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Abstract—This paper defines a new framework for dynamics
in argumentation. In this framework, an agent can change an
argumentation system (the target system) in order to achieve
some desired goal. Changes consist in addition/removal of argu-
ments or attacks between arguments and are constrained by the
agent’s knowledge encoded by another argumentation system.
We present a software that computes the possible change
operations for a given agent on a given target argumentation
system in order to achieve some given goal.

Keywords-Abstract argumentation theory, dynamics in argu-
mentation

I. INTRODUCTION

An abstract argumentation system (AS) [1] is composed of

a set of arguments linked by a binary relation, called attack

relation, which represents conflicts between arguments. A

“semantics” for such a structure defines the way to select

subsets of arguments jointly acceptable. In the last few

years, the dynamics of these systems has been garnering

increased attention from the researchers in argumentation

[2], [3], [4], [5], [6], [7]. Change in argumentation raises

classical questions: “How to represent a change? What

are its consequences?”. But also new questions concerning

the use of such changes emerge : “Who is concerned by

these changes? How to use them in an effective way to

achieve a precise goal?”. These two questions concerning

the audience and optimal change led us to propose a new

theoretical framework that is close to classical planning. We

want to model the reasoning of an agent who has her own

knowledge, a goal and the possibility of acting on a target

system. Here, the agent’s knowledge is represented by an

AS. The target on which she can operate is also an AS. For

example, during a debate, the publicly exchanged arguments

and their interactions may constitute the target system. An

agent can act on the target for adding or removing arguments

or attacks. In a public debate, adding an argument simply

amounts to expressing it. The removal of an argument [8],

[9] may be due to an objection or may come from the

rejection of a given statement not recognized as a proper

argument. The addition (resp. removal) of attack may come

from the discovery that two already stated arguments are in

conflict (resp. compatible). The originality of our proposal

lies in the use of two AS: one for the agent and one for

the target. This introduces some limitations into the set of

possible actions of the agent, (since, for instance, she cannot

add arguments or attacks if she does not know them), thus

some trivial ways to realize a goal may not be allowed for

the agent.

Several software tools have already been designed for

helping a user to reason with arguments. They are meant to

be cognitive assistants (see for instance [10], [11]) or they

focus on a particular domain (e.g. [12], [13] in the domain

of case-based legal reasoning). Our proposal is more at a

strategical level since it aims at helping the user to persuade

an audience, hence to provide means to do it (arguments

that could be added, or objections that could be done to

existing ones). More precisely, it provides as output the list

of actions executable by the agent in order to achieve her

goal. This software uses properties characterizing changes

that were established in [4], [8]. In this article, we only

use a particular semantics (the grounded semantics) but the

software can handle others of them (the preferred and stable

semantics). In addition, at the current stage, the software

handles only some types of change.

In Sect.II, we present an example which will enable us

to illustrate our theoretical framework described in Sect.III.

In Sect.IV, we present the implemented tool which provides

the actions to be carried out by the agent in order to achieve

her goal. The experimentation protocols and the results are

given in Sect.V.

II. THE COURT HEARING EXAMPLE

This example, already described in [8], is a court hearing

which fits well with an argumentation framework. However,

while this example illustrates our definitions easily, it does

not cover all the possible applications of our work. We

present first the protagonists and their goals then we describe

the course of the hearing.

A. Protagonists

In this example, four entities are interacting in order

to determine if an argument x0 is acceptable; here, the

argument x0 expresses that the defendant is not guilty. The

four entities have quite distinct roles:

• the prosecutor wants to obtain the rejection of the

argument x0 given a set of arguments.

• the defense lawyer, with his set of arguments (possibly

different from those of his adversary, the prosecutor),

tries to obtain the acceptance of the argument x0.



• the judge ensures that the process of argumentation

takes place under good conditions. When an objection

is made by one of the participants, he can accept

this objection (thus the corresponding argument is

removed), or reject it.

• the jury has the last word. Its role is to listen to

the arguments of the prosecutor and lawyer. When the

hearing is finished (i.e. when neither the prosecutor, nor

the lawyer can, or want to, give new arguments), the

jury deliberates and determines whether the argument

x0 is acceptable or not.

