
HAL Id: hal-01147267
https://hal.science/hal-01147267v1

Submitted on 4 May 2015

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Heterogeneous models matching for consistency
management

Mahmoud El Hamlaoui, Sophie Ebersold, Bernard Coulette, Mahmoud
Nassar, Adil Anwar

To cite this version:
Mahmoud El Hamlaoui, Sophie Ebersold, Bernard Coulette, Mahmoud Nassar, Adil Anwar. Hetero-
geneous models matching for consistency management. IEEE International Conference on Research
Challenges in Information Science - RCIS 2014, May 2014, Marrakech, Morocco. pp. 1-12. �hal-
01147267�

https://hal.science/hal-01147267v1
https://hal.archives-ouvertes.fr

Open Archive TOULOUSE Archive Ouverte (OATAO)
OATAO is an open access repository that collects the work of Toulouse researchers and
makes it freely available over the web where possible.

This is an author-deposited version published in : http://oatao.univ-toulouse.fr/
Eprints ID : 13022

To link to this article : DOI :10.1109/RCIS.2014.6861074
URL : http://dx.doi.org/10.1109/RCIS.2014.6861074

To cite this version : El Hamlaoui, Mahmoud and Ebersold, Sophie
and Coulette, Bernard and Nassar, Mahmoud and Anwar, Adil
Heterogeneous models matching for consistency management. (2014)
In: IEEE International Conference on Research Challenges in
Information Science - RCIS 2014, 28 May 2014 - 30 May 2014
(Marrakech, Morocco).

Any correspondance concerning this service should be sent to the repository

administrator: staff-oatao@listes-diff.inp-toulouse.fr

http://oatao.univ-toulouse.fr/
http://oatao.univ-toulouse.fr/13022/
http://dx.doi.org/10.1109/RCIS.2014.6861074
mailto:staff-oatao@listes-diff.inp-toulouse.fr

Heterogeneous models matching for consistency

management

Mahmoud EL HAMLAOUI1,2,

Sophie EBERSOLD1

and Bernard COULETTE1

1IRIT Laboratory, MACAO Team

University Toulouse 2 Mirail

5 Alle Antonio Machado, 31058 Toulouse, France

{mahmoud.el-hamlaoui, sophie.ebersold,

bernard.coulette}@irit.fr

Mahmoud NASSAR2

2ENSIAS, SIME Laboratory, IMS Team

University of Mohamed V Souissi

BP 713, Agdal Rabat, Morocco

nassar@ensias.ma

Adil ANWAR3

3EMI, Siweb Laboratory,

University of Mohamed V Agdal

BP 765, Agdal Rabat, Morocco

anwar@emi.ac.ma

Abstract—This work is situated in the context of the appli-
cation of Model Driven Engineering to complex systems view-
based modelling. In fact, view-based models - called also partial
models - are manipulated by different actors (designers), and are
thus generally heterogeneous, that is, described with different
DSLs (Domain Specific Languages). Instead of building a single
global model, which is not realistic, we propose to organize the
different partial models as a network of related models, which
provides a global view of the system through a correspondence
model. As models are modelled separately by different designers,
they also evolve separately that induces a problem of consistency.
To solve it, we propose a semi-automatic process based on the
correspondence model allowing detecting changes, calculating
their impacts, and proposing modifications to maintain the
consistency among them. The approach is supported by a tool
chain and illustrated by the example of a Bug Tracking System.

Keywords—Heterogeneous models, correspondence model,
change processing, consistency.

I. INTRODUCTION

Today, development of complex information systems is
based on a varied set of languages, tools and environments that
are generally used separately by modeling experts working on
different dimensions of a project. To analyze and design such
complex systems, one of the most frequently used approaches
consists in defining multiple views of the complex system
which are defined in different heterogeneous DSLs (Domain
Specific Language), each view representing specific needs. In
the avionics domain for example, it is common to develop
various models corresponding to different viewpoints on a
given system: mechanical, thermal, electrical, computing, etc.
These view-based models -also called partial models- must
then be combined in order to represent the complex system.
This combination -often called composition- is one of the main
issues to which designers must face. A number of approaches
investigated the possibility to produce a unique global model
by using a merging technique [1] [2] [3]. We have also been
working for a while on this topic by elaborating a UML profile
called VUML for merging UML partial models [4] [5].
However, it is not realistic to build a unique composed model
when the information system become complex since partial

models are heterogeneous, that is described by different lan-
guages semantically distant. In other words, approaches based
on a unique global model are not scalable and thus do not meet
our goal. In addition, they do not efficiently support source
models evolution since the composed model must be rebuilt
each time a significant evolution must be taken in account.

For this reason, we propose an approach consisting in
organizing the different partial models as a network of models
that provides a global view of the system. This network is
composed of models connected via relations that we call
”correspondences”. These correspondences are stored into a
”correspondence model”.
Interconnected models allow the various stakeholders (de-
signers) to work together by manipulating linked elements.
In particular, building the correspondence model is a way
to solve inconsistencies between separate input models. The
correspondence model construction is detailed in [6]. We
advocate that such a correspondence model is an important
way of expressing semantic rules on the system.

