Rahma Bouaziz
email: rahma.bouaziz@irit.fr

Slim Kallel
email: slim.kallel@fsegs.rnu.tn

Bernard Coulette
email: bernard.coulette@irit.fr

A collaborative process for developing secure component based applications

Keywords: Component, Component based systems, Security patterns, Collaborative process, CMSPEM

Security patterns describe security solutions that can be used in a particular context for recurring problems in order to solve a security problem in a more structured and reusable way. Patterns in general and Security patterns in particular, have become important concepts in software engineering, and their integration is a widely accepted practice. In this paper, we propose a modeldriven methodology for security pattern integration. This methodology consists of a collaborative engineering process, called collaborative security pattern Integration process (C-SCRIP), and a tool that supports the full life-cycle of the development of a secure system from modeling to code.

I. INTRODUCTION

Security pattern are considered as a good solution proposed by security experts to solve a recurrent problem in a given context. However, along with increasing popularity of patterns for security engineering, there is a need for directives and guidelines helping system designers -who are generally not security experts -to implement secure software systems based on set of security patterns. So far there is no clear, well-documented and accepted process dealing with the full integration of security patterns from the earliest phases of software development until the generation of the application code [START_REF] Premkumar | Software Engineering for Securityௗ: a Roadmap[END_REF].

Our work investigates how non-security experts can take profits from security patterns to easily implement secure component-based applications. In previous work [START_REF] Bouaziz | An Engineering Process for Security Patterns Application in Component Based Models[END_REF][START_REF] Bouaziz | Applying Security Patterns for Component Based Applications Using UML profile[END_REF], we proposed an engineering process, called SCRIP (SeCurity patteRn Integration Process), which provides guidelines for integrating security patterns into component-based models. SCRIP defines activities and products to integrate security patterns in the whole development process, from UML component modeling until aspect code generation.

In this paper, we put the emphasis on the collaborative aspect of the proposed process. We use an extension of the SPEM standard -called CMSPEM -that was introduced in [START_REF] Komlan | Florin Racaru Supporting collaborative development using process models: a Tooled Integration-focused Approach[END_REF]. We aim to present how software engineers can collaborate to model and implement secure distributed applications.

Our approach intends to provide a model-driven engineering whose main interest is to design applications by separating concerns and placing the concepts of models, meta-models and model transformations at the very center of the development process. Our approach combines model-tomodel transformation and aspect-oriented programming. In the modeling phase, the designer model his application using UML 2 and take advantages of UML profiles and ATL as model-to-model transformation language to automatically integrate the security patterns in component-based applications. The use of aspect-oriented programming in the implementation phase guarantees the application of the security patterns independently of any application domain. We build upon an integration process to help designers apply security pattern's solutions in practical situations and to work with patterns throughout a component based software lifecycle [START_REF] Bouaziz | Applying Security Patterns for Component Based Applications Using UML profile[END_REF]. This process is highly collaborative, since it involves several types of participants who must work together in a coordinated manner. In order to provide a clearer comprehension of the phases of the method, a CMSPEM specification of the proposed process has been produced.

The paper is structured as follows. In the next Section we present motivations of this work. In Section III, a collaborative SPEM process for security pattern integration is presented. Section IV shows detailed description of the proposed collaborative process. A tool prototype SCR-Tool is presented in section V. In section VI, we detail the related work and we conclude the paper in Section VII.

II. MOTIVATIONS

Most of the attacks on software systems are based on vulnerabilities caused by software that has been poorly designed and developed [START_REF] Spyros | Architectural Risk Analysis of Software Systems Based on Security Patterns[END_REF]. That's the reason why systems engineers need proven and generic security expert solutions that can be applied to security problems in order to be able to reduce the number of successful attacks against these systems. Security patterns area convenient way of satisfying this need.

Applying security patterns for developing secure software systems is currently a very active area of research [START_REF] Schumacher | Security Engineering with Patterns: Origins, Theoretical Models, and New Applications[END_REF]. However, some limitations remain; in the following we will present some of them.

First, most of existing approaches as described by [START_REF] Mouratidis | Security Patterns for Agent Systems[END_REF] [START_REF] Fuchs | Towards a Generic Process for Security Pattern Integration[END_REF] focus on the definition and the application of security patterns in design level without providing any mechanism for implementing these patterns. Conversely, some approaches [START_REF] Horvath | From security patterns to implementation using petri nets[END_REF] [START_REF] Ray | Yagüe Integration of Security Patterns in Software Models based on Semantic Descriptions[END_REF] propose concrete implementation of these patterns by providing middleware services that ensure the pattern functionalities. There is little work concerning the full integration of security patterns from the earliest phases of software development, and providing automatic generation of the secure application code [START_REF] Ray | Yagüe Integration of Security Patterns in Software Models based on Semantic Descriptions[END_REF].

