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Abstract — Image processing can improve significantly the 

every-day life of blind people wearing current and upcoming 

retinal prostheses relying on an external camera. We propose to 

use a real-time text localization algorithm to improve text 

accessibility. An augmented text-specific rendering based on 

automatic text localization has been developed. It has been 

evaluated in comparison to the classical rendering through a 

Simulated Prosthetic Vision (SPV) experiment with 16 subjects. 

Subjects were able to detect text in natural scenes much faster 

and further with the augmented rendering compared to the 

control rendering. Our results show that current and next 

generation of low resolution retinal prostheses may benefit from 

real-time text detection algorithms. 

I. INTRODUCTION 

Several research groups are designing neuroprotheses 
which aim at partly restoring vision for blind people. Among 
these systems, retinal implants are the most advanced (see 
[1] for a review). To date, two radically different approaches 
have been proposed: (1) the video images from an external 
camera are transformed into electrical pulses delivered 
wirelessly to an internal electrode array, (2) light entering the 
eye is converted into a pattern of electrical stimulations via 
micro-photodiodes integrated within the implant. In both 
devices, electrical stimulations elicit white/yellow spots of 
light called phosphenes [2]. The resulting crude vision is a 
set of phosphenes displayed in a restricted portion of the 
visual field (field of view of 15° to 20°) with little dynamic 
range (4 to 10 luminance levels per phosphene). 

Two groups have been conducting advanced human 
clinical trials and showed possible benefits for the patients. 
Argus II (Second Sight Medical Products, Sylmar, CA, 
USA) is a camera-based retinal prosthesis and consists of a 
60-electrode array [3]. It has received FDA and CE approval 
for commercialization. Alpha-IMS implant (Retina Implant 
AG, Reutlingen, Germany) is also CE marked and is 
composed of 1500 micro-photodiodes [4]. Both groups have 
conducted psychophysical experiments with implanted 
patients to measure visual task improvements. To date, best 
observed visual acuity (the sharpness of vision) is 20/1262 
and 20/546 with Argus II and Alpha-IMS respectively [1] 
(legal blindness is below 20/200). Subjects report 
improvement in tasks such as motion detection, 
orientation/mobility, and object localization/identification 
[3]–[5].  
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Some implanted users are also able to read large white 
letters (2~40°) and even short words printed on black 
background [6], [7]. Reading is the most studied 
psychophysical task under Simulated Prosthetic Vision 
(SPV) [8]–[14]. These simulators provide a way to 
experiment prosthetic vision and evaluate new phosphenized 
renderings with sighted subjects. SPV has shown that 
hundreds of distinct phosphenes are needed to read at a 
convenient speed. With the resolution increase brought by 
next generation implants, reading will probably become 
more practical but still with large and highly-contrasted 
letters.  

Camera-based implants offer an interesting opportunity to 
pre-process input images and control phosphenized 
rendering. It might, for instance, be useful to let the user 
control image magnification to virtually get closer to a 
specific target. This scenario makes sense when an implanted 
person is willing to read a block of text that he cannot get 
close enough to [14]. However, in this situation, the user has 
to locate the block of text before zooming or reaching it. 
 Considering the visual acuity provided by current and next 
generation implants, most of the implanted users will not be 
able to localize letters smaller than 2°. With this level of 
perception, it will be impossible to localize 8cm high letters 
on public signs (usual letter size for direction indications) 
when standing further than one or two meters away. 

Some recent works focus on task-specific renderings for 
camera-based implants [15]. In the present study, we propose 
a rendering based on a text localization algorithm. Here, the 
input image is processed in order to detect and locate blocks 
of text in the visual field, and then point out their location to 
the user. The user may then decide to orient his camera 
toward a specific block of text, and move closer or zoom in. 
We designed a SPV system to experiment and evaluate this 
new rendering. Among all up-to-date text localization 
algorithms, MSER-based one [16] (Maximally Stable 
Extremal Regions) has been chosen for real-time 
implementation capability. Text locations were highlighted 
by increasing the luminance of phosphenes corresponding to 
blocks of text. 

II. MATERIAL

A.  Experimental setup 

The Virtual Reality headset was a Vuzix 1200AR Head 

Mounted Display (HMD) (Vuzix Cor., Rochester, CA, 

USA). Two videos cameras were mounted on the front of the 

headset to capture the visual scene (640x480 pixels, field of 

view: 50°, frame rate: 30Hz). The HMD was connected to a 
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computer (dual-core i7) to process the images, perform text 

localization and compute the augmented phosphene 

rendering (see Fig. 1B). The phosphene rendering was 

displayed on the two LCD screens (1024x768 pixels, visual 

angle: 28×21°, refresh rate: 60Hz) inside the headset. A 

second computer controlled the experiment progress. 