The question that arises now is ”how to manage partial
models evolution?” During the modeling or the maintenance
phase of a complex system indeed, designers working with
specific DSLs according to their viewpoints tend to change the
models on which they operate, for example to meet new user
requirements. This may cause inconsistencies since models
are related so that the change of one of them may cause the
inconsistency of the whole system. In fact, there is a need to
reflect and adapt the change, or at least to identify the models
that are impacted by it.

The approach that we propose is independent from any
application domain. So it supports the design of information
systems which are particular cases of complex systems.

To sum up, the main advantages of the approach described
in this paper are:

• Produce a unique model of correspondences, that
relates source models by adding semantic information
on the overall system,

• Allows to maintain the consistency of the network of
models in case of source models evolution.

In this paper, we present the overall approach with a
focus on the consistency management support, especially when
partial source models evolve.

The remainder of this paper is structured as follows.
Section 2 investigates related works. Section 3 presents the
case study that was chosen to illustrate our work. Section
4 describes the matching phase of our approach. Section 5
deals with its consistency management. Section 6 presents the
proposed tool prototype and, finally, the paper is concluded in
Section 7.

II. RELATED WORKS

A number of approaches described in the literature deal
with view-based complex systems design through models
matching. As this paper mainly address the consistency main-
tenance issue, in this section, we put the focus on the subset
of these approaches that support one or several aspects of
model evolution issue. To do that, we have studied a set of
representative approaches, namely Edapt[7], previously called
COPE[8], EMFMigrate [9], and the one developed by Cicchetti
and al. [10].

To lead this study, we have defined and used the following
criteria: heterogeneity, number of input artifacts and their
types, mechanism of change detection, adopted support of
classification, and evolution type. These criteria that should
ideally be easy to identify in every approach are defined
below:

• Heterogeneity: expresses if the approach in question
takes into account heterogeneous artifacts As a re-
minder, we consider that two artifacts are hetero-
geneous if their modeling languages are themselves
heterogeneous,

• Number of input artifacts: expresses if the approach in
question takes into account heterogeneous artifacts As
a reminder, we consider that two artifacts are hetero-
geneous if their modeling languages are themselves
heterogeneous,

• Types of artifacts: identifies the shape of representing
artifacts. The latters are not necessarily models, they
might be rules of transformation or other types of
artifacts,

• Change detection: assesses how an approach proceeds
to detect the elements of artifacts that have undergone
an alteration,

• Classification support: indicates whether the approach
supports a classification of changes in order to assign
to each kind of change a particular action. It is
interesting to take this criterion into account, because
the classification of changes allows the automation of
the whole evolution management process or at least a
part of it,

• Evolution type: characterizes the evolution type: adap-
tation or co-evolution. The adaptation consists in
maintaining the conformity relationship between a
model and it’s meta-model whereas co-evolution con-
cerns changes at the same level between models, also
called model migration.

TABLE I. COMPARISON OF MODEL EVOLUTION

APPROACHES

Approaches/Criteria H NA TA CD CS ET

Edapt (Cope) No 2 M1 SA3 No A4

EMFMigrate No 2 M/T 2 Manual No A

Cichetti and al. No 2 M Manual No CE5

1 Model 2 Transformation rules 3 Semi-automatic 4 Adaptation 5 Co-

evolution

Table I presents a synthesis of the studied approaches,
based on these criteria. By analyzing it we can deduce that
the evolution management process has not yet reached maturity
level. Firstly, studied approaches take into consideration only
homogeneous models (i.e. derived from the same meta-model).
Indeed it is essential to support heterogeneous models so
as to tackle real systems. Secondly, they do not define any
classification support, a factor that we consider as mandatory
in order to automatically manage changes and their impacts on
models, through predefined actions. Furthermore, most of the
approaches discussed above (except Cicchetti and al.), focus on
model evolution as a result of adaptation of their corresponding
meta-models (co-evolution) to preserve the conformity rela-
tionship. That is to say that these approaches only treat the
adaptation evolution. Yet it is on co-evolution that models
synchronization is based.

To sum up, the approaches presented above do not consider
or respect all of the criteria described above and thus do not
fully address some important aspects of system evolution.

III. ILLUSTRATIVE CASE STUDY

To illustrate our approach, we have chosen a case study
based on a real software development project that performs
tracking of bugs: BTS (Bug Tracking System). This system
can be seen as the software part of an information system
that aims to offer to different actors, based on their different
status (team leader, developers, testers, ...), the ability to report
dysfunctions, comment them, track the status of anomalies,
notify collaborators of encountered problems, suggest solu-
tions or possibilities of circumvention, The choice of this
example seems relevant because it involves different actors,
working with different points of view, from the analysis of
users requirements to the implementation of the proposed
solution.

We consider that in the information system (IS) of bug
management, there are three business domains covering vari-
ous aspects of modelling: user requirements, anomalies and
business process. Each business domain is described by a
dedicated DSL and is manipulated by actors with specific roles
(Figure 1):

• Requirement analyst: Responsible for modelling end
user needs (business IS: user requirements). The pro-
duced model is expressed through a requirements
DSL,

• Software architect: Responsible for modelling anoma-
lies (business IS: anomaly modelling). He creates a
model expressed through a specific software design
DSL,

• Process engineer: Responsible for bugs tracking pro-
cess modelling (business IS: process modelling). He

creates a model expressed through a business process
DSL.

