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Abstract—This paper tackles the issue of ambient systems
adaptation to users’ needs while the environment and users’
preferences evolve continuously. We propose the adaptive multi-
agent system Amadeus whose goal is to learn from users’ actions
and contexts how to perform actions on behalf of the users in
similar contexts. However, considering the possible changes of
users preferences, a previously learnt behaviour may become
misfit. So, Amadeus must be able to observe if its actions on the
system are contradicted by the users or not, without requiring
any explicit feedback. The aim of this paper is to present the
introspection capabilities of Amadeus in order to detect users
contradictions and to self-adapt its behaviour at runtime. These
mechanisms are then evaluated through a case study.

I. INTRODUCTION

The evolution of computer science towards “Pervasive
Computing” makes necessary the design of new “systems”
that have to manage a large amount of information distributed
among numerous devices. These systems are plunged into
dynamic environments, they have evolutive configurations and
functionalities and they are composed of heterogeneous de-
vices. As a global control of such systems is impossible to
implement, a solution is then to design them in an ascendant
way. Thus, there is a real need to have devices and applications
that are able to adapt their behaviour at runtime, as a response
to the actions and needs of users that use such systems.

The aim of this paper is to contribute to the design of a
system able to ensure a consistent management of an ambient
system in its entirely. This system has to take into account at
runtime the constraints previously enumerated, as well as the
evolution of users’ behaviours. More concretely we propose
a proactive system, called Amadeus, based on the AMAS
(Adaptive Multi-Agent System) approach, which is able to
observe users during their activity in order to learn how to
perform their actions on their behalf. For that, we assume that
if a user performs an action in a given context, his action
is the correct action to perform if a similar context occurs
again. This paper completes a previous work [5] that presents
the functional architecture of Amadeus in order to learn the
behaviour to assign to an ambient system depending on the
context. Section II describes related works regarding existing
learning algorithms. Section III is devoted to the presentation
of the main notions and principals of the Amadeus AMAS,
including the contradiction issue, which is the new capability
of Amadeus introduced in this paper. Section IV focuses on this
new capability, more precisely on a mechanism implemented
between agents for solving contradictions. Section V contains
evaluations as well as an analysis of obtained results. We
conclude and plan some future works in section VI.

II. CONTEXT AND LEARNING

The objective of our work is to design a “context-aware”
system, namely a system able to adapt an ambient system
depending on users’ context [3] [13]. Our system has to be
able to learn what is the correct behaviour to adopt in order to
satisfy users. For this, our system aims to continually interact
with its environment (especially users), to establish the most
satisfactory functionality and to autonomously adapt using its
environment feedbacks. Autonomous adaptation is defined [10]
as “the ability for a system to dynamically change, at runtime
and without the intervention of an external entity, its way of
acting according to the observed behaviour in the environment
in response to its actions and in order to provide a service,
a stable functionality through time, despite changes in the
environment”. To obtain this result, we studied the relevance
of existing learning algorithms in the field of ambient systems.

Most of learning algorithms belong to the three main
families of learning algorithms: supervised learning [9], un-
supervised learning [1], and reinforcement learning [14]. We
will not explain unsupervised learning algorithms because such
algorithms allow dividing a set of data into different categories,
without associating a specific class with these categories. In
this paper we are interested in learning the behaviour to give
to an ambient system depending on the perceived context, that
is to say we want to associate any perceived situation with the
action to perform in this situation. Thus, unsupervised learning
algorithms are misfit to such a problem.

A. Supervised learning algorithms

In a supervised learning algorithm, the learner receives a set
of inputs. Each input consists of many attributes that can take
discrete or continual values. Moreover, to each of these inputs
is associated a class from the finite set of possible classes. A
supervised learning algorithm has a set of examples illustrating
the objective to learn. From these examples, it tries to build
a model that allows it to give the correct class for each input
[9]. In other words, the learning algorithm considers that if its
model allows it to attribute the correct class to each example,
this model is close enough to the reality; consequently if the
algorithm perceives a new input, it will be able to associate this
input with the correct class. Artificial Neural Networks [12],
Genetic Algorithms [6], Bayesian Network [7] as well as Case-
Based Reasoning [8] belong to this category of algorithms.

B. Reinforcement learning

At each cycle, a reinforcement-learning algorithm perceives
the current state of its environment and the list of the actions



it can perform. It chooses one of these actions, and then at
the next cycle, it perceives the new environment state as well
as a reward value that allows it to evaluate the quality of
the action chosen in the previous state. Thus, the goal of a
reinforcement-learning algorithm is to maximize the reward
over time. This gain can be assessed in many ways: cumulated
gain, average gain, etc. However, as such an algorithm does
not have any a priori knowledge about the effect of its actions,
it can only determine the reward that it will receive by trying
this action for a given situation. This reward is not always the
same at each time; so, determining what is the best action to
perform for a given situation requires an exploration phase,
where the algorithm has to try each action a number of
times. In the exploitation phase, the algorithm exploits the
acquired knowledge in order to choose the action with the
best-expected gain. Finding the right balance between these
two phases (exploration and exploitation) is one of the main
issues of such algorithms. The model built by a reinforcement-
learning algorithm is called a politic. It determines the action
to perform depending on the current state. The optimal politic
is the one that, whatever the environment state, allows to
determine the action for which the expected gain is the highest.
A reinforcement learning algorithm seeks to determine this
optimal politic, or at least to find the closest politic. Q-learning
[15] and SARSA [14] belong to this category of algorithms.

