
HAL Id: hal-01147307
https://hal.science/hal-01147307

Submitted on 30 Apr 2015

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A Simple Separation Logic
Andreas Herzig

To cite this version:
Andreas Herzig. A Simple Separation Logic. International Workshop Logic, Language, Information,
and Computation - WoLLIC 2013, Aug 2013, Darmstadt, Germany. pp. 168-178. �hal-01147307�

https://hal.science/hal-01147307
https://hal.archives-ouvertes.fr

Open Archive TOULOUSE Archive Ouverte (OATAO)
OATAO is an open access repository that collects the work of Toulouse researchers and
makes it freely available over the web where possible.

This is an author-deposited version published in : http://oatao.univ-toulouse.fr/
Eprints ID : 12649

To link to this article : DOI :10.1007/978-3-642-39992-3_16
URL : http://dx.doi.org/10.1007/978-3-642-39992-3_16

To cite this version : Herzig, Andreas A Simple Separation Logic.
(2013) In: International Workshop Logic, Language, Information, and
Computation - WoLLIC 2013, 20 August 2013 - 23 August 2013
(Darmstadt, Germany).

Any correspondance concerning this service should be sent to the repository

administrator: staff-oatao@listes-diff.inp-toulouse.fr

http://oatao.univ-toulouse.fr/
http://oatao.univ-toulouse.fr/12649/
http://dx.doi.org/10.1007/978-3-642-39992-3_16
mailto:staff-oatao@listes-diff.inp-toulouse.fr

A simple separation logic

Andreas Herzig

University of Toulouse, CNRS

Institut de recherche en informatique de Toulouse (IRIT)

Toulouse, France
www.irit.fr/˜Andreas.Herzig

Abstract

The kinds of models that are usually considered in separation logic are struc-

tures such as words, trees, and more generally pointer structures (heaps). In this

paper we introduce the separation logic of much simpler structures, viz. sets. The

models of our set separation logic are nothing but valuations of classical propo-

sitional logic. Separating a valuation V consists in splitting it up into two partial

valuations v1 and v2. Truth of a formula ϕ1 ∗ϕ2 in a valuation V can then be defined

in two different ways: first, as truth of ϕ1 in all total extensions of v1 and truth of ϕ2

in all total extensions of v2; and second, as truth of ϕ1 in some total extension of v1

and truth of ϕ2 in some total extension of v2. The first is an operator of separation

of resources: the update of ϕ1 ∗ ϕ2 by ψ is the conjunction of the update of ϕ1 by ψ

and the update of ϕ2 by ψ; in other words, ϕ1 ∗ ϕ2 can be updated independently.

The second is an operator of separation of processes: updates by ψ1 ∗ ψ2 can be

performed independently. We show that the satisfiability problem of our logic is

decidable in polynomial space (PSPACE). We do so by embedding it into dynamic

logic of propositional assignments (which is PSPACE complete). We moreover

investigate its applicability to belief update and belief revision, where the separa-

tion operators allow to formulate natural requirements on independent pieces of

information.

1 Introduction

Separation logics [7, 13, 17] have a modal operator ∗ which allows to talk about the

separation of resources. Basically, the formula ϕ1 ∗ ϕ2 is true in the model M if M can

be split into two parts M1 and M2 such that ϕ1 is true in M1 and ϕ2 is true in M2. The

kinds of models that are usually considered in separation logic are structures such as

words, trees, and more generally pointer structures (heaps). The separation logics of

such structures are often undecidable. In this paper we investigate the separation logic

of much simpler structures, viz. sets. We call our logic set separation logic, abbreviated

SSL. The models of SSL are nothing but valuations of classical propositional logic.

Separating a valuation V consists in splitting it up into two partial valuations v1 and v2.

Then separability of ϕ1 and ϕ2 in a valuation V can be defined in two different ways:

first, as truth of ϕ1 in all total extensions of v1 and truth of ϕ2 in all total extensions

of v2; and second, as truth of ϕ1 in some total extension of v1 and truth of ϕ2 in some

total extension of v2. We respectively denote these two separation operators by ∧̇ and

‖̇ . We chose the symbol ∧̇ due to its analogy with the symbol of disjoint union ∪̇, and

we chose the symbol ‖̇ because ‖ denotes parallel execution.