B.  Text localization 

We chose MSER algorithm to localize text in the images 

[16]. MSER-type algorithms demonstrated good 

performances for real-time text detection in natural scenes 

[17]. Our custom-made software relied on the MSER 

implementation included in OpenCV library [18]. MSER 

provided candidate text regions from 640x480 8-bit 

greyscale input images. All candidates were then filtered (too 

small or too large regions were discarded, as well as regions 

with unlikely aspect ratios, e.g. too elongated regions) and 

grouped together (horizontally and vertically). The final 

result was a set of regions corresponding to the most likely 

text locations. The complete processing for one frame took 

less than 50ms. 

C.  Simulated Prosthetic Vision 

In this SPV experiment, we simulated retinal implants with 

enough electrodes to restore minimal navigation abilities, i.e. 

including a few hundreds of electrodes [19], [20]. We 

simulated two hexagonally settled electrode arrays: a 15x18 

and a larger 40x50, subtending 12x17° and 19x25° of visual 

angle respectively. The larger implant was designed to 

enable direct reading opportunities. Similarly to many SPV 

studies [2], phosphenes were approximated as greyscale 

circular dots with a Gaussian luminance profile. Simulated 

phosphenes had four luminance levels and a diameter of 0.9° 

for the smallest array and 0.5° for the largest. Spacing 

between phosphenes was identical for the two arrays (0.2°). 

10% randomly selected dots were switched off to simulate 

electrode dropout. 

We designed two renderings: “standard” and “augmented” 

(Fig. 1B). In the standard rendering, each video frame was 

resized (bicubic interpolation) to fit the number of simulated 

electrodes. The luminance of each simulated phosphene 

resulted from the luminance of the corresponding pixel in the 

resized image. The augmented rendering was similar, except 

that the text localization algorithm was applied on the image 

to find blocks of text, and highlight them by increasing the 

brightness of corresponding dots (and decreasing the 

brightness of the other dots at the same time). 

III. EXPERIMENT

A.  Participants 

16 sighted subjects (5 women, 11 men) participated in this 

study. This experiment was conducted according to the 

ethical recommendations of the Declaration of Helsinki and 

was approved by a local ethical committee (CLERIT) at the 

University of Toulouse. All subjects gave written informed 

consent to participate. 

B.  Procedure 

Subjects were seated 57 cm away from a TV screen. They 

had to localize a block of text on natural scenes (street 

photographs) displayed on the screen (Fig. 1A). Each subject 

systematically performed four conditions: two array sizes 

(15x18 and 40x50 simulated phosphenes) in each rendering 

(“standard” and “augmented”). For each condition, we used 

a set of 56 pictures (1440x1080 pixels subtending 69x52° of 

visual angle) where blocks of text were distributed as 

follows: 8 images without any text, 12 with text in upper left-

hand quadrant, 12 in upper right, 12 in lower right, and 12 in 

lower left. Three font sizes (1°, 2° and 4°) were equally 

distributed within the 48 pictures containing text.  

There were 56 trials per condition, corresponding to the 56 

pictures (display order was random). The task was to 

indicate for each trial the quadrant of the TV screen in which 

the text was located (if any). Each subject performed a total 

of 224 trials (56 trials per condition x 4 conditions). The 

sequence order of the four conditions was counterbalanced 

across subjects to compensate for potential learning effects. 

At the beginning of the experiment, subjects were trained 

during 10 minutes on a dedicated set of pictures. The 

instruction was to localize as fast and as accurately as 

possible a text displayed in front of them. A trial started with 

a short sound after which they were free to move the head 

(without getting closer) to scan the TV screen and find the 

text. They gave their responses verbally (0 = no text, 1 = 

upper left, 2 = upper right, 3 = lower right and 4 = lower 

left). The whole experiment had an average duration of 1 

hour per subject. 

IV. RESULTS

Following the experiment, two parameters have been 

analyzed: the response accuracy (percentage of correct 

responses), and the response time (time in seconds to provide 

an answer). 

 Statistics have been performed with R software 2.15.0
1
. 

The number of observations was limited, and data 

distribution was non-Gaussian. Therefore pair-wise group or 

condition comparisons have been performed with Wilcoxon 

tests, the significance level for all tests being set at 0.05. 

Significance values were corrected for multiple pair-wise 

comparisons using Bonferroni correction. 

 In the next section, “Std” will refer to “standard” 

rendering, “Aug” will refer to “augmented” rendering, and 

SD will refer to standard deviation. Note that if the subject 

made random decisions between the 5 possible answers for 

each trial, mean accuracy would be at 20% (chance level). 

Table 1 lists subjects’ performance (mean accuracy and 

mean response time) for the 4 conditions. Gathering all the 

subjects, accuracy was over 90% for the two “Aug” 

conditions (1518 and 4050). Accuracy decreased 

significantly to 64.0% (SD=5.8) and 32.9% (SD=7.9) in 

conditions Std4050 and Std1518 respectively. 