In the following, we do not consider the concrete syntax
of DSLs, so, in the context of this paper, a DSL can be seen
as a metamodel defining an abstract syntax.

Fig. 1. Global view of the BTS models and DSLs

A. Requirement modelling

To assess the quality and validity of any project, one must
ensure that it meets user requirements that are described by
the requirements analyst. A requirements DSL inspired from
SysML notation [11] (Figure 2) was chosen. A requirements
diagram is defined as a canvas containing requirements.
Requirements specify, using textual syntax, a capability that
a system must satisfy. They are also related to each other or
to other model elements using different types of relationships
(derived, copy, contains, etc.). The system to build must
satisfy requirements described in a model (Figure 3) conform
to the previous DSL. For simplicity sake, we have limited
the description of BTS to a few requirements. For instance,
the requirement identified with id= ”1.1” is related to the
declaration of an anomaly; it includes a sub-requirement
(id=”1.1.3”) related to the description of the summary of the
anomaly, refined in its turn by additional constraints to be
respected during the declaration of the anomaly.

Fig. 2. Extract of the requirement DSL

Fig. 3. Snapshot of the BTS requirements model

B. Anomaly management modelling

In Figure 4, we propose a very simple software design
DSL to define entities and associations among them. Based
on this DSL, we chose an open source software solution in
the bug management field called Mantis [12] to represent a
software design model. The Figure 5 illustrates a snapshot
of such model. The term ”Issue” is used to define an
anomaly. An anomaly is characterized by a unique identifier,
a set of attributes describing the anomaly namely: category,
summary, description, status, steps which led to the anomaly
(”stepsToReproduce”) and two types of involved persons with
the following roles: ”reporter” and ”assignedTo”. The first
role indicates the type of person who reports the anomaly,
whereas the second one indicates the type of person to whom
the anomaly is affected.

Fig. 4. Extract of the software design DSL

Fig. 5. Snapshot of the software design model

C. Business process modelling

The treatment of an anomaly can be seen as a business
process that various collaborators must follow in order to
solve the anomaly. This model, complementary from the two
others, is necessary to give a behavioural semantics to the bug
tracking activity. We suppose that the process engineer uses
a business process DSL inspired from BPMN [13]. The DSL
(Figure 6) comprises the following concepts: ”lane”, ”pool”,
”flow”, ”task”, etc. A snapshot of the process model expressed
in conformity with BPM is presented in Figure 7. Required
roles in this process model are ”manager”, ”reporter” and
”developer”. Just after having reported a bug, the ”reporter”
must set the status of the anomaly to ”new”. An email is
automatically sent to the project manager who has the ”viewer”
role as he is not directly involved in the correction of the
anomaly. Once the process manager has validated the issue, he
must assign it to a ”developer” and change the status to ”open”.
Otherwise, if the anomaly is not validated by the process
manager, he must reassign it to the ”reporter” to request
additional description. Once the ”developer” has corrected the
anomaly, he must inform the process manager and change the
status of the anomaly to ”Fixed”. The process manager, notified
by the change, rechecks the proposed solution and updates
the anomaly status to ”closed”, if it has been successfully
corrected.

Fig. 6. Extract of the business process DSL

Fig. 7. Snapshot of BTS business process model

IV. MATCHING APPROACH

In this section we briefly present our approach for es-
tablishing correspondences between heterogeneous models.
It consists in analyzing input models in order to identify
correspondences that exist among them and storing these corre-
spondences into a model of correspondences. The elaboration
of the correspondence model (the preliminary phase of the
consistency management process) is briefly discussed below.

Fig. 8. Overview of the kernel part of the meta-model of correspondence
(MMC)

In the context of heterogeneous matching, we have defined
a Meta-Model of Correspondences (referred below as MMC).
Figure 8 shows a kernel of MMC defining concepts and
relations common to every application domain. The meaning
of its main meta-classes is detailed below:

• CorrespondenceModel:a meta-class that represents all
the correspondences established between at least two
(meta)-elements belonging to different (meta)-models,

• Correspondence: in our work, we distinguish between
a correspondence and a relationship. A correspon-
dence is composed of a relationship and extremities
which represent elements from input models,

• Relationship: an abstract meta-class that defines rela-
tionships between (meta-)elements of different (meta-
)models. Linked to ”Element”, this meta-class allows,
conceptually, defining n-ary correspondences connect-
ing more than two elements at once. Its definition
is done through specialization of ”Relationship”, by
introducing two meta-classes: ”HLR” and ”LLR”,

• HLR (HighLevelRelationship): The specialization of
this abstract meta-class will determine the relation-
ships that will define correspondences at the meta-
model level,

• LLR (LowLevelRelationship): The specialization of
this abstract meta-class will determine the relation-
ships that define correspondences at the model level,

• DomainIndependentRelationship: abstract meta-class
that represents the generic relationships that may exist
in different domains,

• DomainSpecificRelationship: an abstract meta-class
representing relationships among models in specific
domains. New relationships are specified by special-
ization of this meta-class according to the studied area.