We show that the satisfiability problem of set separation logic is decidable in poly-

nomial space (PSPACE). We do so by embedding SSL into dynamic logic of propo-

sitional assignments DL-PA [2], whose star-free fragment is PSPACE complete. This

contrasts with separation logics having the implicational connective −∗, which are often

undecidable even in the proopositional language [4, 11].

Our initial motivation to investigate separation operators was that they can be given

an interesting interpretation in the context of the revision and update of propositional

belief bases: we consider that when ϕ1 and ϕ2 are separable then they are independent

pieces of information. This naturally leads to the following requirements.

• We suppose that ∧̇ expresses independence of resources: the update of ϕ1 ∧̇ϕ2

by ψ is the conjunction of the update of ϕ1 by ψ and the update of ϕ2 by ψ; in

other words, ϕ1 ∧̇ϕ2 can be updated independently.

• We suppose that ‖̇ expresses independence of processes: the update of ϕ by

ψ1 ‖̇ψ2 is the parallel update of ϕ by ψ1 and by ψ2; in other worlds, updates by

ψ1 ‖̇ψ2 can be performed independently.

This extends previous approaches by Parikh, Makinson and others that are based on

splitting languages [3,10,14]. We investigate the compatibility of existing belief change

operations with the above two requirements.

The paper is organised as follows. In Section 2 we introduce set separation logic

SSL. In Section 3 we provide a PSPACE upper bound for both its model checking

and its satisfiability problem. In Section 4 we discuss the relation between SSL and

language splitting-based belief change. Section 5 concludes.

2 Set separation logic SSL

Throughout the paper we use the following conventions.

P = {p, q, . . .} is a countable set of propositional variables. The set {P1, P2} is a

partition of P iff P1 ∪ P2 = P and P1 ∩ P2 = ∅.

A valuation is a total function from P to {0, 1}. We use V , V1, . . . for valuations.

Two valuations V and V ′ agree on the set of variables P ⊆ P, if both give the same

truth value to each of the variables in P: V ∼P V ′ iff V(p) = V ′(p) for every p ∈ P.

A partial valuation is a partial function from P to {0, 1}. For a valuation V : P −→

{0, 1} and a set of propositional variables P ⊆ P, the restriction of V to P is the partial

function whose domain is P, noted V |P. We use v, v1, . . . for partial valuations. The

total valuation V is an extension of the partial valuation v if V(p) = v(p) for every

p ∈ dom(v).1

1We might as well define valuations to be sets of propositional variables. However, it would have been

less elegant to account for partial valuations under such a presentation.

The language of SSL is defined by the following grammar:

ϕ F p | ¬ϕ | ϕ ∧ ϕ | ϕ ∧̇ϕ | ϕ ‖̇ϕ

where p ranges over the set of propositional variables P. The formula ϕ ∧̇ψ may be

read “ϕ and ψ are statically separable” and ϕ ‖̇ψ may be read “ϕ and ψ are dynamically

separable”. Our intuition is the following: when ϕ ∧̇ψ is true then the conjunction

of ϕ and ψ can be updated separately; and when ϕ ‖̇ψ is true then updating by the

conjunction of ϕ and ψ can be performed in parallel.

We abbreviate the logical connectives ∧, → and ↔ in the usual way.

The truth conditions are as follows:

V |= p iff V(p) = 1;

V |= ¬ϕ iff V 6|= ϕ;

V |= ϕ1 ∧ ϕ2 iff V |= ϕ1 and V |= ϕ2;

V |= ϕ1 ∧̇ϕ2 iff there is a partition {P1, P2} of P such that

V1 |= ϕ1 for every valuation V1 agreeing with V on P1 and

V2 |= ϕ2 for every valuation V2 agreeing with V on P2;

V |= ϕ1 ‖̇ϕ2 iff there is a partition {P1, P2} of P such that

V1 |= ϕ1 for some valuation V1 agreeing with V on P1 and

V2 |= ϕ2 for some valuation V2 agreeing with V on P2.

