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Abstract—Several systems were developed for supporting
public persuasion dialogs where two agents with conflicting
opinions try to convince an audience. For computing the
outcomes of dialogs, these systems use (abstract or structured)
argumentation systems that were initially developed for non-
monotonic reasoning.

Despite the increasing number of such systems, there are
almost no work on high level properties they should satisfy.
This paper is a first attempt for defining postulates that guide
the well-definition of dialog systems and that allow their
comparison. We propose six basic postulates (including e.g.
the finiteness of generated dialogs). We then show that this
set of postulates is incompatible with those proposed for argu-
mentation systems devoted for nonmonotonic reasoning. This
incompatibility confirms the differences between persuading
and reasoning. It also suggests that reasoning systems are not
suitable for computing the outcomes of dialogs.
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I. INTRODUCTION

Argumentation theory has become a hot topic in Artificial

Intelligence. It is studied for modeling agent’s internal

reasoning, namely for handling inconsistent/incomplete and

uncertain information (e.g., [6], [13]) and for making deci-

sions (e.g., [4], [12]). There is also an extensive literature

devoted to modeling agent’s interactions, namely dialogs in

which agents may exchange arguments with each other, like

persuasion (e.g., [3], [20]), negotiation (e.g., [15], [18]) and

deliberation (e.g., [17]). In all these disparate applications,

an argumentation theory [10] consists of a set of arguments

justifying claims, attacks among those arguments and a

semantics. This latter is a set of criteria describing which

arguments are acceptable together.

Persuasion is a type of dialog in which two agents having

conflicting opinions about an issue try to convince each other

either in public, i.e., in presence of an audience (e.g. [7], [8],

[16]) or in private, i.e., in absence of any audience (e.g. [3],

[20], [24]). In both cases persuasion is done by exchanging

arguments. An important feature of private persuasion is the

evolution of the argumentation systems of both agents by

adding the arguments received from the other party. An agent

is persuaded if the subject of the dialog is supported by

its system at a given step of the dialog. Thus, this kind

of dialogs is more concerned with the dynamics of the

argumentation systems of the agents.

In this paper, we focus on public persuasion in which

agents try more to convince an audience rather than the other

party. In the debate between Holland and Sarkozy before

the presidential election, both candidates tried to convince

the voters. Systems that support this type of dialogs have

three main components: i) a protocol which is a set of

rules that define coherent dialogs, ii) a set of reasoning

systems of agents involved in dialog and iii) a system for

computing the outcomes of dialogs. In existing literature,

the reasoning system of an agent is either a Dung style

abstract argumentation system [10] or one of its logic-based

instantiations (e.g., [9], [2]). The system that is used for

computing the outcomes of dialogs is exactly of the same

nature as those of the agents. However, its arguments come

from the exchanges made by the agents during the dialog

and the attacks are the conflicts among them.

Despite the increasing number of works on modeling

public persuasion, there are almost no work on high level

requirements expected from dialog systems. Consequently,

apart from the termination of their dialogs, it is not clear

what other properties they satisfy. This makes their proper

evaluation difficult if not impossible. This paper provides

a first attempt for defining postulates that guide the well-

definition of dialog systems. We focus on systems that use

Dung style argumentation systems both for modeling the

reasoning of agents and for computing the outcomes of

dialogs. We propose six basic postulates that any such dialog

system should satisfy. Some of them (non-triviality, natural-

attacks-allowanceand dissimulation) ensure that a dialog

system captures natural language dialogs. The three other

postulates (finiteness, consistency and non-determinism) are

more about the quality of dialogs. Since one cannot speak

about a dialog without referring to its subject thus to its

content, then in what follows we consider dialog systems

whose various argumentation systems are logic-based. Our

postulates hold for any instantiation of Dung’s framework.

However, for illustration purposes, we have chosen those

based on deductive logics [2]. The second main contribu-

tion of the paper consists of comparing the six postulates

with those proposed for argumentation systems devoted



for nonmonotonic reasoning, i.e., the systems used by the

agents. We show that the two sets are incompatible. This

incompatibility confirms the differences between persuading

and reasoning. It also suggests that reasoning systems are not

suitable for computing the outcomes of dialogs.

The paper is organized as follows: Section II recalls both

the argumentation system proposed in [2] for reasoning

about inconsistent information and the set of postulates it

should enjoy. Section III defines a public persuasion system

and Section IV proposes a set of postulates the system

should satisfy. Section V compares the two sets of postulates.

The last section is devoted to some concluding remarks.

II. ARGUMENTATION FOR REASONING

This section recalls the argumentation system proposed in

[2] for reasoning about inconsistent information. It is a logic-

based instantiation of Dung’s framework [10]. Note that the

same kind of results could also be obtained for rule-based

systems like ASPIC [9].