In this example, the prosecutor and the lawyer are not

interested by convincing each-other. However, they wish to

convince the jury who will make the final decision. Thus,

both protagonists will act on a target AS representing the

state of knowledge of the jury. The target AS, which is empty

at the beginning, represents the central place of exchanges

between the prosecutor and the lawyer, where each one will

place his arguments in turn, trying to make the jury lean in

his favor at the end.

B. Protocol

We present a protocol governing the exchange of argu-

ments in the example of the hearing.

1) First of all, the argument x0, giving the subject of the

hearing, is set up. By convention, the defense lawyer

speaks first and states the innocence of his client. The

jury AS (the target) is modified.

2) the hearing is a sequence of actions made by the agents

(either the prosecutor, or the lawyer) according to their

own AS. We consider two types of action:

• an additive action is the addition of arguments

and/or attacks directly in the jury AS;

• a suppressive action is the removal of one or more

arguments and/or attacks from the jury AS. Let us

note the particular case of an objection: it consists

in asking the judge to rule on the legality of some

arguments and/or attacks uttered by the adversary.

If the objection is rejected, no modification of the

jury AS is carried out. If the objection is accepted,

arguments or attacks objected are removed from

the jury AS.

It is also possible for an agent to do nothing. It is the

case, for instance, when the agent does not have any

more argument to advance, or when the jury AS is

appropriate for her.

3) a side effect of an action is to inform the adversary:

if one of the two protagonists was not aware of one

argument uttered by the other then he will add it to

its own system. In the same vein, if an argument is

considered to be illegal after an objection accepted by

the judge, the two agents should occult it in order to

no more use it.

4) When the agents both decide that they do not have

anything to add, the process stops and the jury delib-

erates thanks to its AS.

This protocol highlights two types of change:

• a change operated by an agent on a target system other

than her own,

• a change operated by an agent on her own system.

This last type of change can be studied by using directly

the work of [4] and will not be treated here. In this paper,

we investigate only the first type of change by defining a

theoretical framework in which an agent chooses an action

according to a target system, her own system and her goals.

III. CLASSICAL ARGUMENTATION FRAMEWORK AND

NEW DEFINITIONS

This work is based on various concepts that we will

present and illustrate progressively on the example of Sect.II.

We will need in particular the notions of argumentation

system (AS) and change operation respectively introduced

in [1] and [4]. Beyond the concept of change and the

modifications it implies, we are interested in what can cause

this change, i.e., why and how a target AS is modified. For

this purpose, we will introduce the concept of goal of an

agent and we will focus on finding the operations an agent

can apply in order to achieve her goal.

A. Abstract Argumentation

Let us consider a set Arg of symbols (denoted by low-

ercase letters). The set Arg and a relation R ⊆ Arg ×Arg
enable us to define the set of all possible arguments with

their interactions, which we call reference universe. More

precisely, Arg represents a potentially infinite set of argu-

ments available in a particular domain (e.g. if the domain

is a knowledge base then Arg is the set of all arguments

that can be built upon the formulas of the base). It is also

possible, following the example below, to suppose that Arg
is provided explicitly.

Ex. 1: During an hearing concerning a defendant (Mr.

X), several arguments may be examined in order to deter-

mine his culpability. The following table presents the set

Arg. The relation R is represented in the graph of Fig.1.

x0 Mr. X is not guilty of the murder of Mrs. X

x1 Mr. X is guilty of the murder of Mrs. X

x2

Mr. X’s business associate has sworn that he met
him at the time of the murder.

x3

Mr. X associate’s testimony is suspicious due to
their close working business relationship

x4 Mr. X loves his wife, so he cannot be her killer.

x5 Mr. X has a reputation for being promiscuous.

x6

Mr. X had no interest to kill Mrs. X , since he was
not the beneficiary of her life insurance

We slightly modify the AS definition of [1] in order to

take into account a reference universe.



x5 x6 x3 x2

x4 x1 x0

Figure 1: Reference universe of Mr. X case.

Def. 1: An argumentation system (AS) on the universe

〈Arg,R〉 is a partial subgraph of 〈Arg,R〉, i.e. a pair

〈A,RA〉, where A ⊆ Arg is a finite nonempty set of

arguments and RA ⊆ R ∩ A × A is called attack relation.

Let a, b ∈ A, aRAb means that a attacks b.
〈A,RA〉 is represented by an argumentation graph G whose

vertices and edges correspond respectively to the arguments

and the attacks. x ∈ G is a shortcut for x ∈ A.

