
HAL Id: hal-01147258
https://hal.science/hal-01147258

Submitted on 30 Apr 2015

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A collaborative process for developing secure
component-based applications

Rahma Bouaziz, Slim Kallel, Bernard Coulette

To cite this version:
Rahma Bouaziz, Slim Kallel, Bernard Coulette. A collaborative process for developing secure
component-based applications. IEEE International Workshop on Enabling Technologies: Infrastruc-
ture for Collaborative Enterprises - WETICE 2014, Jun 2014, Parma, Italy. pp. 306-311. �hal-
01147258�

https://hal.science/hal-01147258
https://hal.archives-ouvertes.fr

Open Archive TOULOUSE Archive Ouverte (OATAO)
OATAO is an open access repository that collects the work of Toulouse researchers and
makes it freely available over the web where possible.

This is an author-deposited version published in : http://oatao.univ-toulouse.fr/
Eprints ID : 13023

To link to this article : DOI :10.1109/WETICE.2014.82
URL : http://dx.doi.org/10.1109/WETICE.2014.82

To cite this version : Bouaziz, Rahma and Kallel, Slim and Coulette,
Bernard A collaborative process for developing secure component-
based applications. (2014) In: IEEE International Workshop on
Enabling Technologies: Infrastructure for Collaborative Enterprises -
WETICE 2014, 23 June 2014 - 25 June 2014 (Parma, Italy).

Any correspondance concerning this service should be sent to the repository

administrator: staff-oatao@listes-diff.inp-toulouse.fr

http://oatao.univ-toulouse.fr/
http://oatao.univ-toulouse.fr/13023/
http://oatao.univ-toulouse.fr/13023/
http://dx.doi.org/10.1109/WETICE.2014.82
mailto:staff-oatao@listes-diff.inp-toulouse.fr

A collaborative process for developing secure
component based applications

Rahma Bouaziz1,2, Slim Kallel2, Bernard Coulette1

1IRIT, University of Toulouse
Toulouse, France

rahma.bouaziz@irit.fr, bernard.coulette@irit.fr
2ReDCAD, University of Sfax,

Sfax, Tunisia
slim.kallel@fsegs.rnu.tn

Abstract—Security patterns describe security solutions that can
be used in a particular context for recurring problems in order to
solve a security problem in a more structured and reusable way.
Patterns in general and Security patterns in particular, have become
important concepts in software engineering, and their integration is
a widely accepted practice. In this paper, we propose a model-
driven methodology for security pattern integration. This
methodology consists of a collaborative engineering process,
called collaborative security pattern Integration process (C-
SCRIP), and a tool that supports the full life-cycle of the
development of a secure system from modeling to code.

Keywords— Component; Component based systems; Security
patterns; Collaborative process; CMSPEM.

I. INTRODUCTION

Security pattern are considered as a good solution
proposed by security experts to solve a recurrent problem in
a given context. However, along with increasing popularity
of patterns for security engineering, there is a need for
directives and guidelines helping system designers – who are
generally not security experts – to implement secure software
systems based on set of security patterns. So far there is no
clear, well-documented and accepted process dealing with
the full integration of security patterns from the earliest
phases of software development until the generation of the
application code [1].

Our work investigates how non-security experts can take
profits from security patterns to easily implement secure
component-based applications. In previous work [11, 21], we
proposed an engineering process, called SCRIP (SeCurity
patteRn Integration Process), which provides guidelines for
integrating security patterns into component-based models.
SCRIP defines activities and products to integrate security
patterns in the whole development process, from UML
component modeling until aspect code generation.

In this paper, we put the emphasis on the collaborative
aspect of the proposed process. We use an extension of the
SPEM standard − called CMSPEM − that was introduced in
[10]. We aim to present how software engineers can

collaborate to model and implement secure distributed
applications.