Fig. 9. Activity diagram for the matching process

The correspondence model is constructed following the
process described in Figure 9. Firstly, the process takes as
input the various partial models, their respective meta-models
and the meta-model of correspondences in its kernel part.

Subsequently, a check is performed in order to inspect and
ensure that the MMC contains enough relationships to set
up correspondences among models, for a given application
domain. If the domain expert considers that the proposed
relationships are not sufficient to express correspondences that
might exist between (meta-)model elements, the ”Domain-
SpecificRelationship” (DSR) meta-class of MMC is special-
ized. For example, to properly exploit the requirements model
in the BTS domain, we must ensure that a given model element
meets the requirement(s) to which it is linked. For that, the
”Verify” relationship is added as extension of DSR (Figure 10).
It’s the same for ”UpdateValue”, used when a task of the
business process model has to change the value of the element
to which it is linked.

Fig. 10. Extract of the specific part of the MMC meta-model for BTS domain

Once the MMC contains the required relationships, the
matching operation can be launched. It begins by identifying
correspondences between meta-elements so as to produce the
correspondences model called M2C. Correspondences stored
in M2C are called High Level Correspondences (HLC).

Figure 11 shows examples of different types of HLCs.
For example, the meta-element ”Requirement” on one side
is linked to the meta-element ”Attribute” on the other side
by a ”Verify” relationship. The meta-element ”Attribute” is
also related to ”Task” through a ”Dependency” relationship.
”RelatedTo” is a ternary HLC defined between the meta-
elements ”Task”, ”Entity” and ”Requirement”.

Fig. 11. Example of BTS HLCs

Fig. 12. Example of BTS LLCs

HLC are then refined in order to produce Low Level
Correspondences (LLC) that link model elements. Please refer
to [9] for more information about the refine concept that is no
more described due to page limit.

Figure 12 describes LLCs created from the HLCs presented
in Figure 11, by using the duplication ”refine” type. It’s
possible to use the extension which is the second kind of
”refine” that extends the MMC meta-model by adding, if
necessary, sub-classes of LLR (Figure 13). The model of
correspondences will include the redefined correspondences
(Figure 14).

Fig. 13. Extension of LLCs

Fig. 14. Example of new LLCs

The proposed matching has several clear qualities. The
first one is commonality: MMC provides a ”generic” part
common to all domains - that defines a description of most
common relationships. For so, we ran a survey on different
DSLs belonging to different domains, to identify the most
frequenty used ones. Variability is the second one. MMC can
be extended depending on the specific aspects of the domain
under consideration, in order to support the relationships relat-
ing to specific business areas in complex domains. This is done
through specializations of the ”DomainSpecificRelationship”
meta-class. The third one is flexibility. Thanks to it, the MMC
can relate n models (through their model elements) and express
n-ary cardinalities for each possible correspondence. Finally
the correspondence model is lightweight. Indeed, the model of
correspondence is built in a virtual manner [14] [15]. Elements
are accessible through references and they do not have any
physical existence in the model of correspondence.

The following section will discuss the consistency manage-
ment based on the produced correspondence model.

V. CONSISTENCY MANAGEMENT APPROACH

In this section, we present the ”consistency management
phase” which takes place after the matching phase. This
phase is also a process, represented in Figure 15, that aims
at describing the phases to perform after an evolution of
source models, in order to maintain the consistency of the
system. It involves two actors, namely, a domain expert who

can be seen as an orchestrator of the system, and designers
who are responsible for input models. The description of the
collaboration among these actors is not in the scope of this
paper.

Fig. 15. Evolution management process

The process consists of three main phases which are:
change detection, change classification and change processing
(each of them will be described in the next subsections).
The process takes as input the various models that may have
evolved, and the model of correspondences (M1C). This latter
is conform to the MMC meta-model and is obtained through
the previous matching phase. Firstly, the change detection
phase enables to trace changes that might have occurred on the
various input models. These changes are stored in an extended
part of the M1C (Figure 16). This is the fundamental step of the
evolution management process because it allows to establish
change processing once changes have been classified. Secondly
a classification phase is performed. By involving the domain
expert, it aims at classifying the changes stored in M1C and
provides a change list. This is performed in order to manage
impacts by assigning to each case a specific action. The final
phase, called change processing, aims to ensure evolution of
models by applying specific treatments on them. Some of
these are done automatically whereas the others require the
approbation of domain expert and designers. This process is
iterative since the impact of changes may require an update of
the correspondence model.

A. Change detection

1) Extension of MMC supporting model evolution: The
change detection phase aims to detect the models elements that
have undergone a change, i.e. elements that have been altered,
deleted or added. Unlike the correspondence process that
highlights the similarities and dependencies between (meta-)
models elements, the result of this phase is the specification of
discrepancies (deltas) caused by the evolution of one or several
models elements. Based on these deltas, we will subsequently

identify the model elements affected by the change and the
necessary amendments to ensure the system consistency.

