
HAL Id: hal-01147298
https://hal.science/hal-01147298v1

Submitted on 30 Apr 2015

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Global Inverse Consistency for Interactive Constraint
Satisfaction

Christian Bessiere, Hélène Fargier, Christophe Lecoutre

To cite this version:
Christian Bessiere, Hélène Fargier, Christophe Lecoutre. Global Inverse Consistency for Interactive
Constraint Satisfaction. CP: Principles and Practice of Constraint Programming, Sep 2013, Uppsala,
Sweden. pp.159-174. �hal-01147298�

https://hal.science/hal-01147298v1
https://hal.archives-ouvertes.fr

Open Archive TOULOUSE Archive Ouverte (OATAO)
OATAO is an open access repository that collects the work of Toulouse researchers and
makes it freely available over the web where possible.

This is an author-deposited version published in : http://oatao.univ-toulouse.fr/
Eprints ID : 12766

To link to this article : DOI :10.1007/978-3-642-40627-0_15
URL : http://dx.doi.org/10.1007/978-3-642-40627-0_15

To cite this version : Bessière, Christian and Fargier, Hélène and
Lecoutre, Christophe Global Inverse Consistency for Interactive
Constraint Satisfaction. (2013) In: International Conference on
Principles and Practice of Constraint Programming - CP 2013, 16
September 2013 - 20 September 2013 (Uppsala, Sweden).

Any correspondance concerning this service should be sent to the repository

administrator: staff-oatao@listes-diff.inp-toulouse.fr

http://oatao.univ-toulouse.fr/
http://oatao.univ-toulouse.fr/12766/
http://oatao.univ-toulouse.fr/12766/
http://dx.doi.org/10.1007/978-3-642-40627-0_15
mailto:staff-oatao@listes-diff.inp-toulouse.fr

Global Inverse Consistency

for Interactive Constraint Satisfaction⋆

Christian Bessiere1, Hélène Fargier2, and Christophe Lecoutre3

1 LIRMM-CNRS, University of Montpellier, France
2 IRIT-CNRS, University of Toulouse, France

3 CRIL-CNRS, University of Artois, Lens, France

bessiere@lirmm.fr, fargier@irit.fr, lecoutre@cril.fr

Abstract. Some applications require the interactive resolution of a constraint

problem by a human user. In such cases, it is highly desirable that the person who

interactively solves the problem is not given the choice to select values that do

not lead to solutions. We call this property global inverse consistency. Existing

systems simulate this either by maintaining arc consistency after each assignment

performed by the user or by compiling offline the problem as a multi-valued de-

cision diagram. In this paper, we define several questions related to global inverse

consistency and analyse their complexity. Despite their theoretical intractability,

we propose several algorithms for enforcing global inverse consistency and we

show that the best version is efficient enough to be used in an interactive setting

on several configuration and design problems. We finally extend our contribution

to the inverse consistency of tuples.

1 Introduction

Constraint Programming (CP) is widely used to express and solve combinatorial prob-

lems. Once the problem is modelled as a constraint network, efficient solving techniques

generate a solution satisfying the constraints, if such a solution exists. However, there

are situations where the user has strong opinions about the way to build good solu-

tions to the problem but some of the desirable/undesirable combinations will become

clear only once some of the variables are assigned. In this case, the constraint solver

should be there to assist the user in the solution design and to ensure her choices re-

main in the feasible space, removing the combinatorial complexity from her shoulders.

See the Synthia system for protein design as an early example of using CP to interac-

tively solve a problem [12]. Another well known example of such an interactive solving

of constraint-based models is product configuration [7, 1]. The person modelling the

product as a constraint network for the company knows its technical and marketing re-

quirements. She models the feasibility, availability and/or marketing constraints about

the product. This constraint network captures the catalog of possible products, which

may contain billions of solutions, but in an intentional and compact way. Nevertheless,

the modeller does not know the constraints or preferences of the customer(s). Now, this

⋆ This work has been funded by the ANR (“Agence Nationale de la Recherche”) project BR4CP

(ANR-11-BS02-008).

is the customer who will look for solutions, with her own constraints and preferences

on the price, the colour, or any other configurable feature.

These applications refer to an interactive solving process where the user selects val-

ues for variables according to her own preferences and the system checks the constraints

of the network, until all variables are assigned and satisfy all constraints of the network.

This solving policy raises an important issue: the person who interactively solves the

problem should not be led to a dead-end where satisfying all constraints of the network

is impossible. Existing interactive solving systems address this issue either by compil-

ing the constraint network into a multivalued decision diagram (MDD) at the modelling

phase [1, 9, 10] or by enforcing arc consistency on the network after each assignment

performed by the user [12]. Compiling the constraint network as a MDD can require

a significant amount of time and space. That is why compilation is performed offline

(before the solving session). As a consequence, configurators based on a MDD compi-

lation are restricted to static constraint networks: non-unary constraints can neither be

added nor removed once the network compiled. It is thus not possible for the user to per-

form complex requirements, e.g., she is interested in travelling to Venezia only during

the carnival period. Arc and dynamic arc consistencies require a lighter computational

effort but the user can be trapped in dead-ends, which is very risky from a commercial

point of view. It has been shown in [5] that arc consistency (and even higher levels of

local consistency) can be very bad approximations of the ideal state where all values

remaining in the network can be extended to solutions.