Our approach intends to provide a model-driven
engineering whose main interest is to design applications by
separating concerns and placing the concepts of models,
meta-models and model transformations at the very center of
the development process. Our approach combines model-to-
model transformation and aspect-oriented programming. In
the modeling phase, the designer model his application using
UML 2 and take advantages of UML profiles and ATL as
model-to-model transformation language to automatically
integrate the security patterns in component-based
applications. The use of aspect-oriented programming in the
implementation phase guarantees the application of the
security patterns independently of any application domain.
We build upon an integration process to help designers apply
security pattern’s solutions in practical situations and to work
with patterns throughout a component based software
lifecycle [21]. This process is highly collaborative, since it
involves several types of participants who must work
together in a coordinated manner. In order to provide a
clearer comprehension of the phases of the method, a
CMSPEM specification of the proposed process has been
produced.

The paper is structured as follows. In the next Section we
present motivations of this work. In Section III, a
collaborative SPEM process for security pattern integration
is presented. Section IV shows detailed description of the
proposed collaborative process. A tool prototype SCR-Tool
is presented in section V. In section VI, we detail the related
work and we conclude the paper in Section VII.

II. MOTIVATIONS

Most of the attacks on software systems are based on
vulnerabilities caused by software that has been poorly
designed and developed [4]. That’s the reason why systems
engineers need proven and generic security expert solutions
that can be applied to security problems in order to be able to
reduce the number of successful attacks against these

systems. Security patterns area convenient way of satisfying
this need.

Applying security patterns for developing secure software
systems is currently a very active area of research [5].
However, some limitations remain; in the following we will
present some of them.

First, most of existing approaches as described by [6][7]
focus on the definition and the application of security
patterns in design level without providing any mechanism for
implementing these patterns. Conversely, some approaches
[8][9] propose concrete implementation of these patterns by
providing middleware services that ensure the pattern
functionalities. There is little work concerning the full
integration of security patterns from the earliest phases of
software development, and providing automatic generation
of the secure application code [9].

Second we note the absence of a comprehensive
methodology that assists system developers (non-security
experts) when integrating security patterns. There is no
guidance on how such security patterns can be integrated into
current software component or model based system
development methods.

Also, the code that applies security patterns is generally
not well modularized, as it is tangled with the code
implementing each component’s core functionality and
scattered across the implementation of different components.

Finally, we can note the absence of a process that allows
security patterns integration in a collaborative way that
promotes working together, towards a common goal.

To overcome these limitations, several works have been
done [12] [14]. However, all of them were not interested in
the collaborative aspect. So in this work, we propose an
extension of SCRIP process presented in [11] to support
collaborative tasks in order to encourage developers to take
advantages from security solutions proposed as security
patterns in a collaborative way. That is why, in the following,
we put the emphasis on the collaborative aspect of the
process.

III. OVERVIEW OF C-SCRIP

Our development process is iterative and incremental:
activities are repeated through successive refinements, which
allow the reuse of proposed security patterns available in the
repository. The structure of our process follows the classical
life cycle, in which we have an elicitation phase, a modeling
phase and finally an implementation phase.

In the elicitation phase, the designer identifies and
models the basic functionality of the system. Security
concepts are not introduced.

The modeling phase consists first in identifying and
analyzing the security requirements from the application
component model. Those security requirements define which
security policies are necessary for the analysis model. After
that, security patterns are selected to enforce security policies
and UML profiles are defined according to the selected
security patterns. These patterns are integrated into the

application component model in order to obtain a secure
Application Component Model.

In the implementation phase, a component-based
platform must be selected (CCM, EJB, etc.) and the secure
application component model is refined into security aspects
code together with the functional code for producing the
secure application code.

As one can note with this phase, some activities are
collaborative, in the sense that several participants working
together towards a common goal should perform them. In the
following, we put the focus on the collaborative aspects of
this phase.