To describe these evolutions, we extend the MMC (see
Figure 8) by adding a set of concepts, mimicking a CRUD
[16] operation set, as described in the below, in order to take
into account several types of change:

• History: meta-class used to keep a trace of the applied
changes,

• DiffElt: Abstract meta-class that enables to store, once
specialized, trace of the changed element,

• DeletedElt: Elements of models that no longer exist, as
a result of a delete operation (If an element is deleted
from a model, it will always be present in the M1C.
So we need this meta-class to keep trace of the deleted
ones),

• AddedElt: New model elements that was added to the
initial models,

• ModifiedElt: New model element that is defined as a
result of the modification of existing ones.

Fig. 16. Extract of the correspondence meta-model, oriented towards model
evolution

Thanks to this extension, it is possible through the corre-
spondence model to find, for each type of change on specific
element the relationship it is connected to. Based on this, we
can know the extremities elements.

2) Enrichment of the correspondence model: The extension
of the meta-model presented in the previous sub-section, only
allows to store the different changes without defining the way
to do it. It is the purpose of this sub-section. Changes could
be detected by means of model differencing techniques. As
represented in Figure 17, in order to enrich the correspondence
model with the different types of changes, we exploit the
comparison engine EMFCompare [17]. EMFCompare is a
Framework that provides a generic algorithm for calculating
differences between two versions of a model, based on distance
computing techniques.

Fig. 17. Identifying changes using EMFCompare

But EMFComapare proves to be rather restrictive with two
major drawbacks:

• A restriction on the number of models because com-
parison can be done with only two models of a given
business domain,

• A mess of memory since the approach requires keep-
ing in memory the previous version of the input model
as well as the current one.

Fig. 18. Integration of the observer pattern in the MMC

Instead of parsing the whole model and checking if an
element has changed, to overcome the mentioned problems,
we gave up the use of an external tool. As presented in
Figure 18, our solution is to use, an observer design pattern
[18] [19] whose role is to inform the correspondence model
by capturing, at real time, every change as a result of actions
operated on model elements. The Figure shows the participants
in the observer design pattern. It consists of a ”Subject” whose
specialization (”RootModel”), called concrete subject, repre-
sents the observed element. This latter has methods to attach or
detach an observer object and a method that sends notification
to its observers whenever its state changes. The observers,
through the update() method keep the state consistent with
the concrete subject.

For clarity and simplicity reasons, we have decided to
describe the M1C produced by the matching phase, using
the extension ”refine” type, by the representation given in
Table II (as presented in section 4). For example, the first
line means that a requirement with ”id=1.1” is related to the
model elements ”Report bug” and ”Issue” by a ”similaity”
relationship.

Table III is a snapshot of some possible changes. For the
modified type for instance, ”status” is changed to ”state” the
”fixedInVersion” element, which means the version where a
bug was fixed, is replaced with ”targetMilestone”, which has
another meaning (the version where a bug will be fixed). The
analyst decides also that ”AdditionalInfo” has no use and that
the description is enough, so he deletes it. The process engineer
in his turn adds a new task called ”Set Status to reopend”.

TABLE II. SIMPLIFIED REPRESENTATION OF THE

CORRESPONDENCE MODEL

Model element Relationship

ReqM 1 SDM2 BPM3

1.1 ”Issue” ”Report bug” Similarity

1.1.3.1 ”description” Verify

1.1.3.2 ”additionalInfo” Verify

”status” ”Set status to closed” UpdateValue

”fixedInVersion” ”Set status to closed” CoDependency

”reporter” ”reporter” Similarity
1 Requirement Model 2 Software Design Model 3 Business Process Model

TABLE III. SNAPSHOT OF THE POSSIBLE CHANGES

Type of change Concerned Element

Modified status → state, fixedInVersion → targetMilestone

Deleted AdditionalInfo

Added ”Set Status to reopened”

B. Change classification

The classification of changes is used to manage impacts
of changes by assigning to each type of change a specific
treatment. Therefore, we propose to classify them into two
categories:

• ”Automatic Evolution Category”: contains changes
that lead to automatic actions performed on models.
For example, if we add a new model element, the
matching process must be launched again,

• ”Monitored Evolution Category”: According to [20]
when semantics comes into play, versioning problems
become more complex to manage and cannot be
performed automatically. In other words, automation
support has typically to be reduced and user interven-
tion is required to keep the desired degree of precision.
For that this category includes actions that require
a human assistance to decide about certain types of
changes. For example, if one of the model elements
has been modified, it is the expert’s responsibility to
decide whether to maintain the relationship with the
new ends or to modify one of them, if it still needs to
exist.

The two first changes on Table III, concerning ”state”
and ”fixedInVersion”, are classified into ”Monitored Evolution
Category” whereas the other are classified into ”Automatic
Evolution Category”.