Given a universe 〈Arg,R〉, Gk = 〈Ak, RAk
〉 denotes the

AS of the agent k on this universe, and represents the part

of the reference universe known by k.

Ex.1 (cont.) The prosecutor does not know all the argu-

ments of the universe (given in Fig.1). Fig.2 illustrates the

arguments and the attacks that he knows (Gpros).

x5 x6 x3

x4 x1 x0

Figure 2: AS of the prosecutor (Gpros).

The acceptable sets of arguments (“extensions”) are com-

puted using a “semantics” based on the following notions:

Def. 2: Given an AS 〈A,RA〉, let a ∈ A and S ⊆ A

• S attacks a if and only if (iff) ∃x ∈ S such that (s.t.)

xRAa.

• S is conflict free iff ∄a, b ∈ S s.t. aRAb.
• S defends an argument a iff S attacks any argument

attacking a. The set of the arguments defended by S is

denoted by F(S); F is called the characteristic function

of 〈A,RA〉. More generally, S indirectly defends a iff

a ∈
⋃

i≥1

F i(S).

• S is an admissible set iff it is both conflict free and

defends all its elements.

In this article, we focus on one semantics among those

proposed by [1]:

Def. 3 (Grounded semantics): Let E ⊆ A, E is the only

grounded extension iff E is the smallest with respect to (wrt)

⊆ fixed point of the characteristic function F .

Ex.1 (cont.) The grounded extension representing the

acceptable arguments for the prosecutor is {x0, x3, x5, x6}.

In addition, the status of an argument is defined wrt its

presence in the extensions of the selected semantics. In our

particular case, an argument is “accepted” if it appears in

the grounded extension and “rejected” otherwise. Thus, for

the prosecutor, x0 is accepted and x1 rejected. But, although

he does not have the arguments to prove undoubtedly that

the defendant is guilty, the prosecutor wishes that x1 would

be accepted by the jury. In the following section, we will

see how the prosecutor can act on the jury AS in order to

make x1 accepted.

B. Change in argumentation

According to [4], an elementary change is either the

addition/removal of an argument with a set of related attacks,

or the addition/removal of one precise attack. In order to be

more concise, we only consider the operations concerning

the addition or the removal of an argument. Moreover, we

refine the concept of elementary operation in the sense of

[4] in four steps: first, we define its syntax; then we relate the

operation to an agent in order to determine if it is authorized

or not for her, i.e. if she knows the elements involved

in the operation. We then take into account the target to

determine if the operation is executable: the addition (resp.

removal) of an argument is only achievable if this argument

is absent (resp. present) in the target system. Lastly, we

define the impact of an operation on an AS. The restriction

to elementary operations is done without loss of generality

since any operation can be represented by a sequence of

elementary operations, called program in Def.5. In addition,

we suppose in this work that all the systems considered are

relative to the same universe 〈Arg,R〉.

Def. 4: Let k be an agent, Gk = 〈Ak, RAk
〉 her AS and

G = 〈A,RA〉 any AS.

• an elementary operation is a triplet o = 〈op, arg, att〉
where op ∈ {⊕,⊖}, arg ⊆ Arg, att ⊆ R and

– if op = ⊕ then |arg| = 1 and ∀(x, y) ∈ att, (x 6=
y) and (x ∈ arg or y ∈ arg),

– if op = ⊖ then |arg| = 1 and att = ∅.

• an elementary operation 〈op, arg, att〉 is authorized for

k if arg ⊆ Ak and att ⊆ RAk

1.

• an executable operation by k on G is an elementary

operation 〈op, arg, att〉 authorized for k s.t.:

– if op = ⊕, then arg 6⊂ A and ∀(x, y) ∈ att, (x ∈
A or y ∈ A),

– if op = ⊖, then arg ⊆ A.

• an operation o = 〈op, arg, att〉 executable by k on G
provides a new AS G′ = O(G) = 〈A′, RA′〉 s.t.:

– if op = ⊕ then G′ = 〈A ∪ arg,RA ∪ att〉,
– if op = ⊖ then G′ = 〈A \ arg,RA \ {(x, y) ∈

RA s.t. x ∈ arg or y ∈ arg}〉.