The conditions for the two separation operators can be reformulated in terms of partial

valuations as follows:

V |= ϕ1 ∧̇ϕ2 iff there is a partition {P1, P2} of P such that

V1 |= ϕ1 for every extension V1 of V |P1
and

V2 |= ϕ2 for every extension V2 of V |P2
;

V |= ϕ1 ‖̇ϕ2 iff there is a partition {P1, P2} of P such that

V1 |= ϕ1 for some extension V1 of V |P1
and

V2 |= ϕ2 for some extension V2 of V |P2
.

Some observations:

• In the truth condition for ∧̇ , the exhaustiveness condition P1 ∪ P2 = P can

be dropped. If we dropped the disjointness condition P1 ∩ P2 = ∅ then ϕ ∧̇ψ

trivialises to the conjunction ϕ ∧ ψ.

• In the truth condition for ‖̇ , if we drop the exhaustiveness condition P1 ∪P2 = P

then ϕ ‖̇ψ trivialises to the consistency of both ϕ and ψ.

Here are some examples. Let Vpq be a valuation such that Vpq(p) = Vpq(q) = 1 and

let Vpq̄ be a valuation such that Vpq̄(p) = 1 and Vpq̄(q) = 0. Then we have:

Vpq |= p ∧̇ q Vpq |= p ‖̇ q Vpq |= (¬p) ‖̇ (¬q)

Vpq |= p ∧̇ (p ∨ q) Vpq |= p ‖̇ (¬p ∧ ¬q) Vpq 6|= ¬p ‖̇ (¬p ∧ ¬q)

Vpq̄ 6|= p ∧̇ (p ∨ q) Vpq̄ |= p ‖̇ (p ∨ q) Vpq̄ |= ¬p ‖̇ (p ∨ q)

Vpq̄ |= p ∧̇ (p ∨ ¬q) Vpq̄ |= p ‖̇ (p ∨ ¬q) Vpq̄ 6|= ¬p ‖̇ ¬(p ∨ q)

Satisfiability and validity are defined as usual. The following formula schemas are

valid:

ϕ1 ∧̇ϕ2 ↔ ϕ2 ∧̇ϕ1 ϕ1 ‖̇ϕ2 ↔ ϕ2 ‖̇ϕ1

ϕ1 ∧̇ϕ2 → ϕ2 ∧ ϕ1 ϕ1 ∧ ϕ2 → ϕ2 ‖̇ϕ1

⊤ ∧̇ϕ↔ ϕ ⊤ ‖̇ϕ↔

⊤ if ϕ is satisfiable

⊥ otherwise

As the last line shows, consistency of a formula ϕ can be expressed in the language of

SSL by the formula ⊤ ‖̇ϕ. Here are two inference rules preserving validity:

ϕ→ ψ

(ϕ ∧̇ χ) → (ψ ∧̇ χ)

ϕ→ ψ

(ϕ ‖̇ χ) → (ψ ‖̇ χ)

The following equivalences are valid, where the propositional variables p and q are

supposed to be different:

p ∧̇ p ↔ ⊥ p ‖̇ p ↔ p

p ∧̇ ¬p ↔ ⊥ p ‖̇ ¬p ↔ ⊤

p ∧̇ q ↔ p ∧ q p ‖̇ q ↔ ⊤

p ∧̇ (p ∨ q) ↔ p ∧ q p ‖̇ (p ∨ q) ↔ ⊤

(p ∨ q) ∧̇ (p ∨ q) ↔ p ∧ q (p ∨ q) ‖̇ (p ∨ q) ↔ ⊤

3 Complexity

In this section we establish an upper bound for the complexity of both model checking

and satisfiability checking of set separation logic. We prove this by showing that both

ϕ1 ∧̇ϕ2 and ϕ1 ‖̇ϕ2 can be expressed in dynamic logic of propositional assignments

DL-PA (that we have recently proposed with Philippe Balbiani and Nicolas Troquard

in [2]) by equivalent formulas whose length is polynomial in the length of ϕ1 ∧̇ϕ2 and

ϕ1 ‖̇ϕ2, respectively.