1http://www.r-project.org  



Figure 1.  A - Setup overview: subjects were seated 57 cm away from a TV screen and had to localize blocks of text with two different renderings and two 

different electrode arrays. B - The two renderings: (a) in the standard rendering, image is resized to fit the number of simulated electrodes; (b) in the 

augmented rendering, blocks of text localized with MSER-based algorithm are highlighted with bright phosphenes.  

TABLE I.  SUBJECTS PERFORMANCE (ACCURACY AND RESPONSE TIME) 

AND PAIR-WISE COMPARISONS BETWEEN CONDITIONS (P<0.01 IN LIGHT GREY 

CELLS)

Pair-wise comparisons between conditions revealed a 

significant effect on accuracy except between Aug1518 and 

Aug4050 (Table 1). 

For each condition, 8 images had no blocks of text, the 

correct response being “0”. The averaged accuracy 

(including all conditions) for these “catch” trials was 75.2% 

(SD=19.9). This confirmed that the subjects were performing 

the task correctly, even in conditions where text was hard or 

impossible to perceive. 

All subjects together, the average time to successfully 

localize a block of text was 12.9s in the Std1518 condition, 

8.9s in the Std4050 condition, 6.6s in the Aug1518 

condition, and 5.8s in the Aug4050 condition. All these 

response times were significantly different (See Table 1 for 

details). 

In order to roughly assess the effect of distance on text 

localization, the font size of the letters in the images was 

controlled (3 groups of 12 images with letters of 1°, 2° and 

4°). Fig. 2 reports text detection accuracy according to these 

different letter sizes. Subjects were at chance level for the 1° 

letters in the Std1518 condition, and performance slightly 

improved in this condition with larger font size (32.0% at 

4°). With eight times more simulated phosphenes (Std4050), 

performance was relatively low for 1° letters (36.7%), and 

increased close to the performance obtained on both “Aug” 

conditions for the largest letters (89.1% vs. 97.6% & 

98.0%). The performance for the two “Aug” conditions was 

independent from the font size. Indeed, the algorithm was 

similarly able to detect blocks of texts with letter sizes of 1°, 

2° and 4°. 

Figure 2.  Accuracy (% correct) per condition and letter size. Black: 1°, 

dark grey: 2°, light grey: 4°.  

Mean SD Wilcoxon (Z, p value) 

Accuracy (% correct) Std1518 Std4050 Aug1518 Aug4050 

Std1518 32.9 7.9 -3.5 -3.5 -3.5 

Std4050 64.0 5.8 -3.5 -3.5 -3.5 

Aug1518 90.7 3.9 -3.5 -3.5 -1.3, p=0.2 

Aug4050 92.6 3.1 -3.5 -3.5 -1.3, p=0.2 

Response Time (s) Std1518 Std4050 Aug1518 Aug4050 

Std1518 12.9 3.8 -3.5 -3.5 -3.5 

Std4050 8.9 1.5 -3.5 -3.5 -3.5 

Aug1518 6.6 1.5 -3.5 -3.5 -3.1 

Aug4050 5.8 1.2 -3.5 -3.5 -3.1 



V.   DISCUSSION 

In this SPV experiment, we have highlighted that despite 

intrinsic low resolution, camera-based retinal implants that 

will be available in the upcoming years could greatly benefit 

from computer vision techniques. As an example, we have 

shown that a text detection algorithm could help implanted 

users detect and locate text in the camera field of view. 

Indeed, a standard rendering approach with an array of 

15x18 electrodes does not allow text detection on street sign 

at more than 1-2 meters. With the augmented rendering that 

we proposed, based on the real-time processing of the 

camera image, it could be possible to localize text at a 

distance at least 4 to 8 times greater (8 meters at least, but 

the distance could be increased with higher camera 

resolution and more processing power). 

The MSER-based algorithm used in this study to detect 

blocks of text was limited both in the size of the letters and 

the type of font that it could detect. But text detection and 

recognition algorithms are becoming more and more 

efficient [17]. Even if mobile processors are not as fast as 

computer ones, overall power will keep increasing, and a 

truly generic real-time text detector with a low false alarm 

rate is doubtlessly feasible within the 5 upcoming years. This 

achievement could greatly improve text localization, and 

hence accessibility, to the forthcoming population of blind 

people implanted with retinal or cortical implants. 

As we showed with text detection in the visual field, the 

inclusion of artificial vision algorithms in camera-based 

implants opens a large field of everyday life improvement in 

the usability of prosthetic vision (e.g. faces or objects 

recognition).It also opens new perspectives on the interaction 

between the user and the prosthetic device. In the frame of 

our experiment, a user could intentionally zoom on a 

detected text, and choose to directly read it, or send it to an 

OCR (Optical Character Recognition) algorithm and text-to-

speech software. More generally, task-specific renderings 

(navigation, object and face localization and recognition, text 

localization, etc.) could all be integrated in one device, 

allowing a prosthesis user to switch between different modes. 
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