame. We denote Nl,m, the exact number

of CAN frames which are encapsulated in an IEEE802.11



frame at a given gateway Gwl when its destination is gate-

way Gwm.

Let’s come back to the example in Figure 1. Let’s as-

sume that Gw1 encapsulates three CAN frames in each

IEEE802.11 frame with destination Gw2 (N1,2 = 3, while

all the other Nl,m are equal to 1). We recall that fH4

is sent to Gw3. Thus, only frames from fH3, fH2 and

fH1 can be grouped together. The impact of this strat-

egy on the example is shown in Figure 4. Gw1 receives

CAN bus 1

IEEE802.11

fH4

CAN bus 2

fH4 fH2 fH1

fH2 fH1

fHG1

fHG1

time

fH1, fH2, fH3

t t+0.735 t+0.870

fC1

fH3

fH3

fH4

fH4

fH1 fH2 fH3

fC1

fW2 fW3

fW2 fW3

fW1

fW1

t+0.270

Figure 4. Scenario with a grouped strategy

frames from fH3, fH2 and fH1 at times t + 0.270,

t + 0.735 and t + 0.870, respectively. Then, it encap-

sulates the three CAN frames in one IEEE802.11 frame

(called fHG1 in Figure 4). This frame is transmitted on

the wireless medium after a DIFS, since the medium is

idle and there are no other pending frames. Gw2 receives

the frame and it decapsulates the three CAN frames. Fi-

nally, these frames are transmitted on CAN bus 2 in their

order of priority.

On this very simple example, the grouped strategy re-

duces the number of wireless frames (from 7 to 5) and

there are no more collisions (there are never two pending

frames at the same time).

3.3. Timers to decrease the delay of hybrid flows

The drawback of the grouped strategy is that it can de-

lay some frames of hybrid flows that are combined to-

gether at their source gateway. In the example in Figure

4, the fH3 frame has to wait until the arrival of the fH1

frame. This delay can be very large. Considering the same

example, let’s assume that Gw1 encapsulates two CAN

frames instead of three in each IEEE802.11 frame with

destination Gw2. A possible scenario is depicted in Fig-

ure 5. Only the events on CAN bus 1 and gateway Gw1

are shown. The two first frames from hybrid flows (fH3

and fH2) are received and encapsulated by Gw1 at time

t + 0.6 ms. The third frame (from hybrid flow fH1) has

to wait in Gw1 for the arrival of another frame from an

hybrid flow. On this example, the time elapsed between

the generation of the frame from fH1 and its encapsula-

tion in an IEEE802.11 frame is 7.8 ms. Since the critical

delay of fH1 is 8ms, this frame has no chance to respect

its deadline.

CAN bus 1

Gw1

fH2

fH2 fH1

fHG2

t+0.1 mst t+8 ms t+8.1 ms t+8.3 ms timet+0.7 mst+0.5 ms

fH3

fH3

fH4

fH4 fH1

fHG1

fH3

fH3fC1

fC1

fC1

fC1

Figure 5. Flaw of the grouped strategy

One solution to overcome this problem is to upper

bound the waiting time of a CAN frame in a gateway. It

can be implemented by associating to each hybrid flow

fHj a maximum waiting time Wmaxj in its source gate-

way Gwl. When a frame from fHj arrives at its source

gateway Gwl, two situations may occur:

1. There are already Nl,m − 1 pending CAN frames in

Gwl with the same destination CAN bus as the frame

from fHj : these Nl,m CAN frames are immediately

encapsulated in an IEEE802.11 frame which is then

ready for transmission.

2. there are less than Nl,m − 1 pending CAN frames in

Gwl with the same destination CAN bus as the frame

from fHj : a timer with duration Wmaxj is started.

If the frame from fHj is still waiting when the timer

expires, the frame is immediately encapsulated in an

IEEE802.11 frame with all the other pending CAN

frames having the same CAN destination bus.

Figure 6 shows the impact of these timers on the scenario

in Figure 5. In this example, the maximum waiting time of

a frame in gateway Gw1 is 2 ms for flows going to Gw2,

and N1,2 = 2. fHG1 is generated because there are two

pending frames with CAN bus 2 as destination. fHG2

is generated because the timer which is associated with

the frame of flow fH1 has expired. Thus fHG1 encap-

sulates two CAN frames, while fHG2 encapsulates only

one. This strategy obviously favours a timely transmission

of the fH1 frame.