To describe the collaborative aspect of our process, we
use CMSPEM, an extension of the SPEM standard, proposed
by Kedji et al. [10]. CMSPEM introduces new concepts to
represent collaborative processes, and relationships among
them. For describing collaborative activities, CMSPEM
introduces the concept of Actor (human actor), a specific
human participant in a project, associated with a role and
provides relations to specify what is done by each actor.
CMSPEM also introduces the concept of ActorSpecificWork,
which is a specific unit of work done by an Actor in the
context of a task (TaskUse in SPEM), and the concept of
ActorSpecificArtifact, which is the personal copy of a
product (WorkProductUse in SPEM), in the workspace of a
given Actor.

IV. DETAILED DESCRIPTION OF C-SCRIP IN CMSPEM

In this section, we detail our proposed process for
security patterns integration in component-based
applications. We initially defined our proposed process using
SPEM (Software & Systems Process Engineering
Metamodel) [3] as described in [11] and shown in figure 1.
We adopted a concrete syntax with icons partially coming
from the SPEM2.0 base Plug-in.

A. Elicitation phase

This phase includes one activity "Design Component
Based Application", which allowsspecifying the main
functionality of the application. The designer may use the
Papyrus suite tool [2], for example, to specify his application
using UML2 component diagram. He may also use any
UML profile that supports specific component models like
CCM, EJB or Fractal. The resulting component model does
not support any security concept.

B. Modeling phase

This phase includes three activities. The first one is the
"analysis" activity, which is centered on capturing the
requirements of the modeled application. A security
repository in which several structures and descriptions of
security patterns are stored supports this activity. As shown
by the SPEM 2.0 diagram in figure 1, this activity has one
mandatory input (Application Component Model).

The second activity is the "Select Security patterns to
apply" activity in which the designer selects a security
pattern from the security pattern repository according to the
security requirements and specific application constraints

Figure 1. C-SCRIP - A SPEM process for developing secure component-
based applications (one iteration)

(the analysis model). The designer can select several patterns
in an iterative way so as to meet several security
requirements to be satisfied in the component-based
application.

The third activity is the "Apply security patterns"
activity, in which, selected security patterns can be applied to
produce a security application component Model.

In the following, we put the emphasis on the
implementation phase by showing how it can be described as
a collaborative activity.

C. Implementation phase

In the rest of this paper, we put the emphasis on this
phase which is dedicated to the production of functional
application code and security code (see figure 2). This phase
includes the elaboration of two intermediate artifacts: the
«Application Functional code» of the component based
application and the «Aspect code». «Security specialists»
and «Software designers» cooperate to define the final secure
application code as explained below.

The «Weaver» (here a software tool) takes application
functional code and aspect code as input and delivers a
secure code of the application. In this phase, we identified
two collaborative activities, as shown by specific icons in

figure 2: (1) Produce the aspect code and (2) Produce secure
application source code.

We identified certain roles that take part in the
implementing activity of this process.

Figure 2. Detailed implementation phase

 Software Designer is responsible for the design of the
component-based application and for supporting the
definition of security requirements. This stakeholder should
contribute with all security aspects for component
application. He should collaborate and agree with the
remaining stakeholder in this activity in order to produce
secure code of the application.

Security specialist leads and coordinates security
requirements and integrates them with the system
requirements. In particular in this phase, this stakeholder is
responsible for the generation of the aspect code according to
the secure application model.

1) Generating the functional application code

To produce the «Functional code» of the component
based application, we reuse existing approaches. Indeed
several approaches and commercial tools support the
generation of code skeleton with different technologies (EJB,
.NET, C++, etc.) from a UML component diagram, based on
a set of predefined libraries. The designer can also produce
the corresponding code by using for instance the MDA
approach. He first transforms the application component
model into a platform specific model. The corresponding
code is then produced using a model-to-text generator. In our
case we used the EJB UML profile for generating functional
application code targeting the EJB platform.

2) Producing the aspect code

We detail artifacts of the “Produce aspect code” activity.
The output artifact of this activity is the secure application
code model, which is composed of two artifacts produced

and used in this activity: Application func
Aspect code.