1In the case of addition of an argument, only a part of the known attacks
may be provided; it is thus possible for an agent to carry out a “lie by
omission”, for example for strategic reasons. On the other hand, the agent
is not authorized to provide unknown arguments or attacks; she cannot thus
lie actively; this could be the object of future work.



Ex.1 (cont.) Given the reference universe of Fig.1, here is

a non-exhaustive list of elementary operations:
• 〈⊕, {x2}, {(x2, x1)}〉
• 〈⊕, {x2}, {(x2, x1), (x3, x2)}〉
• 〈⊕, {x6}, {(x6, x1)}〉

• 〈⊕, {x6},∅〉
• 〈⊖, {x4},∅〉
• 〈⊖, {x2},∅〉

Among these elementary operations, the agent (the pros-

ecutor) is not authorized to use those concerning arguments

or attacks that she does not know. Thus, she will not be able

to use the following operations:

• 〈⊕, {x2}, {(x2, x1)}〉,
• 〈⊕, {x2}, {(x2, x1), (x3, x2)}〉,
• 〈⊖, {x2},∅〉.

Let Gjury be the jury AS (Fig.3).

x4 x1 x0

Figure 3: AS of the jury (Gjury).

Here are some executable operations on Gjury by the

agent:
• 〈⊖, {x4},∅〉
• 〈⊕, {x6}, {(x6, x1)}〉

• 〈⊕, {x6},∅〉
• 〈⊕, {x5}, {(x5, x4)}〉

Finally, the impact of the last operation on the jury AS

produces:

x5 x4 x1 x0

We consider below the programs, i.e. the sequences of

executable operations by an agent on an AS. This enables an

agent to carry out several elementary operations in sequence.

Def. 5: Let k be an agent and G any AS. An executable

program p by k on G is an ordered finite sequence of m
operations (o1, · · · , om) s.t.:

• m = 1: o1 is executable by k on G. In this case, p(G) =
o1(G).

• m > 1: (o1, · · · , om−1) is an executable program p′ by

k on G s.t. p′(G) = G′ and om is executable by k on G′.
In this case, p(G) = om(G′).

• By extension, an empty sequence is also a program. In

this case, p(G) = G.

Let us now define what could be a program achieving a

precise goal.

C. Goals and programs

An agent can act on a target AS in order to achieve some

goals. A goal is formally represented by a formula in a

language that expresses conditions that may hold for some

AS (e.g. the target AS).

For representing these goals, we use the symbols appear-

ing in the typology of the change properties defined in [9]:

• arguments (x, y, z, etc),

• extensions (Ei, E
′
i),

• the set of extensions (E, E
′), their cardinality (|E|,

|E′|),
• the set of all the extensions containing a particular

argument x (Ex, E′x) and their cardinality (|Ex|, |E
′
x|),

• classical comparison operators (=, <, >, etc),

• quantifiers ∀ and ∃,

• membership (∈) and inclusion (⊆),

• union (∪) and intersection (∩) of sets,

• classical logical operators (∧, ∨, →, ↔, ¬).

We will note bk the goal of the agent k.

Ex.1 (cont.) The goal bpros of the prosecutor can be

represented by (x1 ∈ E ′) with E ′ being the grounded

extension of the jury AS.

Then, we give the notion of a program achieving a goal.

Def. 6: Let k be an agent, bk her goal and G any AS. A

program p of k on G achieving bk is an executable program

by k on G s.t. p(G) = G′ and bk holds in G′ (or in (G,G′) if

the goal expresses a condition on both systems).

Ex.1 (cont.) Considering the goal bpros represented

by (x1 ∈ E ′), the programs (〈⊕, {x5}, {(x5, x4)}〉) and

(〈⊖, {x4},∅〉) of the prosecutor on Gjury achieve bpros.

In the next section, we study how to compute the opera-

tions that an agent should do in order to achieve her goal.

D. Change characterizations

A “naive” approach is to compute, for each executable

operation, the set of extensions of the modified target AS

and to check if the goal is achieved. Another more efficient

approach uses the change characterizations which were

studied in [4] and [8]. A characterization is a property that

gives necessary and/or sufficient conditions for achieving a

particular goal wrt a kind of operation and a semantics. We

give two examples of characterizations:

Charact. 1 ([9]): When adding an argument z under

grounded semantics, if z is not attacked by G and z indirectly

defends x and x 6∈ E , then x ∈ E ′.