The message of our paper is that for many of the problems that require interactive

solving of the problem, and especially for real problems, it is computationally feasible

to maintain the domains of the variables in a state where they only contain those values

which belong to a complete solution extending the current choices of the user. Inspired

by the nomenclature used in [6] and [15], we call this level of consistency global inverse

consistency (GIC).

Our contribution addresses several aspects. First, we formally characterise the ques-

tions that underlie the interactive constraint solving loop and we show that they are all

NP-hard. Second, we provide several algorithms with increasing sophistication to ad-

dress those tasks and we experimentally show that the most efficient one is efficient

enough to be used in an interactive constraint solving loop of several non trivial con-

figuration and design problems. Third, we finally extend all these contributions to the

positive consistency of constraints, which is a problem closely related to GIC that ap-

pears in configuration.

2 Background

A (discrete) constraint network (CN) N is composed of a finite set of n variables, de-

noted by vars(N), and a finite set of e constraints, denoted by cons(N). Each variable

x has a domain which is the finite set of values that can be assigned to x. The initial

domain of a variable x is denoted by dominit(x) whereas the current domain of x is

denoted by dom(x); we always have dom(x) ⊆ dominit(x). The maximum domain

size for a given CN will be denoted by d. To simplify, a variable-value pair (x, a) such

that x ∈ vars(N) and a ∈ dom(x) is called a value of N . Each constraint c involves

an ordered set of variables, called the scope of c and denoted by scp(c), and is semanti-

cally defined by a relation, denoted by rel(c), which contains the set of tuples allowed

for the variables involved in c. The arity of a constraint c is the size of scp(c), and will

usually be denoted by r.

An instantiation I of a set X = {x1, . . . , xk} of variables is a set {(x1, a1), . . .,
(xk, ak)} such that ∀i ∈ 1..k, ai ∈ dominit(xi); X is denoted by vars(I) and each

ai is denoted by I[xi]. An instantiation I on a CN N is an instantiation of a set X ⊆
vars(N) ; it is complete if vars(I) = vars(N). I is valid on N iff ∀(x, a) ∈ I, a ∈
dom(x). I covers a constraint c iff scp(c) ⊆ vars(I), and I satisfies a constraint c with

scp(c) = {x1, . . . , xr} iff (i) I covers c and (ii) the tuple (I[x1], . . . , I[xr]) ∈ rel(c).
An instantiation I on a CN N is locally consistent iff (i) I is valid on N and (ii) every

constraint of N covered by I is satisfied by I . A solution of N is a complete locally

consistent instantiation on N ; sols(N) denotes the set of solutions of N . A CN N is

satisfiable iff sols(N) 6= ∅.

The ubiquitous example of constraint propagation is enforcement of generalised

arc consistency (GAC) which removes values from domains without reducing the set of

solutions of the constraint network. A value (x, a) of a CN N is GAC on N iff for every

constraint c of N involving x, there exists a valid instantiation I of scp(c) such that I

satisfies c and I[x] = a. N is GAC iff every value of N is GAC. Enforcing GAC means

removing GAC-inconsistent values from domains until the constraint network is GAC.

In this paper, we shall refer to MAC which is an algorithm considered to be among the

most efficient generic approaches for the solution of CNs. MAC [17] explores the search

space depth-first and enforces (generalised) arc consistency after each decision taken

(variable assignment or value refutation) during search. A past variable is a variable

explicitly assigned by the search algorithm whereas a future variable is a variable not

(explicitly) assigned. The set of future variables of a CN N is denoted by varsfut(N).

3 Problems Raised by Interactive Constraint Solving

In this section we formally characterise the questions that underlie the interactive con-

straint solving loop and we study their theoretical complexity.

3.1 Formalization

We first need to define global inverse consistency.

Definition 1 (Global Inverse Consistency). A value (x, a) of a CN N is globally in-

verse consistent (GIC) iff ∃I ∈ sols(N) | I[x] = a. A CN N is GIC iff every value of

N is GIC.

The GIC closure of N is the CN obtained from N by removing all the values that do

not belong to a solution of N . The obvious problems that follow are to check whether a

constraint network is GIC or not, and to enforce GIC.

Problem 1 (Deciding GIC) Given a CN N , is N GIC?

Problem 2 (Computing GIC) Given a CN N , compute the GIC closure of N .

As we are interested in interactive solving, we define the problem of restoring

(maintaining) GIC after the user has performed a variable assignment.

Problem 3 (Restoring GIC) Given a CN N that is GIC, and a value (x, a) of N , re-

store GIC after the assignment x = a has been performed.

In a configuration setting, as soon as some mandatory variables have been set, the

user can ask for an automatic completion of the remaining variables. Hence the defini-

tion of following problem:

Problem 4 (Solving a GIC network) Given a CN N that is GIC, find a solution to N .

3.2 Complexity Results

Not surprisingly, the basic questions related to GIC (Problems 1 and 2) are intractable.

Theorem 1 (Problem 1). Deciding whether a constraint network N is GIC is NP-

complete, even if N is satisfiable.