C. Change processing

To maintain the consistency of the system with regard to
established correspondences, model evolution must be per-
formed. Figure 19 describes the process followed for the
change processing. In this phase, models are updated to take
into account the identified changes and the modifications
deemed by the experts to be realized. On the one hand, the evo-
lutions classified as ”Automatic Evolution Category” will be
handled automatically through two strategies that correspond
to the addition and the removal of model elements. For the
first one, when a new model element is added to a source
model, the matching phase is relaunched incrementally. The
second strategy aims to delete a correspondence. In fact, if we
delete a model element, the correspondence becomes orphan.
We define an orphan correspondence as a correspondence for

which one of its extremities is missing. When a correspon-
dence is orphan it must be deleted from the correspondence
model. On the other hand, evolutions classified as ”Monitored
Evolution Category” imply a semi-automatic operation that
offers evolution suggestions to guide the expert and help him to
modify the model elements of the system. The correspondence
is maintained if it is still valid after changing the model
element. When an element is changed, it usually requires the
modification of each element to which it is connected in regard
to the established correspondences.

Fig. 19. Detailed vision of the change impact activity

Concerning the BTS example, firstly, as described in Table
IV, the correspondence with ”CoDependency” relationship is
deleted due to a semantic difference between the ”fixedIn-
Version” (new value) and ”targetMilstone” elements. On the
contrary the correspondence related to the ”state” element will
be kept even if it has been changed. Secondly, since ”addition-
alInfo” element has been deleted, the correspondence with the
”verify” relationship is deleted too and the related requirement
element (with id=”1.1.3.1”) could be also deleted (it might not
be needed anymore, depending on actors decisions). Finally,
the matching phase is invoked to create a correspondence
with an ”updateValue” relationship for the added element. The
figure below describe the structure of the updated version of
the correspondence model.

TABLE IV. SNAPSHOT OF M1C UPDATES

Model element Relationship

ReqM 1 SDM2 BPM3

1.1 ”Issue” ”Report bug” Similarity

1.1.3.1 ”description” Verify

”state” ”Set status to closed” UpdateValue

”state” ”Set status to reopened” UpdateValue

”reporter” ”reporter” Similarity
1 Requirement Model 2 Software Design Model 3 Business Process

Model

Fig. 20. Graphical representation of the new M1C

Since changes are managed and impacted to preserve
models consistency, concurrent changes are not yet supported
and will be treated in futur works.

VI. TOOL SUPPORT

To validate our approach, we have developed a matching
tool suite called HMS (”Heterogeneous Matching Suite”).
It is a suite of tools that gives stakeholders the ability to
establish correspondences and manage the consistency between
heterogeneous source models when they evolve.
For that, we decided to use Eclipse, the open source platform of
development, considered as the main incubator of development
projects [21] by the MDE community.

Fig. 21. Technical architecture of the HMS

The technical architecture that we adopted (Figure 21) is
based on the following layers:

• EMF (Eclipse Modeling Framework) [22]: Component
of the Eclipse MDT project and the basis of many
MDE projects, EMF is an environment for modelling
and code generation facility for building tools and
other applications based on a structured data model,

• CDO (Connected Data Objects) [23]: CDO is a repos-
itory of models. This tool manages model persistence
through a 3 layers architecture supporting EMF-based
client applications, featuring a central model reposi-
tory server and leveraging different types of pluggable
data storage back-ends like relational databases, object
databases and file systems,

• JAWS (Java API for WordNet Searching)[24]: an API
that provides applications to retrieve data from the
WordNet [25] database,

• JET (Java Emitter Templates) [22]: M2T transforma-
tion language based on EMF. it uses ”templates” to

control the generated output in order to obtain the java
code, XML ...

• EMFCollab [26]: a light-weight solution to let mul-
tiple users edit a single EMF model concurrently.
EMFCollab has a client-server architecture. The server
stores the master copy of the model. The server has
the model loaded into memory all the time. On the
clients side, EMFCollab stores a slave copy of the
master model in the memory. This model is kept in
sync over the network, by serializing and distributing
the commands affecting the model. All clients see the
same master copy over a single command stack,

• Xtext [27]: Xtext is a framework for development of
textual domain specific languages. It covers all aspects
of a complete language infrastructure, from parsers,
over linker, compiler or interpreter,

• Modelink ext [28]: Modelink is an EMF API for
establishing graphical links between models using
drag-an-drop. Modelink ext is an extension of this
latter making dynamic the number of model to link.

Fig. 22. Overall architecture of the prototype

The architecture of the matching phase of HMS prototype
is described in Figure 22. It is composed of three modules
represented by gears: Matching, M2T (Model To Text) and
T2M (Text To Model). Rectangles represent the different
(meta-)models in input and output of each module. To be
suitable for different modes of work, the framework proposes
two views: graphical and textual.

The graphical view is succinct and intuitive (using drag-
and-drop). For this, we rely on Modelink ext (Modelink that
we improved by adding some extra functionalities). Regarding
the textual view, it is suitable for stakeholders who prefer
working directly on source mode editing. It must be noted that
the two views are synchronized, meaning that a stockholder
may start by exploiting the graphical view and continue on
the same model of correspondences with the textual view and
vice versa.

To be able to establish correspondences in a graphical
manner, we must rewrite MMC to make it conform to the Mod-
elLink syntax. Otherwise MMC must be described in Xtext
syntax. To do this, the M2T module implements a Model to
Text transformation which serializes - through JET technology
- the meta-model of correspondences (MMC) into two kinds
of models according to the chosen type of visualization. Once
these models are available, correspondences between them can

Fig. 23. Snapshot of the textual editor with the domaine independent
relationships

be set up via the Matching module which is detailed below.
The last module T2M parses the model of correspondences
built using one of the visual tools (or both of them) into a
model that conforms to MMC.