This characterization concerns the goal of “enforcement”

of an argument x. Enforcement, introduced by [5], consists

in ensuring that an argument which was rejected would be

accepted. This characterization also specifies the operation

involved: here the addition of an argument z. Thus, thanks

to this characterization, we know (without requiring a new

computation of the extensions) that if an operation adds

an argument z under the grounded semantics, s.t. z is not

attacked and indirectly defends another argument x which

was not accepted, then x will become accepted.

Charact. 2 ([9]): When removing an argument z under

grounded semantics, if E 6= ∅ and z is attacked by G, then

E ′ 6= ∅.

Here the goal concerns the evolution of the non emptiness

of the extension. This characterization enables us to know,

without any computation, that if an operation removes an

argument z s.t. z is attacked by at least one argument of G
and knowing that the extension was not empty before the



change, then the extension obtained after the change will

not be empty. This can be useful when one wants to make

sure that the discussion will not be fruitless.

This concludes our theoretical framework. The following

section presents the tool that has been developed.

IV. PRESENTATION OF THE TOOL

The tool is organized around two modules: an AS handler,

and an inference engine (for computing the change opera-

tions). The outputs of Module 1 are inputs for Module 2.

A. The argumentation systems manager

We present here the argumentative facet of the program,

which may handle the creation of various AS and enable

the computation of the extensions. This module is encoded

in an object language (Python 2.7) which is convenient

for implementing the concepts used. Thus, creating an AS

requires a set of arguments and a set of attacks.

This module handles the consistency of the input data

by checking that any argument appears only once (with the

same name), and that the input attacks relate existing argu-

ments. This module returns information concerning the AS

and launches (on request) the computation of the extensions

wrt a semantics (which can be provided as a parameter). In

accordance with our theoretical framework, the tool makes it

possible to create two AS, one for the agent and one for her

target. This creation is carried out by providing the list of the

arguments and attacks of these two systems. Moreover, the

semantics used in the target system is also specified (it will

be used to check the achievement of the goals of the agent).

The agent AS and the target AS, as well as the extensions

of this last, are then transmitted to the second module.

B. Inference Engine

This second module computes the change operations.

More precisely, it allows to answer to the question “What

are the operations executable by the agent on the target

system that achieve her goal?”.

The inference engine receives the agent AS and the target

AS, as well as the set of extensions of the target for a given

semantics. Besides, it is necessary to provide a goal that the

agent wants to achieve on the target system and a set of

characterizations allowing to check if an operation achieves

that goal. Let us note that the user can filter the results by

forcing the type of operation, for instance if she is only

interested in the additions of arguments.

The heart of this module is a rule which generates all

the operations executable by the agent on the target and

achieving the goal, and produces, for each operation, the

characterization justifying this result. This rule contains two

parts, one part builds the operations, and the other checks

that the operations fit the desiderata of the agent.

A synthetic vision of the tool, and thus of the articulation

between its two modules, is given in Fig.4.

This second module has been encoded with a logic

programming language (Prolog) for two main reasons: the

Figure 4: Architecture of the tool.

characterizations translate naturally into logical rules, and

the mechanism of unification allows us to generate and easily

filter the operations wrt the AS and the goal of the agent.

Construction of the operations: The construction of the

operations is a direct translation in Prolog of Def.4. Thus,

we generate executable operations and their impact on the

argumentation graph (it is either the addition or the removal

of an argument). This makes it possible to avoid considering

operations that are not authorized or not executable and thus

to optimize the computing time.

Checking the operations: After its generation by the

construction rules, the operation is treated thanks to the

characterizations (e.g., Charac.1 or 2). Thus, for a given

operation, if there exists a characterization corresponding

to the type of operation and the goal requested by the agent

and if the conditions of this characterization are satisfied,

then this operation will be provided to the user (with the

corresponding characterization as an explanation).

Let us note that for the moment the tool only handles

programs reduced to one elementary operation.

C. Application to the example

We illustrate the use of the tool on the example of the

hearing: the prosecutor wants to have the argument x1

accepted. He knows the arguments presented in Fig.2 and

has to modify the jury AS, represented in Fig.3.

First of all, the necessary data must be provided, i.e. the

sets of arguments and attacks that the prosecutor knows, the

sets of arguments and attacks known by the jury (the target

AS) and the semantics used by the jury (we suppose here

that it is the grounded semantics).