CAN bus 1

Gw1

fH2

fH2 fH1

t+0.1 mst t+0.7 mst+0.5 ms timet+2.7 ms

fH3

fH3 fH4

fH4 fH1

fHG1 fHG2

fC1

fC1

Figure 6. The timed strategy

3.4. Summary of the proposed strategies

All previously introduced strategies (basic, grouped,

timed) can be characterized by the following parameters:

• The maximum number Nl,m of CAN frames which

can be encapsulated by each gateway Gwl in one

IEEE802.11 frame,

• The maximum waiting time Wmaxj of a frame of

each hybrid flow fHj in its source gateway.

Thus, we have:

• When Nl,m = 1 for all the gateways pairs or

Wmaxj = 0 for all hybrid flows, the basic strategy

is applied,

• when at least one Nl,m is greater than one and each

Wmaxj is larger than the critical deadline of its cor-

responding flow, the grouped strategy is applied,

• otherwise, the timed strategy is applied.



4. Bridging performance analysis

A quantitative analysis of the proposed bridging strate-

gies has been conducted. This analysis is based on simu-

lations. Therefore, a home-made simulation tool has been

developed using QNAP2 [12].

In the following paragraphs, we consider two network

configurations:

• the illustrative configuration of Figure 1

• a more complex configuration introduced in Section

4.2.

4.1. Illustrative configuration (CS1)

The first configuration is depicted in Figure 1 and the

features of the flows are summarised in Table 1. All pro-

posed encapsulation strategies (basic, grouped timed) are

evaluated as presented in Table 3.

B basic

G1 grouped N1,2 = 2
Nl,m = 1 ∀ (l,m) 6= (1, 2)

G2 grouped N1,2 = 3
Nl,m = 1 ∀ (l,m) 6= (1, 2)

T1 timed Wmaxj = 1ms ∀j

T2 timed Wmaxj = 2ms ∀j

T3 timed Wmaxj = 3ms ∀j

T4 timed Wmaxj = 4ms ∀j

Table 3. CS1: simulated strategies

We first look at the percentage of pure CAN and hy-

brid frames that miss their deadline. Whatever strategy is

chosen, pure CAN frames never miss their deadline. Sim-

ilarly, with the basic and timed strategies, hybrid frames

never miss their deadline. Conversely, with the grouped

strategies, some hybrid frames miss their deadline (0.2 %

with G1, 0.5 % with G2). These results are not surprising.

Indeed the overall configuration is lightly loaded. Thus a

missed deadline is impossible for pure CAN flows and it

can arise for hybrid flows only when the delay between the

two CAN buses is high. This delay includes the waiting

time at the source gateway, the IEEE802.11 delay (very

unlikely to be high since the wireless medium is lightly

loaded) and the waiting time at the destination gateway

(short de-encapsulation time). Then a missed deadline

will occur only when the waiting time in the source gate-

way is high. This can be the case with the grouped strate-

gies, as shown in section 3.2. This result confirms the

flaws introduced by the grouped strategies. These strate-

gies are not further considered.

B T1 T2 T3 T4
∑

fHj

fW1

1 0.88 0.77 0.7 0.53

Table 4. CS1: load of hybrid wireless frames

A second result concerns the frames which are trans-

mitted on the wireless medium. Given the Poisson traffic

distribution of pure wireless flows, their average number

of frames is steady. Conversely, the number of wireless

frames from hybrid flows depends on the encapsulation

strategy which is used. Table 4 compares the number of

wireless frames of hybrid flows to the number of frames

of one of the pure wireless flows (e.g. fW1). For the

basic strategy, these two number of frames happen to be

the same because of the period allocation of hybrid flow.

Without surprise, this ratio decreases with the increase of

the maximum delay at the gateway.

Table 5 shows the percentage of collisions for each

strategy. This percentage is very low (never more than 0.4

%). This is a consequence of the light load of the wireless

medium. Moreover, this percentage decreases when the

value of the maximum delay in the gateway increases (the

overall number of wireless frames decreases).

B T1 T2 T3 T4

Col. (%) 0.375 0.358 0.343 0.335 0.328

Table 5. CS1: wireless collisions

Table 6 shows the average delay of pure wireless flows.