Proof. We first prove membership to NP. For each value (x, a) of N , it is sufficient to

provide a solution I of N such that the projection I[x] of I on variable x is equal to a.

This certificate has size n · n · d and can be checked in polynomial time.

Completeness for NP is proved by reducing 3COL to the problem of deciding

whether a satisfiable CN is GIC. Take any instance of the 3COL problem, that is, a

graph G = (V,E). Consider the CN N where vars(N) = {xi | i ∈ V }, dom(xi) =
{0, 1, 2, 3}, ∀i ∈ V , and cons(N) = {(xi 6= xj) ∨ (xi = 0 ∧ xj = 0) | (i, j) ∈ E}.

Clearly [0, . . . , 0] is a solution of N , and by construction, N has other solutions iff G

is 3-colourable. Now, if G is 3-colourable, N is GIC because colours are completely

interchangeable. Therefore, N is GIC iff G is 3-colourable. ⊓⊔
Our proof shows that hardness for deciding GIC holds for binary CNs (i.e., CNs

only involving binary constraints). We have another proof, inspired from that used in

Theorem 3 in [2], that shows that deciding GIC is still hard for Boolean domains and

quaternary constraints.

Theorem 2 (Problem 2). Computing the GIC closure of a constraint network N is

NP-hard and NP-easy, even if N is satisfiable.

Proof. We prove NP-easiness by showing that a polynomial number of calls to a NP

oracle are sufficient to build the GIC closure of N . For each value (x, a) of N , we ask

the NP oracle whether N with the extra constraint x = a is satisfiable (we call this

an inverse check). Once all values have been tested, we build the GIC closure of N

by removing from each dom(x) all values a for which the oracle test returned ’no’.

Hardness is a direct corollary of Theorem 1. ⊓⊔
Notice that the two previous intractability results are still valid when the CN is

satisfiable, as is the case at the beginning of an interactive resolution session.

We finally show that Problems 3 and 4 are unfortunately not easier than checking

GIC or enforcing GIC from scratch. But they are not harder.

Theorem 3 (Problem 3). Given a CN N that is GIC, and a value (y, b) of N , com-

puting the GIC closure of the CN N ′, where vars(N ′) = vars(N) and cons(N ′) =
cons(N) ∪ {y = b} is NP-hard and NP-easy.

Proof. NP-easiness is proved as in the proof of Theorem 2 by showing that a polyno-

mial number of calls to a NP oracle are sufficient to build the GIC closure of N ′. For

each value (x, a) of N (except values (y, a) with a 6= b), we ask the NP oracle whether

N ′ with the extra constraint x = a is satisfiable. Once all values have been tested, we

build the closure of N ′ by removing from dom(y) all values a 6= b and removing from

each dom(x) all values a for which the oracle test returned ’no’. Hardness is a direct

corollary of Theorem 7 in [2]. ⊓⊔

Theorem 4 (Problem 4). Generating a solution to a GIC constraint network cannot

be done in polynomial time, unless P = NP .

Proof. The following proof is derived from [16]. But it is also a corollary of the recent

and more complex Theorem 3.1 in [8].

Suppose we have an algorithm A that generates a solution to a GIC constraint net-

work N in time bounded by a polynom p(|N |). Take any instance of the 3COL prob-

lem, that is, a graph G = (V,E). Consider the CN N where vars(N) = {xi | i ∈ V },

dom(xi) = {0, 1, 2}, ∀i ∈ V , and cons(N) = {xi 6= xj | (i, j) ∈ E}. N has a solu-

tion iff G is 3-colourable. Now, if G is 3-colourable, N is GIC because colours are com-

pletely interchangeable. Thus, it is sufficient to run A during p(|N |) steps. If it returns

a solution to N , then the 3COL instance is satisfiable. Otherwise, the 3COL instance

is unsatisfiable. Therefore, as 3COL is NP-complete, there cannot exist a polynomial

algorithm for generating a solution to a GIC constraint network, unless P = NP . ⊓⊔

4 GIC Algorithms

In this section, we introduce four algorithms to enforce global inverse consistency.

These GIC algorithms use increasingly sophisticated data structures and techniques that

have recently proved their worth in filtering algorithms proposed in the literature; e.g.,

see [14, 18]. To simplify our presentation, we assume that the CNs are satisfiable, which

is the case in interactive resolution, allowing us to avoid handling domain wipe-outs in

the GIC procedures. Note that these algorithms can be used to enforce GIC, but also to

maintain it during a user-driven search. This is why we refer to the set varsfut(N) of

future variables in some instructions.

The first algorithm, GIC1, described in Algorithm 1, is really basic: it will be used

as our baseline during our experiments. For each value a in the domain of a future vari-

able x, a solution for the CN N where x is assigned the value a, denoted by N |x=a,

is sought using a complete search algorithm. This search algorithm, called here search-

SolutionFor, either returns the first solution that can be found, or the special value nil.