The tool will deduce from these data the set of the

extensions for the jury AS (E = {{x0, x4}}).
The prosecutor must also specify his goal: “x1 must

belong to the grounded extension”.

And finally a set of characterizations must be provided.

In order to simplify the explanation, let us suppose that this

set is reduced to the single characterization 1.

The tool then generates the operations executable by the

prosecutor on the jury AS and their impacts. For example:

• 〈⊖, {x4},∅〉, which successfully completes the con-

struction step and whose impact is the system



({x0, x1}, {(x1, x0)}),
• 〈⊕, {x5}, {(x5, x4)}〉, which also successfully com-

pletes the construction step and whose impact

is the system ({x0, x1, x4, x5}, {(x1, x0), (x4, x1),
(x5, x4)}).

Let us note that the operations concerning the arguments

or attacks unknown by the agent, or which are not executable

on the target AS, are not generated by the tool. Thus, the op-

eration 〈⊖, {x6},∅〉 is not generated because the argument

x6 is not present in the jury AS. This ensures the finiteness

of the process. Generated operations are examined at the

same time through the characterizations. If an operation does

not correspond to any characterization, it is rejected; if it

matches with one or more characterizations, then the tool

returns all the pairs (operation, characterization).

In our example, the operation 〈⊖, {x4},∅〉 is rejected be-

cause its type (removal of an argument) does not correspond

to that specified in the only characterization available. On the

other hand, the type of the operation 〈⊕, {x5}, {(x5, x4)}〉
corresponds; the tool must thus check that the latter satisfies

the constraints specified in the characterization, namely that

z, in fact paired with the argument x5, is not attacked and

that it must defend indirectly x (this last being paired with

x1) such as x does not belong to the extension2. These

conditions being satisfied, the operation realizes indeed the

goal of the prosecutor.

V. EXPERIMENTS

The aim of our tool is to find a “program” (in the sense of

Def.5) achieving a goal. Note that, as a first step, we restrict

the search to the programs containing only one operation.

This search could have been made directly by computing the

impact of an operation and then by checking the set of the

extensions of the resulting graph. Nevertheless, recomputing

extensions can be very expensive (see [7]), whereas comput-

ing the impact of an operation is easy in terms of arguments

and attacks (it just amounts to handle elementary operations

on sets). Thus, our idea is to generate executable operations

and “to check them” thanks to the characterizations, rather

than compute the extensions for each resulting system and

then check that the goal is satisfied. The benefits in terms of

time and of space still remain to be evaluated (this will be

the subject of a future study). Before analyzing the results

produced by the tool (Sect.V-B), we present, in Sect.V-A,

our experimental protocols. In Sect.V-C, we discuss their

drawbacks and benefits.

A. Experimental Protocols

We propose two experimental protocols for checking the

soundness of the implementation (of course, this use of the

tool is not representative of its final use since they are only

test protocols). These protocols will also enable us to reveal

some lacks in the set of characterizations.

2The notions appearing in the characterizations are implemented in the
inference engine (for instance, indirect attack by an argument, direct and
indirect defense by an argument, attack and defense of sets, etc).

1) Inclusion Hypothesis: Both protocols suppose that

the target AS is a partial subgraph of the agent AS. This

assumption seems natural in the court hearing example: the

prosecutor and lawyer are aware of everything what is said

during the hearing, so they know all the arguments that are

present in the jury AS (their target)3.

2) Random Generation: This protocol aims at randomly

generating two systems (one for the agent and one for the

target) respecting the inclusion hypothesis, and at randomly

generating a goal to achieve. Thus:

• a set of arguments of size n is created, with n being a

random value between 2 and 20,

• a set of attacks between these arguments of size nb att
is created, with nb att being a random value between

n ∗ 0.5 and n ∗ 1.5.

This constitutes the first AS. It will be used as a basis to

create a partial subgraph representing the target AS:

• two numbers sup arg and sup att are generated ran-

domly, with sup arg being a value between 0 and n−1
and sup att being a value between 0 and nb att− 1,

• sup arg arguments are removed randomly from the

set of arguments, and for each removed argument we

subtract from sup att the number of attacks involving

this argument,

• sup att attacks are removed randomly.

This enables us to obtain the second AS.