Second we note the absence of a comprehensive methodology that assists system developers (non-security experts) when integrating security patterns. There is no guidance on how such security patterns can be integrated into current software component or model based system development methods. Also, the code that applies security patterns is generally not well modularized, as it is tangled with the code implementing each component's core functionality and scattered across the implementation of different components.

Finally, we can note the absence of a process that allows security patterns integration in a collaborative way that promotes working together, towards a common goal.

To overcome these limitations, several works have been done [START_REF] Ortiz | Medina Applicability of security patterns[END_REF] [START_REF] Fernandez | Petrie A Methodology to Develop Secure Systems Using Patterns[END_REF]. However, all of them were not interested in the collaborative aspect. So in this work, we propose an extension of SCRIP process presented in [START_REF] Bouaziz | An Engineering Process for Security Patterns Application in Component Based Models[END_REF] to support collaborative tasks in order to encourage developers to take advantages from security solutions proposed as security patterns in a collaborative way. That is why, in the following, we put the emphasis on the collaborative aspect of the process.

III. OVERVIEW OF C-SCRIP

Our development process is iterative and incremental: activities are repeated through successive refinements, which allow the reuse of proposed security patterns available in the repository. The structure of our process follows the classical life cycle, in which we have an elicitation phase, a modeling phase and finally an implementation phase.

In the elicitation phase, the designer identifies and models the basic functionality of the system. Security concepts are not introduced.

The modeling phase consists first in identifying and analyzing the security requirements from the application component model. Those security requirements define which security policies are necessary for the analysis model. After that, security patterns are selected to enforce security policies and UML profiles are defined according to the selected security patterns. These patterns are integrated into the application component model in order to obtain a secure Application Component Model.

In the implementation phase, a component-based platform must be selected (CCM, EJB, etc.) and the secure application component model is refined into security aspects code together with the functional code for producing the secure application code.

As one can note with this phase, some activities are collaborative, in the sense that several participants working together towards a common goal should perform them. In the following, we put the focus on the collaborative aspects of this phase.

To describe the collaborative aspect of our process, we use CMSPEM, an extension of the SPEM standard, proposed by Kedji et al. [START_REF] Komlan | Florin Racaru Supporting collaborative development using process models: a Tooled Integration-focused Approach[END_REF]. CMSPEM introduces new concepts to represent collaborative processes, and relationships among them. For describing collaborative activities, CMSPEM introduces the concept of Actor (human actor), a specific human participant in a project, associated with a role and provides relations to specify what is done by each actor. CMSPEM also introduces the concept of ActorSpecificWork, which is a specific unit of work done by an Actor in the context of a task (TaskUse in SPEM), and the concept of ActorSpecificArtifact, which is the personal copy of a product (WorkProductUse in SPEM), in the workspace of a given Actor.

IV. DETAILED DESCRIPTION OF C-SCRIP IN CMSPEM

In this section, we detail our proposed process for security patterns integration in component-based applications. We initially defined our proposed process using SPEM (Software & Systems Process Engineering Metamodel) [START_REF]SPEM 2.0[END_REF] as described in [START_REF] Bouaziz | An Engineering Process for Security Patterns Application in Component Based Models[END_REF] and shown in figure 1. We adopted a concrete syntax with icons partially coming from the SPEM2.0 base Plug-in.

A. Elicitation phase

This phase includes one activity "Design Component Based Application", which allowsspecifying the main functionality of the application. The designer may use the Papyrus suite tool [START_REF]Papyrus UML[END_REF], for example, to specify his application using UML2 component diagram. He may also use any UML profile that supports specific component models like CCM, EJB or Fractal. The resulting component model does not support any security concept.

B. Modeling phase

This phase includes three activities. The first one is the "analysis" activity, which is centered on capturing the requirements of the modeled application. A security repository in which several structures and descriptions of security patterns are stored supports this activity. As shown by the SPEM 2.0 diagram in figure 1, this activity has one mandatory input (Application Component Model).

The second activity is the "Select Security patterns to apply" activity in which the designer selects a security pattern from the security pattern repository according to the security requirements and specific application constraints The third activity is the "Apply security patterns" activity, in which, selected security patterns can be applied to produce a security application component Model.

In the following, we put the emphasis on the implementation phase by showing how it can be described as a collaborative activity.

C. Implementation phase

In the rest of this paper, we put the emphasis on this phase which is dedicated to the production of functional application code and security code (see figure 2). This phase includes the elaboration of two intermediate artifacts: the «Application Functional code» of the component based application and the «Aspect code». «Security specialists» and «Software designers» cooperate to define the final secure application code as explained below.