Our implementation choice will be the algorithm MAC that maintains (G)AC during a

backtrack search [17]. Hence, in Algorithm 1, when it is proved with searchSolutionFor

that no solution exists, i.e., I = nil, the value a can be deleted. Note that, in contrary to

Algorithm 1: GIC1(N : CN)

1 foreach variable x ∈ varsfut(N) do

2 foreach value a ∈ dom(x) do

3 I ← searchSolutionFor(N |x=a)

4 if I = nil then

5 remove a from dom(x)

Algorithm 2: handleSolution2/3(x: variable, I: instantiation)

1 foreach variable y ∈ varsfut(N) | y is revised after x do

2 if stamp[y][I[y]] 6= time then

3 stamp[y][I[y]]← time

4 nbGic[y] + +

Algorithm 3: isValid(X : set of variables, I : instantiation): Boolean

1 foreach variable x ∈ X do

2 if I[x] /∈ dom(x) then

3 return false

4 return true

Algorithm 4: GIC2/3(N : CN)

Data: GIC3 is obtained by considering light grey coloured instructions between lines 5

and 6, and after line 10

1 time++

2 foreach variable x ∈ varsfut(N) do

3 nbGic[x]← 0

4 foreach variable x ∈ varsfut(N) | nbGic[x] < |dom(x)| do

5 foreach value a ∈ dom(x) | stamp[x][a] < time do

if isValid(vars(N),residue[x][a]) then

handleSolution2/3(x,residue[x][a])
continue

6 I ← searchSolutionFor(N |x=a)

7 if I = nil then

8 remove a from dom(x)
9 else

10 handleSolution2/3(x,I)

residue[x][a]← I

weaker forms of consistency, when a value is pruned there is no need for GIC to repeat

the process of iterating over the values remaining in the CN.

The second algorithm, GIC2 described in Algorithm 4 (ignoring light grey lines),

uses timestamping. This is useful when GIC is maintained during a user-driven search.

We use an integer variable time for counting time, and we introduce a two-dimensional

array stamp that associates with each value (x, a) of the CN the last time (value of

stamp[x][a]) a solution was found for that value. We also assume that variables are

implicitly totally ordered (for example, in lexicographic order). Then, the idea is to

increment the value of the variable time whenever a new call to GIC2 is performed (see

line 1) and to test time against each value (x, a) of the CN (see line 5) to determine

whether it is necessary or not to search for a solution for (x, a). When a solution I

is found, function handleSolution2/3 is called at line 10 in order to update stamps.

Actually, we only update the stamps of values in I corresponding to variables that are

processed after x in the loop of revisions (line 4) in Algorithm 4. These are the variables

that have not been processed yet by the loop at line 4 of Algorithm 4. Finally, by further

introducing a one-dimensional array nbGic that associates with each variable x of the

CN the number of values in dom(x) that have been proved to be GIC, it is possible

to avoid some iterations of loop 5; see initialization at lines 2-3, testing at line 4 and

update at line 4 of Algorithm 2.

The third algorithm, GIC3, described in Algorithm 4 when considering light grey

lines, can be seen as a refinement of GIC2 obtained by exploiting residues, which

correspond to solutions that have been previously found. Here, we introduce a two-

dimensional array residue that associates with each value (x, a) of the CN the last

solution found for this value (potentially, during another call to GIC3). Because resid-

ual solutions may not be valid anymore, for each value (x, a) we need to test the validity

of residue[x][a] by calling the function isValid; see instructions between lines 5 and

6. If the residue is valid, we call handleSolution2/3 to update the other data structures,

and we continue with the next value in the domain of x. A validity test, Algorithm 3,

only checks that all values in a given complete instantiation are still present in the cur-

rent domains. Of course, when a new solution is found, we record it as a residue; see

instruction after line 10.

Our last algorithm, GIC4 described in Algorithm 6, is based on an original use of

simple tabular reduction [18]. The principle is to record all solutions found during the

enforcement of GIC in a table, so that an (adaptation of an) algorithm such as STR2

[13] can be applied. The current table is given by all elements of an array solutions

at indices ranging from 1 to nbSolutions. As for STR2, we introduce two sets of vari-

ables called Sval and Ssup. The former allows us to limit validity control of solutions

to the variables whose domains have changed recently (i.e., since the last execution of

GIC4). This is made possible by reasoning from domain cardinalities, as performed at

lines 3 and 26–27 with the array lastSize. The latter (Ssup) contains any future vari-

able x for which at least one value is not in the array gicValues[x], meaning that it

has still to be proved GIC. Related details can be found in [13]. After the initialization

of Sval and Ssup (lines 1–8), each instantiation solutions[i] of the current table is

processed (lines 11–16). If it remains valid (hence, a solution), we update structures

gicValues and Ssup by calling the function handleSolution4. Otherwise, this instanti-

Algorithm 5: handleSolution4(I : instantiation)

1 foreach variable x ∈ Ssup do

2 if I[x] /∈ gicValues[x] then

3 gicValues[x]← gicValues[x] ∪ {I[x]}
4 if |gicValues[x]| = |dom(x)| then

5 Ssup ← Ssup \ {x}

Algorithm 6: GIC4(N : CN)