A. Basic definitions

In [2], the argumentation system is grounded on Tarski’s

logics [23]: i.e., pairs (L, CN) where L is a set of well-formed

formulas and CN is a consequence operator that satisfies the

following basic properties: For X ⊆ L,

• Expansion: X ⊆ CN(X)
• Idempotence: CN(CN(X)) = CN(X)
• Absurdity: CN({x}) = L for some x ∈ L

The notion of consistency is defined as follows:

A set X ⊆ L is consistent wrt a logic (L, CN) iff

CN(X) #= L. It is inconsistent otherwise.

Arguments are built from a knowledge base Σ ⊆ L.

Definition 1 (Argument): An argument built from a knowl-

edge base Σ is a pair (X,x) s.t.

• X ⊆ Σ
• X is consistent

• x ∈ CN(X)
• ∄X ′ ⊂ X such that x ∈ CN(X ′)

An argument (X,x) is atomic iff X = {y} and CN({x}) =
CN({y}). It is a sub-argument of (X ′, x′) iff X ⊆ X ′.

Example 1: Let Σ = {¬wh,¬wh → fe, vs → ¬fe, vs}
be a knowledge base representing the following information:

Mary does not work hard (¬wh), if somebody does not work

hard then he will fail his exams (fe), if somebody is very

smart (vs) then he will not fail his exams, Mary is very smart.

The following arguments may be built from Σ: a0 = (∅, fe∨
¬fe), a1 = ({¬wh}, ¬wh), a2 = ({¬wh, ¬wh → fe},
fe), a3 = ({vs, vs→ ¬fe}, ¬fe).

The following proposition shows that it is possible to

build an atomic argument from any formula that is neither

a tautology nor a contradiction.

Property 1: Let Σ be a knowledge base. For all x ∈ Σ,

if x #∈ CN(∅) and CN({x}) #= L then ({x}, x) is an (atomic)

argument.

Proof: For all x ∈ Σ, it holds that {x} ⊆ Σ, moreover

if CN({x}) #= L then {x} is consistent. Due to expansion,

x ∈ CN({x}). Since ∅ is the only strict subset of {x}, if

x #∈ CN(∅) then ∄X ⊂ {x} such that x ∈ CN(X).

Note that for most classical logics (instances of Tarski’s

ones, e.g. propositional logic, first order logic ...), the set of

all arguments that may be built from a (finite) knowledge

base is infinite.

Notation 1: Supp and Conc are two functions that return re-

spectively the support X and the conclusion x of an argument

(X,x). Sub is a function that returns all the sub-arguments of

a given argument.

An argumentation system is defined as follows.

Definition 2 (Argumentation system): An argumentation

system (AS) over a knowledge base Σ is a pair T = (A,R)
such thatA is a set of arguments built from Σ using Definition

1,R ⊆ A× A is an attack relation. For a, b ∈ A, (a, b) ∈ R
(or aRb) means that a attacks b.

In the next sections, we will show that, for a reasoning

system and for a dialog system, the set A of arguments

should not be chosen in an arbitrary way. There are some

constraints that should be fulfilled. The attack relation R
is left unspecified in the sequel since our analysis is in-

dependent from its exact definition. Finally, arguments are

evaluated using any Dung’s semantics [10]. The following

definition recalls some of them.

Definition 3 (Semantics): Let T = (A,R) be an AS over

a base Σ and E ⊆ A s.t. ∄a, b ∈ E s.t. aRb.

• E is an admissible set iff E defends all its elements (i.e.,

it attacks any attacker of its arguments).

• E is a preferred extension iff E is a maximal (for set

inclusion) admissible set.

• E is a stable extension iff ∀a ∈ A \ E , ∃b ∈ E s.t. bRa.

Ext(T ) returns the set of extensions of the AS T under a

given semantics.

The extensions are used in order to define the plausible

conclusions to be drawn from Σ. The idea is to infer a

formula x from Σ iff x is the conclusion of an argument in

each extension. Output(T ) is the set of all such formulas.

Definition 4 (Output): Let T = (A,R) be an AS over a

knowledge base Σ. Output(T ) = {x ∈ L | ∀E ∈ Ext(T ),
∃a ∈ E s.t. Conc(a) = x}.

B. Basic postulates for reasoning systems

A set of desirable properties that the previous systems

should satisfy was proposed in [1]. The postulates are

compatible (i.e., can be satisfied all together). The first one

ensures that each extension supports consistent conclusions.