C. Discussion

In the framework of ambient systems, by combining user’s
actions with contextual situations indicating where/when these
actions took place, it is possible to use supervised learning
algorithms to create a cases base that will be used to learn
the intended functionality. However, this approach has some
limitations. More precisely, in ambient systems, it is necessary
to be able to self-adapt to unexpected situations, such as the
appearance or disappearance of devices, the user’s preferences
evolution, etc. Most of supervised algorithms address this
issue by restarting their learning from the beginning. Due to
these limitations, reinforcement-learning algorithms seem to
be a good solution. Several variants have been proposed to
overcome the long time they require to learn. For example
the context management system proposed by Zaidenberg [16]
uses an indirect reinforcement-learning algorithm. However, a
learning algorithm based on a “trial/error” process does not
seem to be appropriate for the context-aware control of an
ambient system. Indeed, such a control requires the exploration
of new solutions that may be bad solutions (inappropriate
actions in such contexts). Furthermore, in such a domain, any
error may disrupt the user who may finally reject the system.

Considering our very specific needs and constraints, very
few learning algorithms are relevant. We are looking for an
alternative to these algorithms in order to design a system for
learning users’ behaviour in ambient systems.

III. Amadeus

The AMAS approach seems to be a good alternative. It
has been defined by our research team [2] [4] in order to
design adaptive multi-agent systems enabling to solve complex
problems that can be incompletely specified and for which an
a priori known algorithmic solution does not exist. It considers
the system as composed of parts (i.e. agents) and focuses on

the local behaviour to give to these agents for making them
adaptive (to their local environment) while ensuring that the
collective behaviour that emerges from interactions between
agents is the one expected; in that case the system is said
“functionally adequate”. To this end and in this approach,
each agent pursuing a perceive/decide/act lifecycle must have
a local cooperative behaviour. Our definition of cooperation is
not a conventional one (resource sharing or the fact of working
together). It is based on three local meta-rules that the designer
has to instantiate depending on the problem to be solved and
that have to be locally checked by every agent (for more details
see [2] and [4]).

The AMAS approach also incorporates the notion of crit-
icality, defined as the “distance between the current situation
and the local purpose of the agent” [10]. Thus, “the more
the agent is far from its goal, the more it considers its current
situation as being critical”. If we consider this notion, an agent
is cooperative if it acts in order to help the most critical agent
of its neighbourhood. So all agents within an AMAS tries to
continuously reduce the criticality of the most critical agent
(possibly itself), while avoiding another agent becoming even
more critical. If an agent is found not to be able to help the
most critical agent of its neighborhood, it may help other less
critical agents. Thus, doing so, it hopes these agents will be
able to help the most critical agent thanks to the reduction of
their own criticality.

A. Presentation of Amadeus

Amadeus is an adaptive multi-agent system (AMAS) com-
posed of several device AMAS (figure 1). A device AMAS is
associated to every device of the ambient system, and the set
of the device AMAS composes Amadeus. The local objective
of each device AMAS is to determine the correct behaviour to
give to its device. For this, it observes the users’ actions, and
learns in which situation it is possible to perform these actions
on their behalf. More precisely, a device AMAS is composed
of three types of agents:

1) A controller agent that is linked with every effector.
It decides which action to perform on this effector
depending on the current context;

2) A context agent that is linked with a controller agent.
It proposes to its controller agent a particular action
to perform in a specific situation;

3) A data agent that is linked with each data perceived
from a sensor (local or remote). It is responsible for
the propagation of the data to the context agents of
its device AMAS, and for the usefulness evaluation
of these data towards these context agents.

The goal of a controller agent is to decide at anytime what
is the best action to perform on the effector (with which it is
linked) on behalf of the user. This decision is made thanks to
a set of context agents.

A context agent is created by the controller agent every
time a user performs an action (for example to turn on
the light). This context agent associates this action with a
description of the situation in which the user has performed
this action. This situation is composed of the set of perceived
data values when the action is performed (example: Light=0;
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Fig. 1. Amadeus architecture

PresenceSensor=1; LuminositySensor=22). The action is rep-
resented by the value given to the effector (for example, 1 to
turn on and 0 to turn off the light).

