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Abstract—We recently contributed an algorithm for the es-
timation of cardiac deformation from echocardiographic image
sequences based on the monogenic signal. By exploiting the phase
information instead of the pixel intensity, the algorithm was
robust to the temporal contrast variations normally encountered
in cardiac ultrasound. In this paper we propose an improvement
of that framework making use of an extension of the monogenic
signal formalism, called structure multivector.

The structure multivector models the image as the superpo-
sition of two perpendicular waves with associated amplitude,
phase and orientation. Such a model is well adapted to describe
the granular pattern of the characteristic speckle noise. The
displacement is computed by solving the optical flow equation
jointly for the two image phases. A local affine model accounts
for typical cardiac motions as contraction/expansion and shear-
ing; a coarse-to-fine B-spline scheme allows for a robust and
effective computation of the model parameters and a pyramidal
refinement scheme helps deal with large motions. Performance
was evaluated on realistic simulated cardiac ultrasound sequences
and compared to our previous monogenic-based algorithm and
classical speckle tracking. Endpoint-error was used as accuracy
metric. With respect to them we achieved error reductions of
13% and 30% respectively.

Index Terms—echocardiography, motion estimation, image
phase, structure multivector.

I. INTRODUCTION

Numerous techniques have been and are constantly pro-

posed for the quantification of cardiac motion from echocar-

diographic image sequences and the derived mechanical quan-

tities of deformation and strain have been proven reliable in-

dicators for several pathologies as ischemia and dyssynchrony

[1]. Among existing techniques, block matching, or speckle

tracking, is to date the most consolidated one [1]. Block

matching proceeds by finding the best match, as defined by the

adopted dissimilarity measure, between two blocks extracted

from two subsequent frames. Most common dissimilarity mea-

sures include cross-correlation, sum of absolute differences or

sum of squared differences [1]. Alternative solutions belong

instead to the main families of optical flow [2] and elastic

registration [3].

Most of the existing solutions assume that the intensity

of the region to track does not change over time (brightness

constancy assumption). Nevertheless this assumption is rarely

satisfied in cardiac ultrasound. The main reason is that the

strength of the echo signal varies with the angle formed by

the beam direction and the myocardial fibers, which changes

in time due to heart motion. In this scenario phase-based

methods have arisen a particular interest thanks to the property

of the image phase of being strictly correlated with the image

structure while insensitive to variations in the intensity profile.

In particular the monogenic signal [4] has received a certain

attention in the ultrasound community as a tool to compute the

image phase. In particular our team recently described in [5]

a novel motion estimation algorithm based on the monogenic

phase that was shown to outperform a state-of-the art solution

[2] exploiting brightness constancy.

Monogenic phase is computed by locally approximating the

image as a 1D wave. Nevertheless, the 1D model is not ideal

in the case of ultrasound images. Indeed, the typical granular

texture determined by the speckle noise rather requires mod-

elling structures whose size is limited in both dimensions. In

this context more advanced image models than the monogenic

signal exist that can be better adapted to the real structure

of ultrasound images. In particular in this study we evaluate

the feasibility of an alternative image processing tool called

structure multivector [6].

In this new formalism the image is locally modelled as the

superposition of two perpendicular waves with specific am-

plitude, phase and orientation. The displacement is computed

by solving the optical flow equation jointly for the two image

phases. A local affine model accounts for typical cardiac mo-

tions as contraction/expansion and shearing; a coarse-to-fine

B-spline scheme allows for a robust and effective computation

of the model parameters and a pyramidal refinement scheme

helps deal with large motions. Performance was evaluated

on realistic simulated cardiac ultrasound sequences and com-

pared to our previous monogenic-based algorithm and classical

speckle tracking.

The paper proceeds as follows. In Section II the motion

estimation algorithm is presented. In Section III some im-

plementation details are addressed. Results are presented in

Section IV while conclusions are left to V.

II. PROPOSED MOTION ESTIMATION ALGORITHM

A. The Structure Multivector

The structure multivector [6] assumes the image I(x), with

x = [x, y]T the pixel position, to be locally approximated by
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Fig. 1. First row from left to right: test image consisting of a superposition of
an angular and a radial modulation, estimated first phase and estimated second
phase. Second row from left to right: test image consisting of the superposition
of two perpendicular sinusoids, estimated first phase and estimated second
phase. Note how the two perpendicular components are locally well separated
thanks to the structure multivector formalism.
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Fig. 2. (a) test ultrasound image representing the ventricular septum in
a short axis view. (b) structure information retrieved with the monogenic
signal, computed as cos(ϕmonogenic). (c) structure information retrieved with
the structure multivector, computed as cos(ϕ1)+ cos(ϕ2). Note how the 1D
assumption simplifies the granular speckle texture, which is instead better
taken into account by the structure multivector. Phase images has been
reported inside the myocardium only for clarity sake..

two 1D signals f1 and f2 oriented in two orthogonal directions

θ1 and θ2 = θ1 + π/2, namely:

I(x) =
2
∑

i=1

Ii(x) with Ii(x) = fi(ni(x)
T · x), (1)

with ni = [cos(θi(x)), sin(θi(x))]
T the unit vector with

direction θi. Fig. 1(a) and (d) show examples of structures

following the model in (1).