The «Weaver» (here a software tool) takes application functional code and aspect code as input and delivers a secure code of the application. In this phase, we identified two collaborative activities, as shown by specific icons in figure 2: (1) Produce the aspect code and (2) Produce secure application source code.

We identified certain roles that take part in the implementing activity of this process. Security specialist leads and coordinates security requirements and integrates them with the system requirements. In particular in this phase, this stakeholder is responsible for the generation of the aspect code according to the secure application model.

1) Generating the functional application code

To produce the «Functional code» of the component based application, we reuse existing approaches. Indeed several approaches and commercial tools support the generation of code skeleton with different technologies (EJB, .NET, C++, etc.) from a UML component diagram, based on a set of predefined libraries. The designer can also produce the corresponding code by using for instance the MDA approach. He first transforms the application component model into a platform specific model. The corresponding code is then produced using a model-to-text generator. In our case we used the EJB UML profile for generating functional application code targeting the EJB platform.

2) Producing the aspect code

We detail artifacts of the "Produce aspect code" activity. The output artifact of this activity is the secure application code model, which is composed of two artifacts produced and used in this activity: Application func Aspect code.

For detailing collaborative activities, "Produce aspect code" activity for examp notation proposed by A.K. Kedji et al. [START_REF] Komlan | Florin Racaru Supporting collaborative development using process models: a Tooled Integration-focused Approach[END_REF]. I authors introduce concepts needed to repres dynamic collaboration and propose an ex SPEM standard by adding the concept of actor) (

) associated with a role and add specify what is done by each actor, products h for, relations with other actors, knowing that:

-Each actor plays one or multiple role -Each actor is assigned to one or seve -Each actor owns one or several spec

In "Produce the aspect code" activity, as 3, we have identified relations between actor and between actors and their specific tasks. As mentioned above (section III), to app policy we have to use several security patter example, to apply the Access control policy patterns are used: authentication, authoriz based access control. This activity is collaborative because the generation of corresponding to each pattern is assigned to a our collaborative context, each actor enacts t meaning that he works on a copy of the "Pro code" activity, in a sequential manner. collaboration is illustrated in figure 3 The classical menu bar fr support the code generatio Java and AspectJ cod Development Tools) for as he aspect code related to the Reda" is in charge of producing he "Role based access control" nator and thus is responsible for ct code related to the access Specialist, who coordinates the actor (Vinh, Reda, Bob) sends ed to Alice, like it is explicitly elation "pushesTo". This type of y implemented with a versioning "svn" or "git". elations between actors PE"SCRI-TOOL" case tool prototype based on the tform (see figure 5). So far, this of our collaborative engineering employed several plug-ins A standard: for instance, the ols"(MDT) for supporting UML o we use ATL to specify the s to transform the application ication model. To design modelwe have used Acceleo mappings ent the final secure application. aforementioned defined plug-ins ted development environment" OL to design secure component on the collaborative engineering paper.

eenshot of the prototype. On the ure, the illustrative project has es to apply a security pattern space (en circled button). If we ample, producing a diagram by ditor from Eclipse, an example ent of the medical system is rom Eclipse has been adapted to on options. After generating the de we use AJDT (AspectJ spects weaving. Our secure collaborative process contributes to automate the development of secure applications using security patterns solutions. Nevertheless, our proposal has some limitations or constraints:

-The step related to the integration of patterns requires a manual contribution in order to determine which artifact will need security in the application case study.

-The prototype CASE tool, which supports our process, needs to be completed and validated on real projects.

-Our process is only based on direct engineering methods. Developing methods in order to offer direct and reverse engineering methods could enrich the proposal.

-In our approach, so far, we address security based on access control to guarantee confidentiality. However, other security aspects, such as integrity, reliability and availability could be taken into account.

-Other kinds of non-functional requirements such as costbenefit and performance are not included within our process.

VI. RELATED WORK

There are a large amount of works addressing the topic of security design patterns applicability and usability. Ortiz et al. [START_REF] Ortiz | Medina Applicability of security patterns[END_REF] provide an analysis of the main works related to security patterns. They discuss their applicability for the analysis and design of secure architectures in real and complex environments. Here, we sum up some of the proposals for integration of security patterns. In [START_REF] Yu | Enforcing a security pattern in stakeholder goal models[END_REF], authors propose a security pattern integration technique dealing with model transformation using ATL. Moreover, authors in [START_REF] Horvath | From security patterns to implementation using petri nets[END_REF] use Petri nets to model security patterns at an abstract level. A methodology for integrating security patterns into all stages of the software development lifecycle is proposed in [START_REF] Fernandez | Petrie A Methodology to Develop Secure Systems Using Patterns[END_REF]. Other approaches [START_REF] Georg | Using Aspects to Design a Secure System[END_REF][16] present the use of aspect oriented software design approach to model security patterns as aspects and weave them in to the functional model.