3.1 DL-PA: dynamic logic of propositional assignments

The language of DL-PA is defined by the following grammar:

π F p←⊤ | p←⊥ | ϕ? | π; π | π ∪ π | π∗

ϕ F p | ⊤ | ⊥ | ¬ϕ | ϕ ∨ ϕ | 〈π〉ϕ

||p←⊤|| =
{

(V ,V ′) : V ′(p) = 1 and V ′ agrees with V on P \ {p}
}

||p←⊥|| =
{

(V ,V ′) : V ′(p) = 0 and V ′ agrees with V on P \ {p}
}

||π; π′|| = ||π|| ◦ ||π′||

||π ∪ π′|| = ||π|| ∪ ||π′||

||π∗|| =
⋃

k∈N0

(||π||)k

||ϕ?|| = {(V ,V) : V ∈ ||ϕ||}

||p|| = {V : V(p) = 1}

||⊤|| = 2P

||⊥|| = ∅

||¬ϕ|| = 2P \ ||ϕ||

||ϕ ∨ ψ|| = ||ϕ|| ∪ ||ψ||

||〈π〉ϕ|| = {V : there is V ′ s.t. (V ,V ′) ∈ ||π|| and V ′ ∈ ||ϕ||}

Table 1: Interpretation of the DL-PA connectives

where p ranges over P. So an atomic program of the language of DL-PA is a program of

the form p←ϕ. The operators of sequential composition (“;”), nondeterministic com-

position (“∪”), unbounded iteration (“∗”, the Kleene star), and test (“?”) are familiar

from PDL.

We define Pϕ to be the set of variables from P occurring in formula ϕ, and we

define Pπ to be the set of variables from P occurring in program π. For example,

Pp←q∪p←¬q = {p, q} = P〈p←⊥〉q.

We abbreviate the logical connectives ∧, → and ↔ in the usual way. Moreover,

[π]ϕ abbreviates ¬〈π〉¬ϕ. The program skip abbreviates ⊤? (“nothing happens”) and

the program p←q abbreviates (q?; p←⊤)∪ (¬q?; p←⊥) (“p gets the truth value of q”).

DL-PA programs are interpreted by means of a (unique) relation between valua-

tions: atomic programs p←⊤ and p←⊥ update valuations in the obvious way, and

complex programs are interpreted just as in PDL by mutual recursion. Table 1 gives

the interpretation of the DL-PA connectives.

A formula ϕ is DL-PA valid if ||ϕ|| = 2P, and ϕ is DL-PA satisfiable if ||ϕ|| , ∅. For

example, the formulas 〈p←⊤〉⊤ and 〈p←⊤〉ϕ ↔ ¬〈p←⊤〉¬ϕ are DL-PA valid. Other

examples of DL-PA validities are 〈p←⊤〉p and 〈p←⊥〉¬p. Observe that if p does not

occur in ϕ then both ϕ → 〈p←⊤〉ϕ and ϕ → 〈p←⊥〉ϕ are valid. This is due to the

following semantical property.

Proposition 1. Suppose p < Pϕ, i.e., p does not occur in ϕ. Then ϕ ∈ ||V ∪ {p}|| iff

ϕ ∈ ||V \ {p}||.

Theorem 1 ([2]). For the full language, both the DL-PA satisfiability problem and the

DL-PA model checking problem are EXPTIME complete.

For the star-free fragment, both the DL-PA satisfiability problem and the DL-PA

model checking problem are PSPACE complete.

3.2 Embedding set separation logic into DL-PA

We now give a polynomial transformation mapping set separation logic formulas ϕ0

into DL-PA formulas.