And finally, a goal is randomly selected among x ∈ E ′,
x /∈ E ′, z ∈ E ′, E = E ′, E ⊆ E ′, E ⊂ E ′, E ′ ⊆ E , E ′ ⊂ E ,

E ′ = ∅, E ′ 6= ∅, where x belongs to the target AS, z
belongs to the agent AS and E (resp. E ′) is the grounded

extension of the target AS before (resp. after) the change.

The generation of operations is executed from these two

systems and the goal (see the results obtained in Sect.V-B).

3) Systematic Generation: Although the random genera-

tion is efficient, it can leave aside some interesting cases. To

solve this problem, we set up another experimental protocol

consisting in exhaustively testing a list of pairs of AS.

Thus, for n arguments, we create all the pairs of AS s.t.:

• the first AS has a set of arguments arg agent (indexed

from 1 to n) and a set of attacks att agent (the number

goes from 0 to n ∗ (n− 1)).
• the second AS has a set of arguments arg target

varying among all the possible subsets of arg agent,
and a set of attacks varying among all the possible

subsets of att agent restricted to the arguments of

arg target.

We carry out the generation of operations for a given kind

of goals: we have successively considered the enforcement

3Removing this assumption would mean to consider that an agent may
not agree with the validity of some presented arguments or attacks. This
refers to the question of the differentiation between being aware of the
existence of an information and believing in its validity. This question would
deserve a deeper study which is out of the scope of this paper.



of each of the arguments of the target AS. Our protocol

computes the grounded extension of the system resulting

from the operation. This enables us to reveal the “covering”

problems of the tool, i.e. cases where no operation is found

that achieves the goal whereas there is one (see Sect.V-B).

B. Results

For the random generation: For each pair of AS

generated (in all five million), the first experimental pro-

tocol returns information concerning the generation of the

executable operations achieving a goal chosen randomly.

Ex.2 proposes a short extract showing a case of successful

generation of operations.

Ex. 2: Consider the following AS and the goal x1 6∈ E
′:

Agent AS: x1 x2 Target AS: x1

The tool generates two operations: 〈⊕, {x2}, {(x2, x1)}〉
and 〈⊕, {x2}, {(x2, x1), (x1, x2)}〉 with the corresponding

characterizations (here, it is twice the same – corresponding

to Prop.16 of [9]).

In addition, the protocol also proposes a summary of the

results, for each goal, by detailing the number of cases where

a solution is found. Tab.I shows an example of such results.

Goal
Nb. of Set of solutions

%
cases

tested Non empty
Empty

x ∈ E ′ 499216 443010 56206 88.7

x /∈ E ′ 500009 397706 102303 79.6

z ∈ E ′ 500196 443931 56265 88.8

E = E ′ 499770 389933 109837 78.0

E ⊆ E ′ 499116 499116 0 100.0

E ⊂ E ′ 500697 489562 11135 97.8

E ′ ⊆ E 499860 435600 64260 87.1

E ′ ⊂ E 499546 402207 97339 80.5

E ′
= ∅ 500728 27222 473506 5.4

E ′ 6= ∅ 500862 279162 221700 55.7

Total 5000000 3807449 1192551 76.1

Table I: Summary of results for the protocol of random generation.
For each goal, the second column gives the total number of pairs
of AS tested by the tool. The third column (resp. fourth column)
gives the number of times where the tool returned a nonempty (resp.
empty) set of solutions. Lastly, the fifth column gives the percentage
of the cases where the tool returned a nonempty set of solutions
compared to the total number of cases tested for a particular goal.

Whether the tool finds solution or not depends on the

goal considered. More precisely, there are two possible

explanations when no executable operation is found:

• there does not exist any executable operation achieving

the goal; let us note that this case includes the case

where it is not possible to achieve this goal with only

one operation (cf Ex.3).

• a characterization is missing in order to find at least

one operation (cf Ex.4).

Ex. 3: Consider the following AS and the goal E ′ = ∅:

Agent AS:

x1 x2

x4 x3

Target AS:

x1 x2

x4 x3

The tool does not generate any operation because there

exist no executable operation achieving the goal: on the one

hand, there exists no argument attacking at the same time x2,

x3 and x4 and being attacked by at least one of them, and, on

the other hand, it is not possible to remove all the arguments

in only one operation.