// Initialization of structures

1 Sval ← ∅
2 foreach variable x ∈ vars(N) do

3 if |dom(x)| 6= lastSize[x] then

4 Sval ← Sval ∪ {x}

5 Ssup ← ∅

6 foreach variable x ∈ varsfut(N) do

7 gicValues[x]← ∅
8 Ssup ← Ssup ∪ {x}

// The table of current solutions is traversed

9 i← 1
10 while i ≤ nbSolutions do

11 if isValid(Sval,solutions[i]) then

12 handleSolution4(solutions[i])
13 i++

14 else

15 solutions[i]← solutions[nbSolutions]
16 nbSolutions−−

// Search for values not currently supported is performed

17 foreach variable x ∈ Ssup do

18 foreach value a ∈ dom(x) \ gicValues[x] do

19 I ← searchSolutionFor(N |x=a)

20 if I = nil then

21 remove a from dom(x)
22 else

23 nbSolutions++
24 solutions[nbSolutions]← I
25 handleSolution4(I)

26 foreach variable x ∈ varsfut(N) do

27 lastSize[x]← |dom(x)|

ation is deleted by swapping it with the last one. The rest of the algorithm (lines 17–25)

just tries to find a solution support for each value not present in gicValues. When a

new solution is found, it is recorded in the current table (lines 23–24) and handleSolu-

tion4 is called (line 25).

Theorem 5. Algorithms GIC1, GIC2, GIC3 and GIC4 enforce GIC.

Proof. (sketch) This is immediate for GIC1. For GIC2 and GIC3, the use of timestamps

and residues permits us to avoid useless inverse checks. For GIC4, the same arguments

as those used for proving that STR2 enforces GAC hold. Simply, additional inverse

checks are performed for values not collected (in gicValues) during the traversal of

the current table. ⊓⊔
The worst-case space complexity (for the specific data structures) of GIC1 is O(1).

For GIC2 and GIC3, this is O(nd) because nbGic is O(n), stamp and residue are

O(nd). For GIC4, Sval, Ssup and lastSize are O(n), gicValues is O(nd), and the

structure solutions is O(n2d). The time complexity of the GIC algorithms can be

expressed in term of the number of calls to the (oracle) searchSolutionFor. For GIC1,

this is O(nd). For GIC2, in the best-case, only d calls are necessary, one call permitting

to prove (through timestamping) that n values are GIC. For GIC3 and GIC4, still in

the best-case and assuming the case of maintaining GIC (i.e., after the assignment of a

variable by the user), no call to the oracle is necessary (residues and the current table

permit alone to prove that all values are GIC). This rough analysis of time complexity

suggests that GIC3 and GIC4 might be the best options.

5 Tuple Inverse Consistency

Up to this point, we have based our analysis on the last part of the interactive resolution

process, i.e., the specification of a solution of the constraint network by the user. This

allowed us to make the simplifying assumptions that the user is only looking at the

domains of the variables. After each variable assignment, she just wants to know which

values remain feasible for non assigned variables.

The situation is different at the modelling phase, e.g., the engineers of the company

dynamically build the set of constraints that define the configurable product. At this

point, GIC is also a crucial functionality, not for deriving a solution (a end product), but

to ensure that each of the options proposed in the catalog (each of the values in the do-

mains of the constraint network) is present in at least one end product. It is meaningless

to propose (and advertise on) a sophisticated air bag system when it cannot equip any

car in practice.

In that modelling phase, the need for information on the extensibility to solutions is

not restricted to domains, but extends to (some of) the constraints of the model. Many

constraints have actually a double meaning. Following the standard semantics of con-

straints, the first one is negative: technical constraints forbid combinations of variables.

The second one is positive: the possibilities that are left by some (generally, table) con-

straints have to be effective. Let us assume, for instance, that a constraint means ’The

level of equipment of vehicles with type M3 engine can be middle level or luxurious’.

If some other constraint excludes the vehicles M3 engine for luxurious level of equip-

ment, the specification of the product is considered as inconsistent. This property has

been called positive consistency in [2] and actually refers to the extensibility to a solu-

tion of each of the tuples allowed by the constraint of interest:

Definition 2 (Tuple Inverse Consistency). Given a CN N , a tuple τ on a set of vari-

able X is said to be inverse consistent (TIC) in N iff there exists a solution I of N such

that ∀x ∈ X, I[x] = τ [x].

Definition 3 (Positive Consistency). A constraint c is positively consistent in N iff for

any valid tuple τ ∈ rel(c), τ is TIC.

The positive closure of a constraint c is the constraint obtained from c by removing

from rel(c) all the valid tuples that are not TIC in N . The obvious problem that follows

is to check whether a constraint is positively consistent or not.

Problem 5 (Deciding Positive Consistency) Given a CN N and a constraint c of N ,

is c positively consistent in N?

Deciding positive consistency has been shown to be NP-hard, even when the con-

straint network is known to be satisfiable ([2]). The other problem of interest is to re-

store positive consistency on a constraint after the user has refined her model by adding

a constraint to the network.

Problem 6 (Restoring Positive Consistency) Given a CN N , given a positive consis-

tent constraint c in N , given any extra constraint c′ not in cons(N), compute the new

positive closure of c in the network obtained from N by adding c′ to cons(N).

6 Experiments

In order to show the practical interest of our approach, we have performed several exper-

iments mainly using a computer with processors Intel(R) Core(TM) i7-2820QM CPU

2.30GHz; for random instances, we used a cluster of Xeon 3.0GHz with 13GB of RAM.