The two image components Ii(x) can be separated from the

responses to five 2D quadrature filters. The derivation of the

filter set is not straightforward and won’t be presented here for

brevity sake. All relevant details are contained in the original

paper [6]. Each component can be rewritten using the standard

model of phase-based image processing:

Ii(x) = ℜ{Ai(x) exp(iϕi(x))} (2)

where local amplitude Ai and local phase ϕi has been intro-

duced. The two amplitudes, phases and orientations represent

the 6 features defining the adopted image model (1). The

application of the structure multivector formalism on two test

cases is illustrated in Fig. 1.

In the context of ultrasound the two-waves model provides a

better description of the granular speckle texture as compared

to the 1D model. This is illustrated in Fig. 2.

B. Displacement Computation

The displacement d = [u, v]T is computed by assuming

jointly conservation of the two image phases over time, namely

ϕi(x, t+1) = ϕi(x−d(x), t). Assuming small displacement

the optical flow equations for the two phases are obtained:

ϕ1x · u+ ϕ1y · v + ϕ1t = 0 (3)

ϕ2x · u+ ϕ2y · v + ϕ2t = 0

where the notation fx = ∂xf has been adopted. Although

(3) is in principle solvable point-wise (two equations for two

unknowns) the obtained result would be extremely sensitive

to the presence of noise. The way around this issue is to solve

(3) in the least-squares sense on a local window surrounding

the pixel of interest, say x0. Assuming all pixels inside the

local domain shift of the same quantity d0, the linear system

of equations is hence obtained:

〈JT
J〉w · d0 = −〈JT

b〉w (4)

with

J =

(

ϕ1x ϕ1y

ϕ2x ϕ2y

)

, b =

(

ϕ1t

ϕ2t

)

(5)

and 〈v〉w the weighted average
∫

Ω
w(x − x0)v(x)dx, where

w(x) the window function defining the local domain. Further

details on the choice of w will be given in the following. Note

that unwrapping issues are never involved since phases appears

only through their spatial and temporal derivatives. Temporal

derivatives are easily computed by remembering that given

two complex numbers the difference of their phases is equal

to the phase of the product of the first with the conjugate

of the second. Spatial derivatives are instead computed by

exploiting the 1D assumption (1) which leads to ∇ϕi = νi ·ni,

with νi = n
T
i · ∇ϕi the local frequency and ∇ = [∂x, ∂y]

T .

Local frequency can be directly computed from the spatial

derivatives of the filters involved in the structure multivector

computation, similarly to [5], [6].

C. Affine Model

The assumption of pure translation within each block

employed in (4) is too restrictive in the context of heart

motion. A realistic model must indeed include also rotations,

thickening/thinning and shear deformations normally observed

in the myocardial tissue [2], [5]. These kind of deformations

are naturally accounted for by an affine model. Considering



a window w centred at (x0, y0) = (0, 0), the affine model is

written:

d(x) = A(x)u, A =

[

1 0 x y 0 0

0 1 0 0 x y

]

, (6)

where u = [d10, d20, d1x, d1y, d2x, d2y]
T is the new unknown

vector: d10 and d20 correspond to the translation of the window

center and dik = ∂kdi.
Plugging (6) into (4) leads to an underdetermined system

of equations. The solution is then obtained by pre-multiplying

both terms by A
T , i.e. 〈M〉w u = 〈c〉w, with M = A

T
J
T
JA

and c = −A
T
J
T
b.

D. Multiscale Choice of the Window Size

The choice of the window size is a tedious issue connected

with local techniques: the assumed motion model (translational

or affine) may not hold when the window is too big, otherwise,

the adoption of an excessively small window may result in

the well known aperture problem. To circumvent this issue,

in [2], [7] a multiscale strategy for locally choosing the

most consistent window size was adopted. This is based on

the possibility of computing the image moments, i.e., the

entries of the system matrix M and the vector b, at multiple

scales, by using an efficient B-spline coarse-to-fine strategy.

In particular, they are obtained from window functions w
that are progressively scaled and subsampled by a factor 2

in each dimension. More precisely, at scale j, the window

wj(x − x0) = w((x − 2jx0)/2
j) is employed, where w is

written as the separable product of two B-spline functions. By

doing so, at each scale Jf ≤ j ≤ Jc (Jf ≥ 0) a solution u
j can

be computed. Among the scales considered, the u
j producing

the smallest residual error ||Mu
j − c||ℓ2/|w|ℓ1 is retained as

the final displacement estimate. Whenever necessary, bi-cubic

interpolation is employed to obtain a dense motion field. With

this strategy, the scale providing the most consistent motion

estimate is selected.

E. Iterative Displacement Refinement

The hypothesis of small displacements employed in differ-

ential techniques may be inadequate whenever the displace-

ment is substantial or the image intensity profile is non-linear.