Figure 23 above illustrates the textual editor that allows
creating the M2C (meta-level correspondence) model. In this
editor we begin by referencing metamodel elements that will
be connected by relationships. As shown on this figure, the
editor displays, at the outset, only the relationships derived
from the ”DomainIndependentRelationship” meta-class (”Ag-
gregation”, ”Dependency”, ”Generalization” and ”RelatedTo”).

To define new relationships, the domain expert must extend
the MMC metamodel. For this, a menu offers an ”Extend
MMC” action. Figure 24 shows the addition of the ”Verify”
relationship.

Fig. 24. Extension of the MMC

In the Figure 25, through the extension mechanism, the
domain expert can begin to establish correspondences between
the metamodels elements of the BTS. He is now able to
use the ”Verify” as well as the ”UpdateValue” relationships
(created the same way as above).

Fig. 25. Snapshot of the textual editor with new relationships

By performing a T2M (Text To Model) transformation, it is
possible to have a tree view of the M2C model. The model
M2C obtained (Figure 26) illustrates correspondences that may
exist between the meta-models elements belonging to various
business domains of the BTS. The correspondences previously
defined are located below the node ”correspondence Model
M2C”. For instance, the first correspondence that defines a
”verify” relationship relating an ”attribute” to a ”requirement”,
has a synchronisation property set to ”true” and an expression
written in OCL language.

Fig. 26. Example of M2C for the BTS domain

Figure 27 shows an example of M1C produced by an
extension refinement of type. The two new relationships
”CoDependency” and ”Similarity” are extensions of respec-
tively ”Dependency” and ”RelatedTo” ones.

Fig. 27. Example of M1C for the BTS

The models have undergone different changes that are
captured (see console of Figure 28) and exploited to enrich
the model of correspondence. So far, the assisted tool for
managing impacts has not been completed yet. The designers
have to manually apply changes, based on the model of
correspondences.

Fig. 28. Change detection and enrichement of the correspondence model

VII. CONCLUSION AND PERSPECTIVES

Our general research work addresses view-based complex
information systems design. More precisely, our work aims
to match heterogeneous source partial models related to a
given system and to manage the consistency of those mod-
els when they evolve. Thereby, we are firstly interested in
establishing correspondences between heterogeneous models
described through different DSLs corresponding to different
business areas of a domain. Secondly, models inevitably evolve
during time. This brings out the need for a change management
mechanism enabling the treatment of the impacts of changes
on model elements and thereby ensuring the coherence of
the system. This is done through a semi-automatic process
that uses an extended correspondence model allowing to (i)
detect changes made in a given input model, (ii) handle the
modifications according to a classification and (iii) update
the correspondence model to maintain the consistency of the
system.

In a multi-environment modelling, several modifications
can be performed simultaneously on different models. Using
the Kuhne’s terminology [29], a metamodel can provide both
an ontological and a linguistic framework for model creation.
A first perspective given to this work is to use domain ontolo-
gies or a least a linguistic resource such as Wordnet in order
to alleviate the task of the expert by automating the creation
of certain correspondences, predominately the Domain Inde-
pendent Relationships. Secondly, we are working on taking
into consideration the order of changes by exploiting weights
and synchronization attributes of the relationship meta-class.
Thirdly, we intend to complete the development of HMS proto-
type by adding a graphical syntax for matching, and providing
the impact assisted tool. Finally, big industrial information
systems include several designers working collaboratively. We
have thus initiated a study to define a collaborative process
to support the matching and evolution management activities.
Indeed, in real complex systems, the designers should closely
work together to efficiently produce the correspondence model,
and to manage impacts due to models change.

REFERENCES

[1] D. Kolovos, R. Paige, and F. Polack, “Merging models with the epsilon
merging language (eml),” Model Driven Engineering Languages and

Systems, pp. 215–229, 2006.

[2] Z. Drey, C. Faucher, F. Fleurey, V. Mahé, and D. Vojtisek, “Kermeta
language,” Reference Manual, 2009.

[3] A. Zito, Z. Diskin, and J. Dingel, “Package merge in uml 2: Practice
vs. theory?” Model Driven Engineering Languages and Systems, pp.
185–199, 2006.

[4] I. Ober, B. Coulette, and Y. Lakhrissi, “Behavioral Modelling
and Composition of Object Slices Using Event Observation,” in
ACM/IEEE International Conference on Model Driven Engineering

Languages and Systems (MODELS), Toulouse, 28/09/2008-03/10/2008,
ser. LNCS, J.-M. Bruel, K. Czarnecki, and I. Ober, Eds., no. 5301.
http://www.springerlink.com: Springer, septembre 2008, pp. 219–233.

[5] A. Anwar, S. Ebersold, B. Coulette, M. Nassar, and A. Kriouile, “A rule-
driven approach for composing viewpoint-oriented models,” Journal of

Object Technology, vol. 9, no. 2, pp. 89–114, 2010.