Concerning design pattern application, S. Yau [START_REF] Yau | Integration in component-based software development using design patterns[END_REF] uses a formal design pattern representation and a design pattern instantiation technique for automatic generation of component wrappers from design patterns. In addition, several approaches introduce their own tool-based support for pattern instantiation. In [START_REF] Wang | Research and Implementation of Design Pattern-Oriented Model Transformation[END_REF] authors provide an UML profile which allows the explicit representation of design patterns in UML models through a model transformation approach. Authors in [START_REF] Mel Ó Cinnéide | Automated software evolution towards design patterns[END_REF] describe an approach for creating automated transformations that can apply a design pattern to an existing program. In [START_REF]Papyrus UML[END_REF], authors propose a method supporting design patterns application in software projects, based on a semantics defined via UML profile and model transformations.

We can conclude that most of existing approaches focus on the application of security patterns at design level without providing any mechanism for implementing them in component-based applications. There is little work concerning the full integration of security patterns from the earliest phases of software development and providing automatic generation of the final secure application code. Even more, the code that applies security patterns is generally not well modularized, as it is tangled with the code implementing each component's core functionality and scattered across the implementation of different components.

To remedy these limitations we have provided a collaborative security pattern integration process -described in SPEM-with tool support in order to encourage developers to take advantage from security solutions proposed in security patterns.

VII. CONCLUSION

In this paper, we have proposed a collaborative engineering process for security pattern integration, by eliciting and developing both functional and security aspects as non-functional requirements. This approach is outlined as follows. First an application model is built, here a component based application model. Second, this model is transformed by using ATL transformations that consist in applying the security profiles stereotypes corresponding to the security policies to enforce. Our process is represented as a result of the application of SPEM, and its extension CMSPEM to represent collaborative aspects of the process. We express collaboration in a formalism well suited for easy representation and tool-provided assistance.

This process has the advantage of separating the application domain expertise and expertise in security. The integration of security in the software development process becomes easier for the architects/designers. Furthermore, it is relatively simple and suitable for use by non-security experts. Understanding security patterns from their description and having knowledge on applications-based components are sufficient skills to use this process.

In this work the implementation and the experimentation presented in section Visa partial validation of our approach because further work is still needed to get a true validation.

Our immediate future work consists of several tasks. Concerning the implementation of our proposal, we have planned to complete the developed tool in order to automatically produce the functional code to target other platforms. In addition, we plan to extend the current version of the prototype to support collaboration aspects so as to clearly show who does what. From a conceptual perspective, we intend to define and implement a decision security patterns map for automatically selecting patterns related to given security policy in a given application.

Figure 1 .

 1 Figure 1. C-SCRIP -A SPEM process for developing secure componentbased applications (one iteration)(the analysis model). The designer can select several patterns in an iterative way so as to meet several security requirements to be satisfied in the component-based application.

Figure 2 .

 2 Figure 2. Detailed implementation phase Software Designer is responsible for the design of the component-based application and for supporting the definition of security requirements. This stakeholder should contribute with all security aspects for component application. He should collaborate and agree with the remaining stakeholder in this activity in order to produce secure code of the application.

Figure 3 .

 3 Figure 3. Relations between actors and their specific production of aspect code

 ; for exa tional code and in this case, ple, we use the In this work, the sent precise and xtension of the f Actor (human ding relations to he is responsible es. eral activities. cific artifacts. shown in figure rs and their role, c tasks during the ply one security rns together. For y, three securityzation and role s qualified as f aspects code a set of actors. In he same activity oduce the aspect A scenario of ample, "Vinh" is in charge of producing th "Authentification" pattern; "R the aspect code related to th pattern; "Alice" is the coordi generating the global aspe control policy. "Alice" is a Security S collaborative activity. Each the artifacts he has produce shown in fig.ure 4 with the re collaboration can be typically management system such as "

Figure 4 .Figure 5

 45 Figure 4. CMSPEM re V. CASE TOOL PROTOTYP We have developed a Eclipse development plat tool is a proof of concept process. We have implementing the MDA "model development too and UML profiles. Also pattern integration rules model into a secure appli to-code transformation w to automatically impleme We have combined the a to provide an "integrat (IDE) named SCRI-TOO based application based o process proposed in this p Figure 5 shows a scre left-hand side of the figu been initiated; it propose within the Eclipse Works create the applicative exa using the UML model ed related to the manageme created.

Figure 5 .

 5 Figure 5. SCRI-TOOL screenshot-Application of the security pattern