Our main purpose was to determine whether maintaining GIC is a viable option for

configuration-like problem instances and for interactive puzzle creation, as well as to

compare the relative efficiency of the four GIC algorithms described in Section 4.

n d e r t D T

souffleuse 32 12 35 3 55 145 350

megane 99 42 113 10 48,721 396 194,838

master 158 324 195 12 26,911 732 183,701

small 139 16 147 8 222 340 3,044

medium 148 20 174 10 2,718 424 9,532

big 268 324 332 12 26,881 1,273 225,989

Table 1. Features of six Renault configuration instances.

In Table 1, we show relevant features of car configuration instances, generated with

the help of our industrial partner Renault. For each of the six instances currently avail-

able,4 we indicate

– the number of variables (n),

– the size of the greatest domain (d),

– the number of constraints (e),

– the greatest constraint arity (r),

– the size of the greatest table (t),

– the total number of values (D =
∑

x∈vars(N) |dom(x)|),

– and the total number of tuples (T =
∑

c∈cons(N) |rel(c)|).

The left part of Table 2 presents the CPU time required to establish GIC on the

six Renault configuration instances. Clearly GIC1 is outperformed by the three other

algorithms, which have here rather similar efficiency. The right part of Table 2 aims

at simulating the behaviour of a configuration software user who makes the variable

choices and value selections. It presents the CPU time required to maintain GIC along

a single branch built by performing random variable assignments (random variable as-

signment simulates the user, who chooses the variables and the values according to her

preference). Specifically, variables and values are randomly selected in turn, and after

each assignment, GIC is systematically enforced to maintain this property. Of course,

no conflict (dead-end) can occur along the branch due to the strength of GIC, which

is why we use the term of greedy executions. CPU times are given on average for 100

executions (different random orderings). For all instances, GIC3 and GIC4 are main-

tained very fast, whereas on the biggest instances, GIC2 requires a few seconds and

GIC1 around ten seconds.

Establishing GIC with Maintaining GIC with

GIC1 GIC2 GIC3 GIC4 GIC1 GIC2 GIC3 GIC4

souffleuse 0.02 0.01 0.01 0.01 0.13 0.07 0.02 0.02

megane 2.94 0.71 0.72 0.71 4.26 1.18 0.05 0.04

master 2.45 1.35 1.33 1.33 9.81 3.57 0.07 0.06

small 0.14 0.02 0.03 0.03 0.32 0.05 0.01 0.01

medium 0.26 0.04 0.05 0.04 0.35 0.04 0.01 0.01

big 4.19 1.16 1.10 1.10 12.6 2.60 0.05 0.05

Table 2. CPU time (in seconds) to establish GIC on Renault configuration instances, and to

maintain it (average over 100 random greedy executions).

One great advantage of GIC is that it guarantees that a conflict can never occur

during a configuration session. However, one may wonder whether the risk of failure(s)

is really important in user-driven searches that use a weaker consistency such as GAC

or a partial form of it (Forward Checking). Table 3 shows the number of conflicts (sum

over 100 executions using random orderings) encountered when following a MAC or a

4 see http://www.irit.fr/ Helene.Fargier/BR4CP/benches.html

nFC2 [3] strategy. The number of conflict situations can be very large with nFC2 (for

two instances, we even report the impossibility of finding a solution within 10 minutes

with some random orderings). For MAC, the number of failures is rather small but the

risk is not null (for example, the risk is equal to 5% for megane).

souffleuse megane master small medium big

nFC2 252,605 313,910 time-out 3,728 7,824 time-out

MAC 0 7 5 0 3 3

Table 3. Number of conflicts encountered when running nFC2 and MAC (sum over 100 random

executions).

The encouraging results obtained on Renault configuration instances led us to test

other problems, in particular to get a better picture of the relative efficiency of the

various GIC algorithms. For example, on classical Crossword instances (see Table 4),

GIC1 is once again clearly outperformed while the three other algorithms are quite

close, where there is still a a small benefit of using GIC4.

Establishing GIC with Maintaining GIC with

GIC1 GIC2 GIC3 GIC4 GIC1 GIC2 GIC3 GIC4

ogd-vg5-5 2.25 0.67 0.67 0.67 2.34 0.79 0.73 0.70

ogd-vg5-6 6.40 2.18 2.19 2.19 7.42 2.82 2.58 2.48

ogd-vg5-7 25.8 9.91 9.87 9.84 33.4 15.2 14.3 13.8

Table 4. CPU time (in seconds) to establish GIC on some Crosswords instances, and to maintain

it on average over 100 random greedy executions.

Establishing GIC with Maintaining GIC with

GIC1 GIC2 GIC3 GIC4 GIC1 GIC2 GIC3 GIC4

sudoku-9x9 1.58 0.32 0.32 0.31 15.3 2.71 2.10 1.74

sudoku-16x16 6.04 0.51 0.50 0.50 246 25.5 26.5 18.9

magicSquare-4x4 0.96 0.26 0.28 0.28 1.63 0.69 0.71 0.71

magicSquare-5x5 14.7 3.01 3.10 2.99 55.1 15.9 15.6 13.7

Table 5. CPU time (in seconds) to establish GIC on Puzzle instances, and to maintain it on

average over 100 random greedy executions until a unique solution is found.