The second postulate concerns the closure of its output under

the consequence operator CN. The third postulate concerns

sub-arguments. It ensures that the acceptance of an argument

should imply also the acceptance of all its sub-parts.



Consistency: Let T = (A,R) be an AS over a base Σ.

For all E ∈ Ext(T ), {Conc(a) | a ∈ E} is consistent.

Closure under CN: Let T = (A,R) be an AS over a base

Σ. For all E ∈ Ext(T ), {Conc(a) | a ∈ E} = CN({Conc(a)
| a ∈ E}).

Closure under sub-arguments: Let T = (A,R) be an

AS over a base Σ. For all E ∈ Ext(T ), if a ∈ E , then

Sub(a) ⊆ E .
The following simple property is useful for our discussion

in next sections. It shows that an argumentation system

which is closed under sub-arguments and which admits

non empty extensions contains a set of atomic arguments.

Moreover, if the system is closed under CN then it should

contain all arguments supporting tautologies.

Proposition 1: Let T = (A,R) be an AS. For all E ∈
Ext(T ), if E #= ∅ then:

• If T is closed under sub-arguments, then ∀x ∈
∪a∈ESupp(a), if x #∈ CN(∅), then ({x}, x) ∈ E .

• If T is closed under CN, then ∀x ∈ CN(∅) (∅, x) ∈ E .

Proof: Let T = (A,R) be an AS and Ext(T ) its set

of extensions under a given semantics. Assume that E ∈
Ext(T ) and E #= ∅.

Let a ∈ E . Assume that Supp(a) #= ∅. For all x ∈
Supp(a), {x} is consistent (since Supp(a) is consistent and

due to Property 2 in [2]). If x /∈ CN(∅), then ({x}, x) is

an argument. Moreover, it is a sub-argument of a. T being

closed under sub-arguments, this means that ({x}, x) is also

an argument of E .

By monotonicity of CN, since ∅ ⊆ {Conc(a)|a ∈ E} then

CN(∅) ⊆ CN({Conc(a)|a ∈ E}). If T is closed under CN

then CN(∅) ⊆ {Conc(a)|a ∈ E}. This means that ∀x ∈
CN(∅), ∃a ∈ E such that Conc(a) = x. Due to Definition 1,

Supp(a) = ∅. Hence, (∅, x) ∈ E .

III. PUBLIC PERSUASION DIALOG SYSTEMS

This section defines an abstract public persuasion system

that may be used, for instance, in online debate platforms.

The system is abstract since it keeps one of its main

components, protocol, unspecified. Moreover, the notion of

audience is not explicitly represented.

A dialog system has three main components: a set of

agents represented by their reasoning models, a protocol,

and a rule for computing the outcome of any dialog that

takes place between the agents. A protocol specifies the set

of rules governing the well-definition of dialogs (e.g., who is

allowed to say what and when?). In the sequel, we leave this

component unspecified. Thus, our system can be instantiated

by any protocol.

For the purpose of our paper and without loss of gener-

ality, we focus on persuasion dialogs between two agents P
and C. Each of them is equipped with a knowledge base

Σk (with k ∈ {P,C}) and an argumentation system (in the

sense of Definition 2) Tk = (Ak,Rk). It is worth mentioning

that the two agents may use two distinct attack relations (for

instance, P may use the undercut relation [19] whereas C
assumption attack [11] (see section IV)). They may also

choose distinct semantics for the evaluation of arguments.

However, they use the same underlying monotonic logic

(L, CN). Indeed, in order to be able to understand each other

they should at least share the same language.

Before defining the third component of a dialog system,

i.e., its rule for computing the outcomes of dialogs, let us

first define what is a persuasion dialog. The notion of move

is the backbone of a dialog. It consists of two agents (a

speaker and a hearer) and a speech act together with a

content. The speech act is taken from a set S1. The only

restriction on S is that it should contain at least two kinds of

speech acts: “Argue” for exchanging arguments and “Assert”

for making claims.

Definition 5 (Move): Let S be a set of speech acts symbols

containing at least “Argue” and “Assert” symbols. A move m
is a triple 〈s, h, a〉 s.t.

• s ∈ {P,C} is the agent that utters m.

• h ∈ {P,C} is the agent to whom the move is addressed.

• a = act : content s.t. act ∈ S and content ∈ L ∪
AP ∪ AC . If act = Argue (respectively act =Assert)
then content ∈ AP ∪ AC (resp. content ∈ L). Act

and Content are two functions s.t. Act(m) = act and

Content(m) = content.

A persuasion dialog is a “valid” sequence of moves, i.e., a

sequence that satisfies all the rules of the protocol. Since we

do not focus on particular protocols, then we use the term

‘valid’ without defining it formally. Besides, the subject of

a persuasion dialog is a claim made via an Assert move

by one of the agents. Arguments are exchanged in order to

increase or decrease its acceptability.