Let P′ be the set of variables p′ such that p is in P and p′ is fresh: p′ does not occur

in the formula ϕ0 under consideration. The following abbreviations will be useful:

±p = p←⊤∪ p←⊥

changeSome({p1, · · · , pn}) = ± p1; · · · ;±pn

store({p1, · · · , pn}) = p′1←p1; · · · ; p′n←pn

retrieve({p1, · · · , pn}) = p1←p′1; · · · ; pn←p′n

changeSomeMarked({p1, · · · , pn}) = ¬(p1 ↔ p′1)? ∪ (p1 ↔ p′1?;±p1);

· · ·

¬(pn ↔ p′n)? ∪ (pn ↔ p′n?;±pn)

changeSomeUnmarked({p1, · · · , pn}) = p1 ↔ p′1? ∪ (¬(p1 ↔ p′1)?;±p1);

· · ·

pn ↔ p′n? ∪ (¬(pn ↔ p′n)?;±pn)

changeRestAndRestore({p1, · · · , pn}) = ((p1 ↔ p′1?;±p1) ∪ (¬(p1 ↔ p′1)?; p1←p′1));

· · ·

((pn ↔ p′n?;±pn) ∪ (¬(pn ↔ p′n)?; pn←p′n))

The program changeSome(P) nondeterministically changes the truth value of some

variables in P. The program store(P) stores the truth value of each variable p by means

of a fresh variable p′, and retrieve(P) reestablishes that ‘old’ value. When p and p′ have

different truth values then we say that p is marked; else we say that p is unmarked. The

program changeSomeMarked(P) arbitrarily changes only the unmarked variables. The

other way round, the program changeSomeUnmarked(P) leaves every unmarked p ∈ P

unchanged and arbitrarily changes the marked p’s.

Observe that each of the above programs has length linear in the cardinality n of

the set of propositional variables {p1, . . . , pn}.

The next two propositions provide an embedding of set separation logic into DL-PA.

Proposition 2. Let ϕ1 and ϕ2 be two propositional formulas. Let P = Pϕ1
∩ Pϕ2

. Let

P′ be the set of variables p′ such that p is in P and p′ is fresh: p′ does not occur in

the formula under consideration. Then the formula ϕ1 ‖̇ϕ2 is equivalent to the DL-PA

formula

〈store(P); changeSome(P)〉
(

〈changeSome(Pϕ1
\ P)〉ϕ1 ∧

〈changeRestAndRestore(P)〉〈changeSome(Pϕ2
\ P)〉ϕ2

)

Proposition 3. Let ϕ1 and ϕ2 be two propositional formulas. Let P = Pϕ1
∩ Pϕ2

. Let

P′ be the set of variables p′ such that p is in P and p′ is fresh: p′ does not occur in the

formula under consideration. Then the formula ϕ1 ∧̇ϕ2 is equivalent to the following

DL-PA formula:

〈store(P); changeSome(P′)〉
(

[changeSomeMarked(P)]ϕ1 ∧

[changeSomeUnmarked(P)]ϕ2

)

Intuitively, after the program store(P) has stored the value of each of the elements

of P, the program changeSome(P′) allows to (nondeterministically) identify a subset

of P: those p whose value differs from its copy p′. We consider that these ‘marked’

variables are those of the partial valuation for ϕ1, while the complementary, unmarked

variables make up the partial valuation for ϕ2.

This can be turned more formally into a transformation from the language of set

separation logic into the language of DL-PA. The transformation is clearly linear in the

size of the original formula ϕ0.

The codomain of the transformation is the star-free fragment of DL-PA. As both

model checking and satisfiability checking in DL-PA are PSPACE complete, it follows

that model checking and satisfiability checking in set separation logic are in PSPACE.

It remains to investigate the lower bounds.

4 Separability in the context of belief change opera-

tions

As we have mentioned in the introduction, one can use the SSL operators to formulate

new postulates for belief change operations such as AGM belief revision operators [1,6]

and KM update operators [8, 9]. We investigate this now in more depth.

4.1 The basic belief change postulates

Let ◦ be a belief change operator and let β and ψ be boolean formulas. (We use β for

the base and ψ for the input.) β ◦ ψ is the result of incorporating the input ψ into the

base β. Both revision and update operations were mainly studied from a semantical

perspective: β ◦ ψ is viewed as a set of valuations.