It is worthwhile to note that GIC is a nice property that can be useful when puzzles,

where hints are specified, have to be conceived. Typically, one looks for puzzles where

only one solution exists. One way of building such puzzles is to add hints in sequence,

while maintaining GIC, until all domains become singleton. For example, this is a pos-

sible approach for constructing Sudoku and Magic Square grids, with the advantage

that the user can choose freely the position of the hints.5 On the left part of Table 5,

5 However, we are not claiming that maintaining GIC is the unique answer to this problem.

we report the time to enforce GIC on empty Sudoku grids of size 9x9 and 16x16, and

on empty Magic square of size 4x4 and 5x5, and on the right part, the average time

required to maintain GIC until a fixed point is reached, meaning that after several hints

have been randomly selected and propagated, we have the guarantee of having a one-

solution puzzle. GIC4 is a clear winner, with for example, a 30% speedup over GIC2

and GIC3 on sudoku-16x16, and more than one order of magnitude over GIC1. Overall,

the results we obtain show that MIC, i.e., maintaining GIC, is a practicable solution (at

least for some problems) as the average time between each decision of the user is small

with GIC4.

The efficiency of MIC on structured under-constrained instances piqued our curios-

ity. So we decided to compare MIC (embedding GIC4) and MAC on series of binary

random instances generated from Model RB [20]. For the class RB(2, 30, 0.8, 3, t), see

[19], we obtain instances with 30 variables, 15 values per domain and 306 binary con-

straints of tightness t, and for the class RB(2, 40, 0.8, 3, t), instances with 40 variables,

19 values per domain and 443 binary constraints of tightness t. For each value of t rang-

ing from 0.01 to 0.50 (step of 0.01), a series of 100 instances was generated so as to ob-

serve the behaviour of MIC on both under-constrained instances and over-constrained

instances; the theoretical threshold is around 0.23. Figure 1 shows the average CPU

time of MIC and MAC on series of class RB(2, 30, 0.8, 3, t). On the left, Figure 1(a),

the ordering of variables and values is random (simulating a free user-driven search).

MIC outperforms MAC when the ordering is random and the tightness is greater than

or equal to 0.23. That means that the strong inference capability of MIC do pay off

for the unsatisfiable instances. On the right, Figure 1(b), the variable ordering heuris-

tic is dom/wdeg [4] and the value ordering heuristic is lexico. Obviously, MAC with

dom/wdeg is clearly faster than MIC. However, if used in a context of interactive reso-

lution, the dom/wdeg ranking of the variables drives the user, who is not free anymore

in the choices of its variables. It may ask her to assign first variables that are mean-

ingless to her, restricting her future choices on important variables. The outcome will

be a solution which is very bad with respect to the preferences of the user. All of this

suggests that MIC can be efficient enough to be used in practice, except for a (small)

region of satisfiable instances lying at the left of the threshold point. Figure 2 shows

similar results with respect to series of class RB(2, 40, 0.8, 3, t).

One other practical issue we are interested in is the effectiveness of positive con-

sistency. Hence, we tested to establish positive consistency on existing constraints of

the Renault configuration instances, see Table 6. The algorithm we used here is a sim-

ple adaptation of GIC1 to tuples (so, certainly, several optimizations are possible). A

few hundreds of seconds are necessary to ensure the positive consistency of all existing

constraints of the biggest instances.

souffleuse megane master small medium big

CPU 0.68 352 368 2.6 4.2 613

tuples removed 0 138,493 90,874 240 5,425 105,020

Table 6. CPU time (in seconds) and filtering in term of the number of tuples deleted when estab-

lishing positive consistency on Renault configuration instances.

 0

 5

 10

 15

 20

 25

 5 10 15 20 25 30

C
P

U
 t

im
e

(i
n

 s
ec

o
n

d
s)

Tightness t (in %)

MAC
MIC

(a) With random ordering

 0

 2

 4

 6

 8

 10

 12

 14

 5 10 15 20 25 30

C
P

U
 t

im
e

(i
n

 s
ec

o
n

d
s)

Tightness t (in %)

MAC
MIC

(b) With heuristic dom/wdeg

Fig. 1. Mean search cost (100 instances) of solving instances in class RB(2, 30, 0.8, 3, t) with

MAC and MIC.

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 5 10 15 20 25 30

C
P

U
 t

im
e

(i
n

 s
ec

o
n

d
s)

Tightness t (in %)

MAC
MIC

(a) With random ordering

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 5 10 15 20 25 30

C
P

U
 t

im
e

(i
n

 s
ec

o
n

d
s)

Tightness t (in %)

MAC
MIC

(b) With heuristic dom/wdeg

Fig. 2. Mean search cost (100 instances) of solving instances in class RB(2, 40, 0.8, 3, t) with

MAC and MIC.