A possible way to deal with this limitation is to implement

a form of Gauss-Newton optimization: the current estimate is

used to undo the motion, and then the estimator is reapplied to

the warped images to find the residual displacement [8]. When

applied iteratively, this procedure can improve the estimation

accuracy considerably. We employed the aforementioned re-

finement scheme in the algorithm presented.

III. IMPLEMENTATION DETAILS

The proposed algorithm was compared against block match-

ing and our previous monogenic signal-based algorithm. The

evaluation was performed on ultra-realistic synthetic 2D car-

diac ultrasound sequences, generated according to the frame-

work in [7] for which the ground-truth displacement was

known. One short axis (SaX) and one apical four chamber

(a) (b)

Fig. 3. (a),(b) Diastolic and systolic frames from a synthetic short axis
sequence. Benchmark motion is superimposed as green arrows

(A4C) acquisitions were simulated. Image size was 179×197

pixels2 and 271×333 pixels2 for the SaX and A4C sequence

respectively. The estimation accuracy was measured by means

of the endpoint error (EE) defined as:

EE(x) = ||d(x) − d̄(x)||2 (7)

where d and d̄ represent the estimated displacement and the

ground truth respectively. Pixels belonging to the myocardium

were considered in the evaluation only. Note that the displace-

ment between subsequent frames is considered in this study.

Examples frames from the SaX sequence are reported in Fig.

3 along with the benchmark displacement field.

Parameters for the three algorithms were optimized on the

synthetic SaX sequence. In particular structure multivector was

implemented as described in [6], with difference of Poisson

(DoP) filter as lowpass kernel. The center wavelength λ0 of

the filter was set equal to 8 and divided by a factor 1.5 at

each stage of the pyramidal refinement step. Four refinement

iterations were employed. The multiscale window choice was

implemented by considering fifth-order B-splines and scales

j = {3, 4, 5}. Parameters of the monogenic based algorithm

were set as in [5]. Block matching was implemented using

rectangular blocks of size 8×16 pixels2 with a search region

of 2 pixels in both directions (consider maximum benchmark

displacement was < 2 pixels) and an interpolation factor of 10

(resolution = 1/10 pixel) in both directions. Sum of absolute

differences was used as dissimilarity metric. All algorithms

were implemented in MATLAB (R2011b, The MathWorks,

Natick, MA).

IV. RESULTS

TABLE I
ESTIMATION ERRORS (MEAN VALUE ± STANDARD DEVIATION)

Algorithm SaX A4C

multivector (proposed) 0.27 ± 0.09 0.23 ± 0.06

monogenic [5] 0.31 ± 0.08 0.26 ± 0.05

block matching 0.38 ± 0.10 0.34 ± 0.08

The endpoint error evaluated globally (all pixels of all

frames) on each simulated sequence for the three algorithms

considered is reported in Table I. Both phase-based methods
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Fig. 4. (a),(b) Endpoint error for each frame of the SaX and A4C sequences.

outperform block matching in terms of accuracy. This is due

to the fact that image phase is a more reliable feature as

compared to pixel intensity as far as cardiac ultrasound in

concerned, as confirmed by our previous findings [5], [9].

Moreover the proposed algorithm is the one returning the most

precise velocity estimates. This is due to the fact that the 2D

signal model assumed by the structure multivector represents a

more accurate description of the ultrasound image as compared

to the 1D model exploited by the monogenic signal.

The average endpoint error for each frame of the two

simulated sequences is illustrated in Fig. 4. Note that the

proposed algorithm is almost permanently the one returning

the smallest estimation error, which confirms our previous

observations. Overall, the relative error reduction with respect

to the monogenic phase-based algorithm and block matching

was of 13% and 30% respectively.

An ulterior advantage of the proposed framework with

respect to block matching concerns the computational com-

plexity. Indeed, while block matching implies interpolation to

reach sub-pixel accuracy and then iteratively seeking within

each block the shift returning the best match, in the proposed

framework sub-pixel accuracy is directly obtained with no

need of interpolation and the best shift is simply given by

the solution of a linear system of equations, as explained in

Section II. With the employed implementations, the speedup

of both the considered phase-based solutions with respect to

block matching was roughly ×50.

V. CONCLUSION

Image phase has been proved a reliable feature for the

estimation of cardiac motion with ultrasound. In this context

this paper presented an improvement of a previous solution

recently proposed by the authors based on the monogenic

signal. The algorithm extracts two phase images from a single

ultrasound frame and computes the displacement by assum-

ing conservation of the two phases jointly over time. This

decomposition is made possible thanks to a recent advanced

image analysis tool called structure multivector. The proposed

algorithm, evaluated on ultra realistic synthetic cardiac ultra-

sound sequences was shown to return more precise velocity

estimates than the previous algorithm by the same authors and

block matching.

Despite the structure multivector shows certain advantages

over the monogenic signal, more flexible tools exist that could

be better adapted to ultrasound images as the signal multi-

vector [10], where the assumption of orthogonality between

the two waves is relaxed. Investigating these tools will be the

subject of future studies.
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