Katsuno and Mendelzon promoted the distinction between belief update and belief

revision [9]. Their idea is that update keeps track of changes in the world while revision

corrects errors about an unchanged world. This can be illustrated by the revised and

updated edition of a dictionary: we say that it has been revised because past errors have

been corrected, and we say that it has been updated because new usages of existing

words have been added to it and outdated usages have been dropped. Traditionally,

β ⋄ ψ denotes the update of the base β by the input ψ and β ∗ ψ denotes the revision of

the base β by the input ψ.

Alchourrón, Gärdenfors and Makinson designed a set of postulates for belief revi-

sion operations (the so-called AGM postulates), and Katsuno and Mendelzon designed

a set of postulates for belief update operations (the so-called KM-postulates). The

following postulates are common to both kinds of operations:

(RE) if ||β1|| = ||β2|| and ||ψ1|| = ||ψ2|| then β1 ◦ ψ1 = β2 ◦ ψ2

(SUCCESS) β ◦ ψ ⊆ ||ψ||

(PRESw) if ||β|| ⊆ ||ψ|| then β ◦ ψ = ||β||

where ||ϕ|| is the set of valuations where ϕ is true (just as in Section 3.1). We call the

above the basic belief change postulates.

RE is a postulate of insensitivity to syntax. SUCCESS says that belief change

is successful: the input has priority. PRESw is a weak preservation postulate: if the

input is already in the base then the base should not change. AGM revision operations

moreover satisfy a strengthening of PRESw:

(PRES) if ||β|| ∩ ||ψ|| , ∅ then β ◦ ψ = ||β ∧ ψ||

4.2 Belief change operations and language splitting

It has been observed by many that the drastic update operation defined as

β ◦ ψ =

||β|| if ||β|| ⊆ ||ψ||

||ψ|| otherwise

satisfies the KM postulates. Similarly, the following drastic revision operation

β ◦ ψ =

||β ∧ ψ|| if ||β|| ∩ ||ψ|| , ∅

||ψ|| otherwise

satisfies the AGM postulates. In order to exclude such operations, Parikh, Makinson

and others argued for a further postulate of relevance [3, 10, 14]. Its formulation refers

to the syntax of the base and the input.

(REL) (β1 ∧ β2) ◦ ψ = (β1 ◦ ψ) ∩ (β2 ◦ ψ) if Pβ1
∩ Pβ2

= ∅

Just as in Section 2, Pϕ denotes the set of propositional variables occurring in the

boolean formula ϕ. Therefore Pβ1
∩ Pβ2

= ∅ means that the signatures of β1 and β2

are disjoint: the languages of β1 and β2 can be split. Each of the above drastic opera-

tions violates the postulate REL.

4.3 Separation-based belief change operations

In the same spirit and as already stated informally in the introduction, the SSL oper-

ators enable us to go beyond such syntax-based postulates and strengthen the above

relevance postulate REL. The strengthening comes in a static version and in a dynamic

version:

(RELs) (β1 ∧̇ β2) ◦ ψ = (β1 ◦ ψ) ∩ (β2 ◦ ψ)

(RELd) β ◦ (ψ1 ‖̇ψ2) = (β ◦ ψ1) ◦ ψ2

= (β ◦ ψ2) ◦ ψ1

where ◦ is any belief change operation, be it update or revision.2 The static relevance

postulate RELs says that when the bases β1 and β2 are statically separable then they can

be updated separately. Its dynamic counterpart RELd says that when the inputs ψ1 and

ψ2 are dynamically separable then the update can be performed in parallel (or rather,

in an interleaving fashion).

It turns out that both postulates are violated by any AGM revision operation and

and any KM update operation.

Proposition 4. There is no operation ◦ satisfying both the basic belief change postu-

lates and RELs.