Finally, in our last experiment, for each constraint network, we randomly select a

constraint of interest ci for which positive consistency must be ensured (as if the mod-

eller were asking for the positive consistency of this constraint), and we randomly select

a set C containing 10% of the set of constraints. We initially consider the CN without

the constraints in C, and we enforce positive consistency on ci. Then we simulate a ses-

sion of product modelling: we post each constraint in C in turn and maintain positive

consistency on ci. In our implementation (not detailed here due to lack of space), we

use residues, i.e., a solution stored for each tuple of ci. The first line of Table 7 shows

the average CPU time to maintain positive consistency on the constraint of interest. For

the second line, the constraint of interest is not randomly chosen but set to the constraint

with the largest table. The obtained results are rather promising (except for the instance

megane).

megane master big

random 9.97 10.1 36.4

largest 106.6 11.4 20.6

Table 7. Dynamic positive consistency filtering on Renault configuration instances (average CPU

time over 100 executions).

7 Conclusion

We have analysed the problems that arise in applications that require the interactive

resolution of a constraint problem by a human user. The central notion is global inverse

consistency of the network because it ensures that the person who interactively solves

the problem is not given the choice to select values that do not lead to solutions. We

have shown that deciding, computing, or restoring global inverse consistency, and other

related problems are all NP-hard. We have proposed several algorithms for enforcing

global inverse consistency and we have shown that the best version is efficient enough

to be used in an interactive setting on several configuration and design problems. This

is a great advantage compared to existing techniques usually used in configurators. As

opposed to techniques maintaining arc consistency, our algorithms give an exact picture

of the values remaining feasible. As opposed to compiling offline the problem as a

multi-valued decision diagram, our algorithms can deal with constraint networks that

change over time (e.g., an extra non-unary constraint posted by a customer who does

not want to buy a car with more than 100,000 miles except if it is a Volvo). We have

finally extended our contribution to the inverse consistency of tuples, which is useful at

the modelling phase of configuration problems.

One direct perspective of this work is to try computing diverse solutions when en-

forcing GIC. This should permit, on average, to reduce the number of search runs. Some

techniques developed in [11] might be useful.

References

1. J. Amilhastre, H. Fargier, and P. Marquis. Consistency restoration and explanations in dy-

namic CSPs - application to configuration. Artificial Intelligence, 135(1-2):199–234, 2002.

2. J.M. Astesana, L. Cosserat, and H. Fargier. Constraint-based vehicle configuration: A case

study. In Proceedings of ICTAI’10, pages 68–75, 2010.

3. C. Bessiere, P. Meseguer, E.C. Freuder, and J. Larrosa. On Forward Checking for non-binary

constraint satisfaction. Artificial Intelligence, 141:205–224, 2002.

4. F. Boussemart, F. Hemery, C. Lecoutre, and L. Sais. Boosting systematic search by weighting

constraints. In Proceedings of ECAI’04, pages 146–150, 2004.

5. R. Debruyne and C. Bessiere. Domain filtering consistencies. Journal of Artificial Intelli-

gence Research, 14:205–230, 2001.

6. E.C. Freuder and C.D. Elfe. Neighborhood inverse consistency preprocessing. In Proceed-

ings of AAAI’96, pages 202–208, Portland, Oregon, 1996.

7. E. Gelle and R. Weigel. Interactive configuration using constraint satisfaction techniques. In

Proceedings of PACT’96, pages 37–44, 1996.

8. G. Gottlob. On minimal constraint networks. Artificial Intelligence, 191-192:42–60, 2012.

9. T. Hadzic and H.R. Andersen. Interactive reconfiguration in power supply restoration. In

Proceedings of CP’05, pages 767–771, 2005.

10. T. Hadzic, E.R. Hansen, and B. O’Sullivan. Layer compression in decision diagrams. In

Proceedings of ICTAI’08, pages 19–26, 2008.

11. E. Hebrard, B. Hnich, B. O’Sullivan, and T. Walsh. Finding diverse and similar solutions in

constraint programming. In Proceedings of AAAI’05, pages 372–377, 2005.

12. P. Janssen, P. Jégou, B. Nouguier, M.C. Vilarem, and B. Castro. SYNTHIA: Assisted design

of peptide synthesis plans. New Journal of Chemistry, 14(12):969–976, 1990.

13. C. Lecoutre. STR2: Optimized simple tabular reduction for table constraints. Constraints,

16(4):341–371, 2011.

14. C. Lecoutre and F. Hemery. A study of residual supports in arc consistency. In Proceedings

of IJCAI’07, pages 125–130, 2007.

15. D. Martinez. Résolution interactive de problemes de satisfaction de contraintes. PhD thesis,

Supaero, Toulouse, France, 1998.

16. C. Papadimitriou. private communication, 1999.

17. D. Sabin and E.C. Freuder. Contradicting conventional wisdom in constraint satisfaction. In

Proceedings of CP’94, pages 10–20, 1994.

18. J.R. Ullmann. Partition search for non-binary constraint satisfaction. Information Science,

177:3639–3678, 2007.

19. K. Xu, F. Boussemart, F. Hemery, and C. Lecoutre. Random constraint satisfaction: easy

generation of hard (satisfiable) instances. Artificial Intelligence, 171(8-9):514–534, 2007.

20. K. Xu and W. Li. Exact phase transitions in random constraint satisfaction problems. Journal

of Artificial Intelligence Research, 12:93–103, 2000.