Definition 6 (Persuasion dialog): A persuasion dialog D
generated by a dialog system DS2 is a non-empty (finite

or infinite) valid sequence of moves (mi) s.t. Act(m1) =
Assert. The subject of D is Subject(D) = Content(m1).

For computing the outcome of a persuasion dialog, an

argumentation system in the sense of Definition 2 is used.

Its arguments are those exchanged in the dialog in addition

to the atomic arguments built from the assertions made in

the dialog. The idea is to consider all the different kinds

of claims (either in form of assertions or arguments) made

by the agents. Defining the attack relation of this system

is more tricky since the agents may use different relations.

In what follows, we assume the existence of a third relation

denoted R which results from a merging of the two relations

RP and RC using an operator ⊕ not specified in this paper.

Thus, R = RP ⊕RC . An example of a merging operator is

the union which considers all the attacks which hold either

in RP or in RC .

1In the literature the following set of basic speech acts is often used
S = {Assert, Argue, Declare, Question, Request, Challenge, Promise}.

2Throughout the paper we refer to a dialog system by DS without
specifying its components.



Definition 7 (AS of a persuasion dialog): Let D be a

persuasion dialog generated by a dialog system DS. The

argumentation system associated with D is the pair ASD =

(Args(D), Confs(D)) s.t.

• Args(D) = {Content(m) | m ∈ D and Act(m) =
Argue} ∪ {({Content(m)}, Content(m)) | m ∈ D
and Act(m) = Assert}

• Confs(D) = {(a, b) | a, b ∈ Args(D) and (a, b) ∈ R}

The outcome of a persuasion dialog D is the status of its

subject wrt ASD.

Definition 8 (Dialog output): Let D be a persuasion dialog

generated by a dialog system DS. Subject(D) is true iff

Subject(D) ∈ Output(ASD).

We can go further by checking wether the agent who

asserted the subject wins or not the dialog.

Definition 9 (Dialog winner): LetD be a persuasion dialog

generated by a dialog system DS with m1 = 〈s, h, a〉. If

Subject(D) ∈ Output(ASD) then s wins the dialog D and

h looses it. Otherwise, h wins and s looses the dialog.

Let Winner be a function such that Winner(D) returns the

agent that wins the dialog D.

IV. BASIC POSTULATES FOR DIALOG SYSTEMS

In the previous section, we have defined what a dialog

system is. It generates non-empty persuasion dialogs. In

what follows, we propose some key features, called also

postulates, that should be satisfied by the system and the

dialogs it generates.

The first postulate concerns the finiteness of the generated

dialogs. This requirement is already known in the literature.

In [14], protocols should ensure termination. Here, we

require finiteness not only for the number of moves but also

for the content of each move. For instance, it is not allowed

to assert x ∧ x ∧ . . ..
Finiteness: Finiteness holds for a dialog system DS iff

for all persuasion dialog D generated by DS, size(D) ∈ N
where size(D) =

∑
m∈D

sizemove(m) with sizemove(m)
is the number of occurrences of atoms and operators used

in the content of m.

As said before, a protocol guides the well-definition of

dialogs and is common to all agents. However, the outcome

of a dialog depends on the strategies of the agents. This is

captured by the next postulate which constrains the dialog

system to be able to generate at least one dialog in which a

subject is accepted and one dialog in which it is not.

Non-determinism: A dialog system DS is non-determinist

iff for all formula x ∈ L, s.t. x #∈ CN(∅) and CN({x}) #=
L, there exist at least two dialogs D1 and D2 generated

by DS, such that Subject(D1) = Subject(D2) = x and

Output(D1) #= Output(D2).
Note that if the set of non-trivial formulas of L (i.e.,

without considering tautologies and contradictions) is infi-

nite then any dialog system satisfying non-determinism can

generate an infinite number of dialogs.

The third important postulate concerns the formalism that

is used for computing the outcomes of dialogs. In our

context, Dung’s system should ensure sound results. Namely,

extensions (under any semantics) represent various positions

in a dialog. Thus, each of them should be coherent. This

leads to a consistency postulate similar to the one presented

for reasoning systems in [1].

Consistency: A dialog system DS ensures consistency iff

for all persuasion dialog D generated by DS, for all E ∈
Ext(ASD), {Conc(a) | a ∈ E} is consistent.

The aim behind building systems for persuasion dialogs

is to automate such dialogs and to conduct efficient ones.