This delay decreases when the value of the maximum de-

lay in the gateway increases. This is also a consequence

of the reduction of the overall number of wireless frames.

B T1 T2 T3 T4

Delay (µs) 135 133 131.7 130.9 129.6

Table 6. CS1: average delay of pure wireless

flows

The results confirm the qualitative analysis of section

3. However, the small illustrative configuration consid-

ered in this section is too lightly loaded for a significant

quantitative analysis of the different strategies. Such an

analysis is conducted in the next section.
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Figure 7. CS2 architecture overview

4.2. More complex configuration (CS2)

Figure 7 introduces the CS2 configuration.

It includes four CAN buses. Each CAN bus 1, 2 and 3

is the source of 8 hybrid flows. Bus 4 is the destination of

all these hybrid flows. Table 7 summarizes the parameters

of these hybrid flows. For the sake of simplicity, only the

source and destination buses of these flows are given (the

nodes are omitted).



IdHi Buses PHi DHi SHi

fH1 11 1 → 4 10 10 8

fH2 12 1 → 4 10 10 6

fH3 13 1 → 4 10 10 4

fH4 14 1 → 4 10 10 2

fH5 15 1 → 4 10 10 8

fH6 16 1 → 4 10 10 6

fH7 17 1 → 4 10 10 4

fH8 18 1 → 4 10 10 2

fH9 31 2 → 4 10 10 8

fH10 32 2 → 4 10 10 6

fH11 33 2 → 4 10 10 4

fH12 34 2 → 4 10 10 2

fH13 35 2 → 4 10 10 8

fH14 36 2 → 4 10 10 6

fH15 37 2 → 4 10 10 4

fH16 38 2 → 4 10 10 2

fH17 51 3 → 4 10 10 8

fH18 52 3 → 4 10 10 6

fH19 53 3 → 4 10 10 4

fH20 54 3 → 4 10 10 2

fH21 55 3 → 4 10 10 8

fH22 56 3 → 4 10 10 6

fH23 57 3 → 4 10 10 4

fH24 58 3 → 4 10 10 2

Table 7. CS2: hybrid flows

Four pure CAN flows are transmitted on each CAN bus

1, 2, 3 and 4. Table 8 summarises the parameters of these

pure CAN flows. For clarity purposes, the bus ID these

pure CAN flows belong to are only given.

IdCi Bus PCi DCi SCi

fC1 1 4 2 2 8

fC2 2 4 2 2 6

fC3 3 4 2 2 4

fC4 4 4 2 2 2

fC5 21 1 1 1 8

fC6 22 1 1 1 6

fC7 23 1 1 1 4

fC8 24 1 1 1 2

fC9 41 2 1 1 8

fC10 42 2 1 1 6

fC11 43 2 1 1 4

fC12 44 2 1 1 2

fC13 61 3 1 1 8

fC14 62 3 1 1 6

fC15 63 3 1 1 4

fC16 64 3 1 1 2

Table 8. CS2: pure CAN flows

The study is conducted with different numbers of iden-

tical pure IEEE802.11 flows (between 1 and 7) with

PWi = 2 and SWi = 200.

We have conducted three sets of experiments:

• in the first one, we consider the basic encapsulation

strategy,

• in the second one, we consider a timed encapsula-

tion strategy where all hybrid flows are allocated the

same maximum waiting delay,

• in the last one, we consider another timed encap-

sulation strategy where each hybrid flow is allo-

cated a dedicated maximum waiting delay following

Wmaxj = (4.1− (j × 0.1)) ms.

Table 9 summarises the simulated strategies.

Table 10 shows results concerning the utilisation of the

wireless medium. The first line of the table shows the

relative number of IEEE802.11 frames generated by hy-

brid flows. Of course, the highest value is encountered

B basic

T1 timed Wmaxj = 1ms ∀j

T2 timed Wmaxj = 2ms ∀j

T3 timed Wmaxj = 3ms ∀j

T4 timed Wmaxj = 4ms ∀j

T5 timed Wmaxj = (4.1− (j × 0.1)) ms

Table 9. CS2: simulated strategies

by the basic strategy. Then, the number of IEEE802.11

frames decreases when the value of the timer increases.

Indeed, the average number of hybrid frames encapsu-

lated in an IEEE802.11 frame increases when the timer in-

creases. Strategy T5 has variable values of timers (slightly

less than 3 ms on average).