Proof. Suppose ◦ satisfies the basic belief change postulates and RELs. Consider the

base β = (p ∨ q) ∧̇ (p ∨ q) and the input ψ = p ∨ q. We have seen above that β is

equivalent to p ∧ q, and we therefore have:

β ◦ ψ = (p ∨ q) ∧̇ (p ∨ q) ◦ p ∨ q

= p ∧ q ◦ p ∨ q (by RE)

= ||p ∧ q|| (by PRESw)

This is incompatible with what postulate RELs gives us:

β ◦ ψ = (p ∨ q) ∧̇ (p ∨ q) ◦ p ∨ q

= p ∨ q ◦ p ∨ q ∩ p ∨ q ◦ p ∨ q (by RELs)

= ||p ∨ q|| ∩ ||p ∨ q|| (by PRESw)

= ||p ∨ q||

�

Proposition 5. There is no operation ◦ satisfying both the basic belief change postu-

lates and RELd.

Proof. Suppose ◦ satisfies the KM postulates and RELd. Consider the base β = ¬p and

the input ψ = ¬p ‖̇ p. We have seen above that ψ is equivalent to ⊤, and we therefore

have:

β ◦ ψ = ¬p ◦ ¬p ‖̇ p

= ¬p ◦ ⊤ (by RE)

= ||¬p|| (by PRESw)

This is incompatible with what postulate RELd gives us:3

β ◦ ψ = ¬p ◦ ¬p ‖̇ p

= (¬p ◦ ¬p) ⋄ p (by RELd)

= ¬p ◦ p (by PRESw)

⊆ ||p|| (by SUCCESS)

Incompatibility is the case because the set of valuations where ¬p is true is non empty.

�

2Strictly speaking, RELd requires to build a formula representing the updates β◦ψ1 and β◦ψ2, as usually

done in the KM framework.
3We recall that the second line of the proof is formulated sloppily: instead of the set of valuations ¬p◦¬p

there should be a formula representing that valuation.

5 Discussion and conclusion

We have introduced a simple version of separation logic working on sets (alias propo-

sitional valuations) that we have called set separation logic, SSL. Our logic has two

separation operators: ∧̇ allows to separate resources, and ‖̇ allows to separate updates.

We have shown that in our logic, both model checking and satisfiability checking can

be done in polynomial space. We conjecture that the PSPACE upper bound that we

have established coincides with the lower bound, but this remains to be proved. We

would also like to provide an axiomatisation.

In the last part of the paper we have investigated the relation between SSL and

belief change operations. We have formulated two postulates that appear to be natural

and have shown that they are nevertheless incompatible with both AGM belief revision

operations and KM belief update operations.

The problem of belief change respecting separation that we have studied in the last

section is related to the frame problem in artificial intelligence [12]. Reiter’s solution

to that problem [15, 16] is by now widely accepted for actions without ramifications,

i.e., without side effects. In joint work with Hans van Ditmarsch and Tiago de Lima [5]

we have recently shown that Reiter’s solution can be mapped to dynamic logics with

propositional assignments DL-PA. Given that set separation logic can be embedded

into DL-PA, it is immediate to extend it by propositional assignments.

It would be interesting to add the implicational connective −∗ of separation logic to

SSL (which should lead to undecidability given the results of [4,11]). it is however not

clear how the semantics of −∗ can be defined in the framework of valuations.

Acknowledgements

The work in this paper was done in the framework of the ANR project DynRes (Dy-

namic Resources and Separation and Update Logics, project no. ANR-11-BS02-011).

I would like to thank the members of the project for their comments of a (very prelimi-

nary) presentation of the ideas that are worked out in more detail here. Thanks are also

due to the reviewers of WoLLIC 2013 whose comments I took into account as far as I

could.

References

[1] Carlos Alchourrón, Peter Gärdenfors, and David Makinson. On the logic of the-

ory change: Partial meet contraction and revision functions. J. of Symbolic Logic,

50:510–530, 1985.

[2] Philippe Balbiani, Andreas Herzig, and Nicolas Troquard. Dynamic logic of

propositional assignments: a well-behaved variant of PDL. In Orna Kupfer-

man, editor, Logic in Computer Science (LICS), New Orleans, June 25-28, 2013,

http://www.ieee.org/, juin 2013. IEEE.