However, these systems should capture as much as possible

natural dialogs. Works by linguists [21], [22] have empha-

sized the main forms of counter-argumentation that may

take place in everyday life dialogs. The first one, known as

“rebuttal” in [11], consists of undermining the conclusion of

another argument. The second form, known as “assumption

attack” in [11], consists of undermining a premise in the

support of another argument.

• An argument a rebuts an argument b iff the set

{Conc(a), Conc(b)} is inconsistent.

• An argument a assumption-attacks an argument b iff

∃x ∈ Supp(b) s.t. the set {Conc(a), x} is inconsistent.

It is thus important for a dialog system to capture these

two forms of attacks. The following postulate ensures this

by constraining the attack relation R.

Natural-attacks-allowance: A dialog system DS allows

for natural attacks iff for all persuasion dialog D generated

by DS, for all a, b ∈ Args(D),

• if a rebuts b then (a, b) ∈ R, and

• if a assumption-attacks b then (a, b) ∈ R.

It is well-known that in public persuasion dialogs, agents

try to convince others about a given claim even if they think

that this latter does not hold. They then hide arguments

and information in order to reach their objectives. A dialog

system should thus allow dissimulation of information. More

formally a dialog system allows dissimulation if it can

generate some dialogs in which the winner would have

change if one of the agents had uttered (had not concealed)

some argument.

Dissimulation: A dialog system DS allows dissimulation

iff there exists a persuasion dialog D between two agents

(say k and l) generated by DS such that ∃a ∈ Ak, such that

Winner(D) #= Winner(D; 〈k, l, a〉)
The last postulate is about the efficiency of persuasion

dialogs. Recall that in such dialogs, agents try to convince

other parties to accept some assertion by putting forward

arguments. These latter are intended to justify the assertion

by new evidences. Thus an argument in which an assertion

is justified by the assertion itself fails to meet the objective

of arguing. Assume a politician who tries to convince a

population that taxes should be increased. Nobody will



accept an argument of the form: “taxes should be increased

because they should be increased”. This does not mean that

nobody will accept the idea of increasing taxes especially

people who have good reasons in favor of tax increase. Thus,

for a persuasion to be efficient, atomic arguments should be

avoided. Similarly, tautologies are not allowed in dialogs

since they are not informative. To put it differently, they do

not bring new information and this is certainly not suitable

in persuasion dialogs.

Non-triviality: A dialog system DS ensures non-triviality

iff for all persuasion dialog D generated by DS, for all a ∈
{Content(m) | m ∈ D, Act(m) = Argue}, a is not atomic

and Conc(a) is not a tautology (i.e., Conc(a) /∈ CN(∅)).

The postulates are compatible (i.e., can be satisfied all

together by a dialog system). There is however a prob-

lem for ensuring consistency together with natural-attacks-

allowance. This is due to Dung’s framework, when it is

instantiated by symmetric attack relations the system is not

able to guarantee to obtain consistent conclusions. Indeed, in

[2], an example of violation of the consistency postulate in

the context of symmetric attack is described. Nevertheless,

the non compatibility of consistency and natural-attacks-

allowance in Dung’s framework does not mean that the two

postulates are not required for dialog systems.

Proposition 2: Finiteness, consistency, natural-attacks-

allowance, non-triviality, non-determinism and dissimulation

are compatible.

Proof: (Sketch) Let (L0,⊢) be a propositional language

whose vocabulary contains at least two propositional vari-

ables Let A0 be the arguments built from L0 by using

Definition 1 and let R0 ⊂ A0×A0 an arbitrary non reflexive

attack relation containing rebut and assumption-attack.

Let DS based on (L0,⊢), with {P,C} the set of agents

and s.t. a sequence of moves D = (mi) is a valid dialog

wrt to the protocol iff D = (m1) or D = (m1,m2) such

that m1 = 〈s, h,Assert : ϕ〉 and m2 = 〈s, h,Argue : a〉
where s ∈ {P,C}, h ∈ {P,C} and ϕ ∈ L0 and ϕ is finite

and a ∈ A0 such that a is not atomic and not supporting

a tautology and Conc(a) is finite. Let the output of D be

computed under stable semantics. Finiteness, non-triviality,

natural-attack allowance hold by construction. Consistency

is ensured by the fact that there is at most two arguments,

they could be together in the basic extension only if their

conclusions are consistent (due to the presence of rebuttal

attack). Non determinism and dissimulation can be shown

by using a dialog with only the first assert move compared

to a dialog in wich an argument against it is added.

Proposition 3: Finiteness, consistency, natural-attacks-

allowance, non-triviality, non-determinism and dissimulation

are independant.

Proof: (sketch) For each postulate, we may provide a

dialog system in which every postulate holds except the one

considered.