[6] M. El Hamlaoui, S. Ebersold, A. Anwar, M. Nassar, and B. Coulette,
“Heterogeneous models matching for consistency management,” in
ENASE 2013 - Proceedings of the 8th International Conference on

Evaluation of Novel Approaches to Software Engineering, Angers,

France, 4-6 July, 2013, pp. 181–188.

[7] J. R. Williams, R. F. Paige, and F. A. Polack, “Searching for model
migration strategies,” in Proceedings of the 6th International Workshop

on Models and Evolution. ACM, 2012, pp. 39–44.

[8] M. Herrmannsdoerfer, S. Benz, E. Juergens et al., “Cope: A language
for the coupled evolution of metamodels and models,” in 1st Interna-

tional Workshop on Model Co-Evolution and Consistency Management,
2008.

[9] D. Di Ruscio, L. Iovino, and A. Pierantonio, “What is needed for
managing co-evolution in mde?” in Proceedings of the 2nd International

Workshop on Model Comparison in Practice. ACM, 2011, pp. 30–38.

[10] A. Cicchetti, D. Di Ruscio, R. Eramo, and A. Pierantonio, “Automating
co-evolution in model-driven engineering,” in Enterprise Distributed

Object Computing Conference, 2008. EDOC’08. 12th International

IEEE. IEEE, 2008, pp. 222–231.

[11] O. SysML, “Omg sysml-v1.1,”
http://www.sysml.org/docs/specs/OMGSysML-v1.1-08-11-
01.pdf, November 2008. [Online]. Available:
http://www.sysml.org/docs/specs/OMGSysML-v1.1-08-11-01.pdf

[12] mantisbt, “Mantis bug tracker,” http://www.mantisbt.org/index.php.

[13] O. BPMN, “Omg bpmn-v2.0,”
http://www.omg.org/spec/BPMN/2.0/PDF, January 2011. [Online].
Available: http://www.omg.org/spec/BPMN/2.0/PDF

[14] C. Clasen, F. Jouault, and J. Cabot, “Virtualemf: a model virtualization
tool,” Advances in Conceptual Modeling. Recent Developments and New

Directions, pp. 332–335, 2011.

[15] C. Clasen, F. Jouault, J. Cabot et al., “Virtual Composition of EMF
Models,” in 7mes Journes sur l’Ingnierie Dirige par les Modles, 2011.

[16] F. Barbier, S. Eveillard, K. Youbi, and E. Cariou, “Model-driven reverse
engineering of cobol-based applications,” Information Systems Trans-

formation. Architecture Driven Modernization Case Studies, Morgan

Kauffman, Burlington, MA, pp. 283–299, 2010.

[17] C. Brun and A. Pierantonio, “Model differences in the eclipse modeling
framework,” UPGRADE, The European Journal for the Informatics

Professional, vol. 9, no. 2, pp. 29–34, 2008.

[18] C. Larman, Applying UML and patterns: an introduction to object-

oriented analysis and design and the unified process. Prentice Hall,
2002.

[19] J. Vlissides, R. Helm, R. Johnson, and E. Gamma, “Design patterns:
Elements of reusable object-oriented software,” Reading: Addison-

Wesley, 1995.

[20] A. Cicchetti and F. Ciccozzi, “Towards a novel model versioning
approach based on the separation between linguistic and ontological
aspects,” in ME 2013–Models and Evolution Workshop Proceedings.
CEUR-WS, 2013, p. 60.

[21] R. C. Gronback, Eclipse Modeling Project: A Domain-Specific Lan-

guage (DSL) Toolkit, 1st ed. Addison-Wesley Professional, 2009.

[22] D. Steinberg, F. Budinsky, M. Paternostro, and E. Merks, EMF:

Eclipse Modeling Framework, 2nd ed. Addison-Wesley, 2009.
[Online]. Available: http://my.safaribooksonline.com/9780321331885

[23] C. M. R. Overview, http://www.eclipse.org/cdo/. [Online]. Available:
http://www.eclipse.org/cdo/

[24] J. A. for WordNet Searching, http://lyle.smu.edu/ tspell/jaws/. [Online].
Available: http://lyle.smu.edu/ tspell/jaws/

[25] L. Patil, M. Atique et al., “A novel feature selection based on informa-
tion gain using wordnet,” in Science and Information Conference (SAI),

2013. IEEE, 2013, pp. 625–629.

[26] qgears, “emfcollab collaborative editing for emf models,”
http://qgears.com/products/emfcollab/, 2010.

[27] M. Eysholdt and H. Behrens, “Xtext: implement your language faster
than the quick and dirty way,” in Proceedings of the ACM interna-

tional conference companion on Object oriented programming systems

languages and applications companion. ACM, 2010, pp. 307–309.

[28] Modelink, http://www.eclipse.org/epsilon/doc/modelink. [Online].
Available: http://www.eclipse.org/epsilon/doc/modelink/

[29] P. Gómez, M. Sánchez, H. Florez, and J. Villalobos, “Co-creation
of models and metamodels for enterprise architecture projects,” in
Proceedings of the 2012 Extreme Modeling Workshop. ACM, 2012,
pp. 21–26.