For detailing collaborative activities,
“Produce aspect code” activity for examp
notation proposed by A.K. Kedji et al.[10]. I
authors introduce concepts needed to repres
dynamic collaboration and propose an ex
SPEM standard by adding the concept of
actor) () associated with a role and add
specify what is done by each actor, products h
for, relations with other actors, knowing that:

− Each actor plays one or multiple role
− Each actor is assigned to one or seve
− Each actor owns one or several spec

In "Produce the aspect code" activity, as
3, we have identified relations between actor
and between actors and their specific tasks.

Figure 3. Relations between actors and their specific
production of aspect code

As mentioned above (section III), to app
policy we have to use several security patter
example, to apply the Access control policy
patterns are used: authentication, authoriz
based access control. This activity is
collaborative because the generation of
corresponding to each pattern is assigned to a
our collaborative context, each actor enacts t
meaning that he works on a copy of the “Pro
code” activity, in a sequential manner.
collaboration is illustrated in figure 3; for exa

tional code and

in this case,
ple, we use the
In this work, the
sent precise and
xtension of the
f Actor (human
ding relations to
he is responsible

es.
eral activities.
cific artifacts.

shown in figure
rs and their role,

c tasks during the

ply one security
rns together. For
y, three security-
zation and role
s qualified as
f aspects code
a set of actors. In
he same activity
oduce the aspect
A scenario of

ample, “Vinh” is

in charge of producing th
“Authentification” pattern; "R
the aspect code related to th
pattern; "Alice" is the coordi
generating the global aspe
control policy.

"Alice" is a Security S
collaborative activity. Each
the artifacts he has produce
shown in fig.ure 4 with the re
collaboration can be typically
management system such as “

Figure 4. CMSPEM re

V. CASE TOOL PROTOTYP

We have developed a
Eclipse development plat
tool is a proof of concept
process. We have
implementing the MDA
"model development too
and UML profiles. Also
pattern integration rules
model into a secure appli
to-code transformation w
to automatically impleme
We have combined the a
to provide an "integrat
(IDE) named SCRI-TOO
based application based o
process proposed in this p

Figure 5 shows a scre
left-hand side of the figu
been initiated; it propose
within the Eclipse Works
create the applicative exa
using the UML model ed
related to the manageme
created.

The classical menu bar fr
support the code generatio
Java and AspectJ cod
Development Tools) for as

he aspect code related to the
Reda" is in charge of producing
he “Role based access control”
nator and thus is responsible for
ct code related to the access

Specialist, who coordinates the
actor (Vinh, Reda, Bob) sends

ed to Alice, like it is explicitly
elation "pushesTo". This type of
y implemented with a versioning
“svn” or “git”.

elations between actors

PE"SCRI-TOOL"

case tool prototype based on the
tform (see figure 5). So far, this
of our collaborative engineering
employed several plug-ins

A standard: for instance, the
ols"(MDT) for supporting UML
o we use ATL to specify the
s to transform the application
ication model. To design model-

we have used Acceleo mappings
ent the final secure application.
aforementioned defined plug-ins
ted development environment"
OL to design secure component
on the collaborative engineering
paper.

eenshot of the prototype. On the
ure, the illustrative project has
es to apply a security pattern
space (en circled button). If we
ample, producing a diagram by
ditor from Eclipse, an example
ent of the medical system is

rom Eclipse has been adapted to
on options. After generating the
de we use AJDT (AspectJ
spects weaving.

Figure 5. SCRI-TOOL screenshot-Application of the security pattern

Our secure collaborative process contributes to
automate the development of secure applications using
security patterns solutions. Nevertheless, our proposal has
some limitations or constraints:

− The step related to the integration of patterns requires a
manual contribution in order to determine which artifact
will need security in the application case study.

− The prototype CASE tool, which supports our process,
needs to be completed and validated on real projects.

− Our process is only based on direct engineering methods.
Developing methods in order to offer direct and reverse
engineering methods could enrich the proposal.

− In our approach, so far, we address security based on
access control to guarantee confidentiality. However,
other security aspects, such as integrity, reliability and
availability could be taken into account.