V. DIALOG SYSTEMS POSTULATES VS. REASONING

SYSTEMS POSTULATES

A dialog system, with two participating agents, uses three

argumentation systems of the same kind. They are all logical

instantiations of the abstract framework of Dung [10]. Two

of the systems are used for modeling the nonmonotonic

reasoning of the agents and should thus obey to postulates

like those recalled in Section II-B. The third argumentation

system is devoted to a completely different purpose which

is computing the outcomes of persuasion dialogs. The dif-

ference of tasks raises the question of the suitability of the

postulates of the two reasoning systems for the one that

computes the outcomes of dialogs. More generally, are those

postulates compatible with the ones proposed previously for

dialog systems? In this section we show that the two sets of

postulates are incompatible.

A. Reasoning postulates in a dialog context

The first postulate that a reasoning system should satisfy

concerns the consistency of its extensions. It ensures that

the system returns sound results. A similar postulate is

required for a dialog system, namely for its argumentation

system that computes the outcomes of dialogs. While this

postulate is compatible with the two closure ones, in case

of dialogs this is unfortunately not guaranteed. Indeed,

we have shown in the previous section that consistency

is not compatible with natural-attacks-allowance, namely

when symmetric attack relations are used. It is worth

mentioning that in reasoning, symmetric attack relations

can be avoided. Indeed, there exist non-symmetric attack

relations that ensure the consistency postulate (see [2]).

However, things are not so simple in dialogs. Getting rid

of rebuttals in dialogs would constrain the kind of moves

agents may utter. This would also mean that it is not

possible to design dialog systems (based on Dung’s system)

that capture everyday life dialogs in which rebuttals are

very common.

Closure under CN is a suitable postulate for reasoning

systems since it guarantees a form of “completeness” of their

outputs. Tautologies are among the plausible conclusions

that are ensured. These formulas, even if they are trivial,

may serve as a basis for testing the quality of those systems.

However, in a dialog context, they are not suitable since

they are not “informative”. Thus, closure under CN is not

a required postulate for dialog systems. We can even show

that it is incompatible with the non-triviality postulate.

Proposition 4: Let DS be a dialog system. If CN(∅) #= ∅
and DS satisfies non-triviality, then for all dialogD generated

by DS, if the argumentation system ASD admits at least one

extension then it violates closure under CN.

Proof: Let DS be a dialog system and CN(∅) #= ∅. Since

DS satisfies non-triviality then for any dialog D generated

under DS, ∄a ∈ Args(D) such that Conc(a) ∈ CN(∅).



Let E be an extension of the argumentation system ASD

under a given semantics and let ϕ ∈ CN(∅). Then, ϕ #∈
{Conc(a), a ∈ E}. However, ϕ ∈ CN({Conc(a), a ∈ E})
since ∅ ⊆ {Conc(a), a ∈ E} and from the monotonicity of

CN, it follows that CN(∅) ⊆ CN({Conc(a), a ∈ E}). Hence,

ASD violates closure under CN.

Some dialog systems may even miss some non trivial

conclusions. Let us consider a dialog in which only two

arguments ({x ∧ y}, x)3 and ({z ∧ t}, z) are exchanged.

The argumentation system associated with this dialog has

only one stable/preferred extension which contains only the

two arguments. It is easy to check that this extension is not

closed under CN since, for instance, y, t and x ∧ z are not

supported by arguments in the extension.

Closure under sub-arguments is another postulate which

makes sense for reasoning systems but not for dialog ones.

Indeed, in a dialog context, this postulate is ensured in case

agents utter all the sub-arguments of their arguments. This is

certainly not realistic. Let us consider the following dialog

between Carla and Peter.

Carla: Mary will miss her exams. She did not

work hard.

Peter: She worked hard. Her eyes are encircled

and she is very tired.

The corresponding argumentation system contains the two

exchanged arguments and one attack from the argument (say

b) of Peter to that of Carla (say a). This system has one

stable/preferred extension: {b}. This extension is not closed

under sub-arguments since b has at least two sub-arguments

(one for “Mary’s eyes are encircled” and one for “Mary is

very tired”) which are not in the extension. In order to satisfy

the postulate, Peter should utter two additional arguments

for the two statements. The following result shows that this

postulate is even not compatible with the non-triviality one.

Proposition 5: Let DS be a dialog system. If DS satisfies

non-triviality, then for all dialog D generated by DS whose

argumentation system ASD admits non-empty extensions,

ASD violates closure under sub-arguments.