[3] Meghyn Bienvenu, Andreas Herzig, and Guilin Qi. Prime implicate-based belief

revision operators. In Malik Ghallab, Constantine D. Spyropoulos, Nikos Fako-

takis, and Nikos Avouris, editors, European Conference on Artificial Intelligence

(ECAI), pages 741–742, Patras, Greece, july 2008. IOS Press.

[4] James Brotherston and Max I. Kanovich. Undecidability of propositional separa-

tion logic and its neighbours. In Proceedings of the 25th Annual IEEE Symposium

on Logic in Computer Science, LICS 2010, 11-14 July 2010, Edinburgh, United

Kingdom, pages 130–139. IEEE Computer Society, 2010.

[5] Hans van Ditmarsch, Andreas Herzig, and Tiago de Lima. From Situation Calcu-

lus to Dynamic Logic. Journal of Logic and Computation, 21(2):179–204, 2011.

http://logcom.oxfordjournals.org/content/21/2/179.abstract?etoc.

[6] Peter Gärdenfors. Knowledge in Flux: Modeling the Dynamics of Epistemic

States. MIT Press, 1988.

[7] Samin S. Ishtiaq and Peter W. O’Hearn. BI as an assertion language for mutable

data structures. In Chris Hankin and Dave Schmidt, editors, POPL, pages 14–26.

ACM, 2001.

[8] Hirofumi Katsuno and Alberto O. Mendelzon. Propositional knowledge base

revision and minimal change. Artificial Intelligence, 52:263–294, 1991.

[9] Hirofumi Katsuno and Alberto O. Mendelzon. On the difference between updat-

ing a knowledge base and revising it. In Peter Gärdenfors, editor, Belief revision,

pages 183–203. Cambridge University Press, 1992. (preliminary version in Allen,

J.A., Fikes, R., and Sandewall, E., eds., Principles of Knowledge Representation

and Reasoning: Proc. 2nd Int. Conf., pages 387–394. Morgan Kaufmann Publish-

ers, 1991).

[10] G. Kourousias and D. Makinson. Parallel interpolation, splitting, and relevance

in belief change. Journal of Symbolic Logic, 72(3):994–1002, 2007.

[11] Dominique Larchey-Wendling and Didier Galmiche. The undecidability of

boolean bi through phase semantics. In Proceedings of the 25th Annual IEEE

Symposium on Logic in Computer Science, LICS 2010, 11-14 July 2010, Edin-

burgh, United Kingdom, pages 140–149. IEEE Computer Society, 2010.

[12] J. McCarthy and P.J. Hayes. Some philosophical problems from the standpoint of

artificial intelligence. In B. Meltzer and D. Mitchie, editors, Machine Intelligence,

volume 4, pages 463–502. Edinburgh University Press, 1969.

[13] Peter W. O’Hearn, John C. Reynolds, and Hongseok Yang. Local reasoning about

programs that alter data structures. In Laurent Fribourg, editor, CSL, volume 2142

of Lecture Notes in Computer Science, pages 1–19. Springer, 2001.

[14] R. Parikh. Beliefs, belief revision, and splitting languages. In Lawrence S. Moss,

Jonathan Ginzburg, and Maarten de Rijke, editors, Logic, Language, and Com-

putation, vol. 2, pages 266–278. CSLI Publications, 1999.

[15] Ray Reiter. The frame problem in the situation calculus: A simple solution (some-

times) and a completeness result for goal regression. In Vladimir Lifschitz, ed-

itor, Artificial Intelligence and Mathematical Theory of Computation: Papers in

Honor of John McCarthy, pages 359–380. Academic Press, San Diego, CA, 1991.

[16] Raymond Reiter. Knowledge in Action: Logical Foundations for Specifying and

Implementing Dynamical Systems. The MIT Press, 2001.

[17] John C. Reynolds. Separation logic: A logic for shared mutable data structures.

In 17th IEEE Symposium on Logic in Computer Science (LICS 2002), 22-25 July

2002, Copenhagen, Denmark, Proceedings, pages 55–74. IEEE Computer Soci-

ety, 2002.