− Other kinds of non-functional requirements such as cost-
benefit and performance are not included within our
process.

VI. RELATED WORK

There are a large amount of works addressing the topic of
security design patterns applicability and usability. Ortiz et
al. [12] provide an analysis of the main works related to
security patterns. They discuss their applicability for the
analysis and design of secure architectures in real and
complex environments. Here, we sum up some of the
proposals for integration of security patterns. In [13], authors
propose a security pattern integration technique dealing with
model transformation using ATL. Moreover, authors in [8]

use Petri nets to model security patterns at an abstract level.
A methodology for integrating security patterns into all
stages of the software development lifecycle is proposed in
[14]. Other approaches [15][16] present the use of aspect
oriented software design approach to model security patterns
as aspects and weave them in to the functional model.

Concerning design pattern application, S. Yau [17] uses a
formal design pattern representation and a design pattern
instantiation technique for automatic generation of
component wrappers from design patterns. In addition,
several approaches introduce their own tool-based support
for pattern instantiation. In [18] authors provide an UML
profile which allows the explicit representation of design
patterns in UML models through a model transformation
approach. Authors in [19] describe an approach for creating
automated transformations that can apply a design pattern to
an existing program. In [2], authors propose a method
supporting design patterns application in software projects,
based on a semantics defined via UML profile and model
transformations.

We can conclude that most of existing approaches focus
on the application of security patterns at design level without
providing any mechanism for implementing them in
component-based applications. There is little work
concerning the full integration of security patterns from the
earliest phases of software development and providing
automatic generation of the final secure application code.
Even more, the code that applies security patterns is
generally not well modularized, as it is tangled with the code
implementing each component’s core functionality and
scattered across the implementation of different components.

To remedy these limitations we have provided a
collaborative security pattern integration process –described
in SPEM−with tool support in order to encourage developers
to take advantage from security solutions proposed in
security patterns.

VII. CONCLUSION

In this paper, we have proposed a collaborative
engineering process for security pattern integration, by
eliciting and developing both functional and security aspects
as non-functional requirements. This approach is outlined as
follows. First an application model is built, here a component
based application model. Second, this model is transformed
by using ATL transformations that consist in applying the
security profiles stereotypes corresponding to the security
policies to enforce. Our process is represented as a result of
the application of SPEM, and its extension CMSPEM to
represent collaborative aspects of the process. We express
collaboration in a formalism well suited for easy
representation and tool-provided assistance.

This process has the advantage of separating the
application domain expertise and expertise in security. The
integration of security in the software development process
becomes easier for the architects/designers. Furthermore, it is
relatively simple and suitable for use by non-security experts.
Understanding security patterns from their description and
having knowledge on applications-based components are
sufficient skills to use this process.

In this work the implementation and the experimentation
presented in section Visa partial validation of our approach
because further work is still needed to get a true validation.

Our immediate future work consists of several tasks.
Concerning the implementation of our proposal, we have
planned to complete the developed tool in order to
automatically produce the functional code to target other
platforms. In addition, we plan to extend the current version
of the prototype to support collaboration aspects so as to
clearly show who does what. From a conceptual perspective,
we intend to define and implement a decision security
patterns map for automatically selecting patterns related to
given security policy in a given application.

REFERENCES
[1] Premkumar T. Devanbu, Stuart Stubblebine, Software
Engineering for Security�: a Roadmap in Proceedings of the

conference of The future of Software engineering, 2000.
[2] Papyrus UML. http://www.papyrusuml.org/
[3] SPEM 2.0. http://www.omg.org/spec/SPEM/2.0/.
[4] Spyros T. Halkidis, Nikolaos Tsantalis, Alexander
Chatzigeorgiou, George Stephanides, Architectural Risk Analysis of
Software Systems Based on Security Patterns, IEEE Transactions

on Dependable and Secure Computing, vol. 5, no. 3, pp. 129–142,
2008.
[5] Markus Schumacher, Security Engineering with Patterns:

Origins, Theoretical Models, and New Applications, Springer-

Verlag, 2003.
[6] Haralambos Mouratidis , Paolo Giorgini , Markus Schumacher,
Security Patterns for Agent Systems. Proceedings of the 8th
European Conference on Pattern Languages of programs, 2003

[7] Andreas Fuchs, Sigrid Gürgens, Carsten Rudolph, Towards a
Generic Process for Security Pattern Integration. in Proceedings of
the 20th International Workshop on Database and Expert Systems

Application, 2009, pp. 171–175.
[8] Viktor Horvath, Till Dörges, From security patterns to
implementation using petri nets, in Proceedings of the fourth

international workshop on Software engineering for secure systems

- SESS, 2008, pp. 17–24.
[9] Diego Ray, Antonio Maña , Mariemma I. Yagüe Integration of
Security Patterns in Software Models based on Semantic
Descriptions
[10] Komlan Akpédjé Kedji, Redouane Lbath, Bernard Coulette,
Mahmoud Nassar, Laurent Baresse, Florin Racaru Supporting
collaborative development using process models: a Tooled
Integration-focused Approach. Journal of Software : Evolution and
Process (JSEP). February 2014, Wiley
[11] Rahma Bouaziz, Slim Kallel, Bernard Coulette, An
Engineering Process for Security Patterns Application in
Component Based Models, in Proceedings of the International
conference on Enabling Technologies: Infrastructure for
Collaborative Enterprises (WETICE), 2013 IEEE Computer
Society, pp.231,236, 17-20 June 2013
[12] Roberto Ortiz, Santiago Moral-García, Santiago Moral-Rubio,
Belén Vela, Javier Garzás, Eduardo Fernández-Medina
Applicability of security patterns, in On the Move to Meaningful

Internet Systems: OTM, 2010, pp. 672–684.
[13] Yijun Yu, Haruhiko Kaiya, Hironori Washizaki, Yingfei
Xiong, Zhenjiang Hu, Nobukazu Yoshioka, Enforcing a security
pattern in stakeholder goal models, in Proceedings of the ACM

workshop on Quality of protection, 2008, pp. 9–14.
[14] Eduardo B. Fernandez and Maria M Larrondo-Petrie A
Methodology to Develop Secure Systems Using Patterns,
Integrating Security and Software Engineering, vol. 5, pp. 2006.
[15] Geri Georg, Indrakshi Ray, Robert France, Using Aspects to
Design a Secure System, Proceedings of the Eighth IEEE

International Conference on Engineering of Complex Computer

Systems, pp. 117– 126., 2002.
[16] Indrakshi Ray, Robert France, Na Li, Geri Georg An aspect-
based approach to modeling access control concerns, Information

and Software Technology, vol. 46, pp. 575–587, 2004.
[17] Stephen S. Yau, Ning Dong, Integration in component-based
software development using design patterns, in Proceedings 24th

Annual International Computer Software and Applications

Conference.2000, pp. 369–374.
[18] Xue-Bin Wang, Quan-Yuan Wu, Huai-Min Wang, Dian-Xi
Shi, Research and Implementation of Design Pattern-Oriented
Model Transformation, in Proceedings of the International Multi-

Conference on Computing in the Global Information Technology,
2007, pp. 24–24.
[19] Mel Ó Cinnéide, Paddy Nixon, Automated software evolution
towards design patterns, in Proceedings of the 4th international

workshop on Principles of software evolution, 2002, p. 162.
[20] Peter Kajsa, L’ubomír Majtás, Design patterns instantiation
based on semantics and model transformations, in Proceedings of
the 36th Conference on Current Trends in Theory and Practice of

Computer Science, 2010, pp. 540–551.
[21] Rahma Bouaziz, Bernard Coulette. Applying Security Patterns
for Component Based Applications Using UML profile. In
Proceedings of the International Conference on Computational
Science and Engineering, Paphos, Cyprus, p.186-193, 2012.