Proof: Let D be a dialog generated by a dialog system

DS. Let ASD be its argumentation system and E be a non-

empty extension of ASD under a given semantics. Thus,

∃a ∈ E . Since E ⊆ Args(D) and DS satisfies non-triviality,

then Supp(a) #= ∅. Consequently, ∃ϕ ∈ Supp(a). There are

two possible cases:

• ϕ ∈ CN(∅). Then, (∅, ϕ) is a tautological argument

and (∅, ϕ) /∈ Args(D) since DS satisfies non-triviality.

Thus, (∅, ϕ) /∈ E .

• ϕ /∈ CN(∅). Then, ({ϕ}, ϕ) is an atomic argument and

({ϕ}, ϕ) /∈ Args(D) since DS satisfies non-triviality.

So ({ϕ}, ϕ) /∈ E .

3We assume here that (L, CN) is propositional logic.

Both arguments (∅, ϕ) and ({ϕ}, ϕ) are sub-arguments of

a and do not belong to E . Thus, ASD is not closed under

sub-arguments.

B. Dialog postulates in a reasoning context

This section discusses the suitability of the postulates of

dialog systems in a reasoning context. We start with the

finiteness postulate which ensures finite dialogs. An impor-

tant question is: do argumentation systems for reasoning

need to be finite (i.e., have a finite number of arguments)?

From a computational perspective, finiteness is certainly a

desirable property since the computation of the extensions of

infinite systems would be hard if not impossible. However,

in practice the finiteness property depends broadly on the

logic (L, CN) underlying the argumentation system. For a

broad class of logics, the set of all arguments that may be

built from a knowledge base is infinite. This is particularly

the case for classical logics. Nevertheless, it was shown in

[5] that for some logics it is possible to consider only a

subset of the whole set of arguments. The corresponding

argumentation system, called core, returns exactly the plau-

sible conclusions of the argumentation system that takes as

input all the arguments built from the base. For some logics,

as shown below, the core is finite. Before presenting the

formal result, let us first introduce some useful notations.

Notation 2: For X ⊆ L, Cncs(X) = {x ∈ L | ∃Y ⊆
X s.t. CN(Y ) #= L and x ∈ CN(Y )} is the set of formulae that

are drawn from consistent subsets of X , and (Cncs(X)/ ≡
) = {[x] | x ∈ X } with [x] = {x′ ∈ L | CN({x′}) =
CN({x})} is the quotient set of Cncs(X) wrt logical equiva-

lence.

Proposition 6: Let F = (A,R) be an argumentation sys-

tem built over a knowledge base Σ. If (Cncs(Σ)/ ≡) is finite,

then there exists an argumentation system F ′ = (A′,R′) s.t.

A′ ⊆ A, R′ ⊆ R, Output(F) = Output(F ′) and A′ is

finite.

Proof: Let F = (A,R) be an argumentation system

built over a knowledge base Σ. In [5], it is shown that each

argumentation system has a core. The idea is to take exactly

one argument from each equivalence class of arguments

of A. Let F ′ = (A′,R′) s.t. A′ ⊆ A, R′ ⊆ R be

that system. Theorem 4 of [5] shows that F and F ′ have

equivalent extensions. Thus, Output(F) = Output(F ′).
Besides, Theorem 5 of [5] shows that in this case A′ is

finite.

However, the core may be infinite for some other logics. To

sum up, two cases can be distinguished:

1) Argumentation systems that have finite cores, which,

then, can be replaced by systems that satisfy the

finiteness postulate.

2) Argumentation systems that have infinite cores which,

thus, violate the finiteness postulate.

Note that the notion of core is crucial in reasoning since it

gathers the key arguments that are necessary and sufficient to



define the plausible conclusions of an argumentation system.

Recall that in such systems, arguments are generated from a

knowledge base without discrimination. However, in dialogs,

agents choose the arguments to utter and may hide some

of them. Thus, the argumentation system associated with a

dialog does not necessarily contain its core. This will impact

the outcome of the dialog since, as shown in [5], when

a system does not contain its core, then the status of its

arguments are not final and may evolve.

Proposition 7: Let DS be a dialog system satisfying

non-triviality. If L contains tautologies and R does not

contain attacks against tautoligical arguments, then for all

non-empty dialog D generated by DS, Output(ASD) #=
Output(CASD)

where CASD = (Arg(
⋃

a∈Args(D) Supp(a)),R) and for

S ⊆ L, Arg(S) is the set of all arguments that may be built

from S using Definition 1.

Proof: Indeed, if D is non-empty then Args(D) is not

empty, thus CASD contains tautological arguments. These

arguments should belong to Ext(CASD). Thus, tautologies

should belong to Output(CASD) but due to non-triviality

they cannot appear in Output(ASD).