Ex. 4: Consider the following AS and the goal E ′ 6= ∅:

Agent AS:

x1 x2

x4 x3

Target AS: x4

The tool does not generate any operation, and yet, doing

nothing would be enough to achieve the goal; thus there is

a gap in the set of characterizations (the possibility of doing

nothing had not been considered in [9]).

The set of solutions provided by the tool can thus be

empty for very different reasons but which are not distin-

guished by the protocol. The second experimental protocol

has been set up in order to highlight examples revealing

lacks in the set of characterizations (results given below).

For the systematic generation: By considering a par-

ticular goal, and by treating all the possible cases, this

protocol enabled us to concentrate on the cases where the

tool does not find a solution and thus to detect the lacks

in our set of characterizations. Thus, we have enriched

the set of characterizations, so that currently, for the goal

corresponding to the enforcement of one argument in the

grounded extension, the automatic generation for n = 3 or

4 does not detect any lack of characterization.

C. Discussing the protocols

Our protocol of random generation enables us to test a

large number of examples (with various goals). However,

the chosen examples are not necessarily representative of

all the cases.

Concerning the systematic generation, it is very expen-

sive: for a generation based on n arguments, there are

2n∗(n−1) possible AS for the agent and in the worst case

2n∗(n−1)+(n∗2(n−1)∗(n−2))+ · · ·+(n∗20) possible cases

for the target AS. The total number of possible pairs is about

2n∗(n−1)∗(2n∗(n−1)+(n∗2(n−1)∗(n−2))+· · ·+(n∗20)). This

is tolerable for a small number of arguments. For example,

for n = 3, there are 26 ∗ (26 + 3 ∗ 22 + 3) = 5056 possible

pairs. But this becomes prohibitive as soon as they are more

than five arguments. This problem is partly due to the useless

generation of isomorphic pairs of graphs.

The second disadvantage of this protocol is that it depends

on the choice of the goal. It is thus necessary to redefine a

protocol with each new goal.



VI. DISCUSSION AND CONCLUSION

We presented a theoretical framework and a tool able to

find a change operation which achieves a goal given a target

AS and given arguments and attacks from a “source” AS

(representing the knowledge of an agent). This tool could be

used as a cognitive assistant for human agents. We studied

the behavior of this tool by means of two experimental

protocols. Nevertheless the experiments are not finished,

since our protocols do not allow to evaluate all the possible

examples exhaustively.

Future works can be declined along three axes. The first

axis relates to the tool itself:

• Since computing the extensions after change is very

expensive (in spite of the progress made in [7]), our

objective is to show that our approach is less expensive.

That will require to determine the complexity of the

inference engine algorithm (written in Prolog), one

difficulty being to take into account the check of the

applicability of some characterizations 4.

• In addition, we could consider programs with more

than only one elementary operation (for instance by

using standard planners). Considering sequences of

operations will make it possible to carry out more

complex modifications and thus to find more solutions.

• We evoked the use of the tool to locate gaps of

characterization; it could be interesting to develop a

sharper analyzer which would detect all the executable

operations than the tool does not find.

The second axis relates to the experiments carried out

thanks to the tool and its applications:

• The continuation of experiments, such as those pre-

sented in this article, is important in order to create

“benchmarks” in the argumentation field.

• It could be interesting to consider real cases of ar-

gumentation to establish other more concrete “bench-

marks”. In particular, online debates (on social net-

works for example) seem well adapted to our prob-

lematic.

• The previous point constitutes a track of applications of

our tool, which could enable a user to be guided in his

choice of arguments to utter during an online debate.

The third and last axis relates to theoretical points:

• At the time we developed our experimentation protocol,

we assumed the inclusion of the target AS in the

agent AS. This questions the complete or incomplete

knowledge of the system on which the agent wants to

act. Moreover the question of how the agent can update

her own system deserves a thorough study.

• It seems necessary to extend our hearing example in

order to allow a real interaction between the prosecutor

and the lawyer. In a more general way, this implies that

4Indeed some characterizations use complex concepts: for example the
indirect defense of an argument by a set.

we study the changes operated by an agent on her own

system when another agent carries out a modification

of the target AS.

• Lastly, up to that point, we limited ourselves to a per-

suasion dialog, with agents having contradictory goals.

It could be interesting to consider other types of dialogs

bringing into play a coalition of agents cooperating to

achieve a goal, for example several lawyers trying to

flesh out their pleadings.
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