B T1 T2 T3 T4 T5
∑

fHj

fW1

4.8 2.8 1.9 1.4 1.2 1.6

1 % Col 0.5 0.2 0.1 0.1 0.1 0.1

fW AvgD 148 122 114 111 109 112

2 % Col 0.9 0.4 0.3 0.3 0.2 0.3

fW AvgD 172 138 129 124 122 125

3 % Col 1.4 0.6 0.5 0.5 0.4 0.5

fW AvgD 204 158 147 141 138 142

4 % Col 2.2 1.0 0.8 0.8 0.7 0.8

fW AvgD 250 185 169 162 158 163

5 % Col 1.6 1.3 1.2 1.1 1.2

fW AvgD 221 199 189 184 192

6 % Col 2.5 2.0 1.8 1.6 1.8

fW AvgD 279 242 227 220 231

7 % Col 2.7 2.5 2.8

fW AvgD 287 274 294

Table 10. CS2: IEEE802.11 results

Table 10 also shows the percentage of collisions and

the average delays of pure wireless flows for each strategy

and each simulated scenario (i.e. number of pure wire-

less flows). Empty values means that the wireless network

is overloaded and transmission delays diverge. It can be

noticed that these percentages of collisions (% Col) and

delays (AvgD) are deeply linked to the number of con-

tending IEEE802.11 frames.

Thus higher values of timers give smaller delays on the

wireless network. However, they also increase the wait-

ing time of hybrid frames in gateways. It means that a

trade-off has to be found between the waiting delays in

the gateways and the delays on the wireless network.

In order to better capture this trade-off, Table 11

presents the rates of hybrid frames which miss their dead-

lines. More precisely, each value in Table 11 is the average

number of hybrid frames that miss their deadlines when

106 of such frames are generated and transmitted. Such

missed deadline rates are compatible with soft real-time

data transmissions.

We can conclude that the timed strategies outperform

the basic one. Indeed, the basic strategy cannot cope with

more than 4 pure IEEE802.11 flows: the system doesn’t



B T1 T2 T3 T4 T5

1 0 0 0 0 0 0

2 0 0 0 0 0 0

3 0 0 0 0 0 0

4 1 0 0 0 0 0

5 0 0 0 3 2

6 97 21 19 20 22

7 200 200 257

number of missed deadline every 106 frames

Table 11. CS2: Missed deadlines for hybrid
flows

converge. Conversely the timed ones are still working

with 6 or 7 pure IEEE802.11 flows. These results are com-

patible with soft real-time data transmissions.

The value of the timer also has an impact on the number

of missed deadlines. In the configuration studied in this

paragraph, the best value is 3 ms for all the hybrid flows

(less than half of their period). It should be noticed that

strategy T5 gives slightly larger numbers of missed dead-

lines. The idea behind this strategy was to limit the wait-

ing time in gateways for the hybrid flows with the lowest

priorities, since they can experiment larger delays on CAN

buses. The results for this strategy are not convincing.

In the general case, the choice of this timers has to take

into account the distribution of the delays on the wireless

network as well as the distribution of the delays on the

CAN buses. Then these distributions have to be combined

so that the distribution of the overall delay of the flows, ex-

cluding the waiting time at the gateways, can be obtained.

A maximum waiting time at the gateway could be deduced

from this distribution. To the best of our knowledge, the

computation of such a distribution is still an open prob-

lem.

5. Conclusion and future works

This paper studies the extension of CAN over the air

for the exchange of soft real-time data. CAN buses are

interconnected through a standard IEEE802.11g wireless

network using CSMA/CA medium access control in ad

hoc mode. The interconnection between CAN and the

wireless network is done by gateways. The bridging strat-

egy implemented in these gateways is a key issue in such

an architecture. We show on a case study that the best

strategy consists in encapsulating a group of CAN frames

in each IEEE802.11 frame while bounding the waiting

time of each CAN frame at the ingress gateway. With

such a strategy, the number of missed deadlines can be

kept very small, provided that the wireless channel is reli-

able (we assume no transmission errors except collisions).

In future work, we will investigate the impact of a lossy

wireless link where wireless nodes transmit at different

rates. Another improvement is to derive analytically the

timers of the hybrid flows. Lastly, in order to cope with

hard real-time data, we will investigate more deterministic

wireless protocols (HCCA, WirelessHART, . . .).
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