As said before, consistency may be violated by the ar-

gumentation system that computes the outcomes of dialogs

due to the use of the rebutting relation (imposed by the

natural-attacks-allowancepostulate). This is particularly the

case when the knowledge base contains a ternary or more

minimal inconsistent subset as shown below:

Example 2: Assume a dialog D whose AS is as follows:

a1 = ({t ∧ x}, x)

a2 = ({y, x→ ¬y},¬x)

a3 = ({x, y}, x ∧ y) a4 = ({x, x→ ¬y},¬y)

a5 = ({v ∧ ¬y},¬y ∨ ¬x) a6 = ({y ∧ z}, y)

The set {a1, a5, a6} is a preferred extension of this system.

However, its set {x, y,¬x ∨ ¬y} of conclusions is clearly

inconsistent.

The inconsistency problem can be avoided by getting rid

of the natural-attacks-allowancepostulate, reducing thus the

kind of natural language dialogs that may be conducted.

This is certainly not a desirable solution.

Non-triviality postulate (which consists of avoiding

atomic arguments and arguments supporting tautologies) is

violated by reasoning systems as shown by Proposition 1.

Non-determinism postulate expresses that for any non-

trivial formula, it should be possible to generate two dialogs

with opposite conclusions. This is very important in dialogs

to ensure strategic debates. However, this postulate is not

suitable for reasoning systems since these latter should

determine in an objective way whether a formula holds or

not.

Dissimulation postulate is clearly not compatible with a

reasoning system. It highlights a main difference between

reasoning and persuading. While in reasoning one looks

for the truth of formulas and considers thus all available

information, in persuading one looks for convincing another

agent about an issue. This may be done by hiding crucial

information which run counter the issue.

VI. CONCLUSION

Since early nineties, there is an increasing number of

works trying to formalize dialogs in which agents may ex-

change arguments. Persuasion and negotiation dialogs have

received particular attention from AI community. Several

systems were developed for each of them. In those systems

arguments are exchanged in order to support claims in

persuasion dialogs and offers in a negotiation context. The

arguments are then evaluated using argumentation systems

that were originally developed for nonmonotonic reasoning

or for reasoning about inconsistent information.

In this paper, we focused on persuasion dialogs, and

more precisely on public persuasions where two agents

with conflicting opinions try to persuade each other in

presence of an audience. Note that the aim here is rather

to persuade the audience. We studied whether the approach

followed in the literature for defining dialog systems is

sound or not. For that purpose, we considered a recent

argumentation system proposed in [2] for reasoning about

inconsistent information. Note that our study holds for any

other logic-based instantiation of the abstract framework

of Dung [10], like ASPIC system [9]. We then proposed a

general persuasion dialog system. This persuasion system is

general since one of its basic components (the protocol) is

left unspecified. For each of the reasoning and persuading

systems, we propose a set of postulates that should hold.

For reasoning systems, we considered the three basic

postulates defined in [1], namely the consistency of the

conclusions supported by the extensions, their closure

under the consequence operator, and finally the closure

under sub-arguments of the extensions. Regarding dialog

systems, we proposed six postulates: the finiteness postulate

ensures termination of the dialog. Non-determinism

postulate imposes that the system may generate dialogs

with different outcomes. The third postulate imposes

consistency of the outcomes of dialogs. This postulate

ensures that the system that is used for evaluating the

arguments exchanged in a dialog is sound. The fourth



postulate aims to capture as much as possible everyday life

use of counter-argumentation. The dissimulation postulate

ensures that an agent may hide some information. The last

postulate ensures that agents do not utter trivial arguments

during a dialog. An important contribution of this paper

consists of investigating the compatibility of the two sets

of postulates. We have shown that the three postulates of

reasoning systems cannot be satisfied by a dialog system

since in this latter the set of exchanged arguments is not

complete (due to the finiteness of dialogs and also to the

fact that in dialogs, some arguments are considered as

trivial and thus do not need to be exchanged). Similarly,

we have shown that four postulates of the dialog system

cannot be satisfied by the argumentation system. Moreover,

we have established that the outcome of a dialog system

can be different from the outcome that should be obtained

by a reasoning system that would use a knowledge base

containing all the formulas exchanged during the dialog.

To sum up, the study has revealed that a dialog system

needs particular argumentation systems for evaluating its

outcomes. Those systems should obey the nature of dialog.

This work can be extended in different ways. The first

one consists of defining argumentation systems that are

more suitable for public persuasion dialogs and that ensure

the postulates discussed in this paper. Another future work

consists of defining new postulates for dialogs, namely for

capturing manipulation in dialogs. Finally, we are planning

to undertake a similar study in the context of negotiation

dialogs. Recall that in those systems, the outcome of a

negotiation is evaluated by argumentation systems developed

for making decisions.
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