Every context agent perceives a set of data sent by data
agents, and so, coming from local sensors situated on either the
same device or on distant sensors (situated on another device
AMAS). Each of perceived data possesses a validity status
that depends on its current value compared to the situation
described by the context agent. A data is considered as valid
if it belongs to a range of values. This range represents the
values interval that a piece of data may have in order to
describe a situation. Thus, the context agent tries to establish
the borders of valuable ranges for every perceived data that
enables it to describe the correct situation for which its action
proposition is appropriate (namely its action will have the
expected effects). To do this, the context agent possesses, for
each perceived data, an Adaptive Value Range Tracker (AVRT)
that is a data structure enabling to describe a valuable interval
(called “interval of validity”) where the min and max borders
can evolve. The value of each border is estimated with an
Adaptive Value Tracker (AVT) [10], which is a tool devoted
to the tuning of evolving parameters. Thus, a context agent
considers a data as valid if its current value belongs to its
associated AVRT.

A context agent has also its own validity status. Its status
is valid if all perceived data are valid (invalid otherwise). If so,

a context agent sends its action proposition associated with an
estimated gain to the controller agent. The controller agent can
then decide which action, among those proposed by all valid
context agents, is the most appropriate to satisfy the user.

A context agent also possesses an estimated gain η. It is
a numerical value that represents a belief on the interest to
perform its action rather than another agent’s action. More
details on this value are given in section III-B3. In the
previous versions of Amadeus [5], the estimated gain was a
simulated value so that each context agent can send an explicit
proposition about the interest to perform its proposed action.
Such an evaluation could be performed thanks to a user profile.
However, our objective is that Amadeus performs its learning
process without any a priori knowledge about the users. So, we
propose to give introspection capabilities to Amadeus agents
in order to determine the actions that will satisfy the users,
and those that will disturb them.

B. Contradiction issue

A controller agent performs on its effector an action
proposed by a context agent because it considers that this
action will satisfy the users. However, the context agent can
be wrong, either because its action is proposed in a wrong
situation or because its action is inappropriate due to the
evolution of users’ preferences.

The controller agent does not perceive any explicit feed-
back from users’ satisfaction. However, we assume that when
Amadeus performs an action on a given effector that does
not agree with a user’s preferences, this user will perform a
corrective action on the same effector in order to restore a
context that agrees with his preferences. Such a user’s action
is defined as a contradiction. A controller agent has to be able
to evaluate if a performed action is contradicted by a user
or not (if the user is satisfied or not). Indeed, if an action
of Amadeus is contradicted by a user, we can suppose that
Amadeus was wrong to perform this action, whereas if this
action is not contradicted, Amadeus acted properly.

A user’s action may be of two kinds: (i) a “normal” action
performed to change the environment state, in order to fulfil
the user’s preferences in a specific situation (low luminosity
level, etc.); (ii) a contradiction performed to correct a previous
action made by Amadeus.

1) Contradiction detection: We will now explain how a
controller agent is able to detect if a user’s action is a
contradiction, and how concerned context agents can adapt
themselves to resolve this contradiction. We consider the action
a performed by a context agent, and the next action au
performed by a user. The goal of the controller agent is to
determine if au is a contradiction of a. We consider au as a
contradiction of a if (i) the action au is performed just after a,
without any other action performed (either by the system or a
user) on the same effector between a and au; (ii) the situation
before a was performed is “similar” to the situation once
au is performed. A controller agent only perceives situations
through the action propositions sent by the context agents.
So, from its point of view, a situation is not characterised by
the current state of the perceived data, but by the set of the
valid context agents. Therefore, if two situations S1 and S2 are
similar, then the same context agents are valid in each of these



situations. So, when an action a is performed, the controller
agent records the list of context agents that are valid in this
situation (just before the action a is performed). When the next
action au is performed, the controller agent compares the list
of context agents currently valid (just after au is performed)
with the previously recorded list. If these lists are identical,
the controller agent detects that the second action au is a
contradiction of the first action a. It sends then a contradiction
signal to the context agent that proposed the action a.

Conversely, if Amadeus contradicts a user’s action, we
consider that the Amadeus action is always wrong. The user’s
action is always dominating. In that case, the context agent
that proposed the action (that contradicted the user’s action)
receives a contradiction signal from the controller agent.

Finally, when an action of Amadeus is contradicted by
another action of Amadeus (self-contradiction), we consider
that both of the Amadeus actions are wrong.

2) Context agents adaptation (first proposition): A first
solution consists in making invalid the contradicted context
agent in the situation where it proposed its action. Thus it will
not send its action proposition if the same situation occurs
again. As a situation is represented by the set of states of each
perceived data at a given time, it is sufficient to exclude the
current data of at least one validity range in order to exclude
the situation itself. The AVRT defined to model each validity
range, provides a mechanism to exclude a value v from its
values range. This exclusion is not instantaneous: it depends
on the proximity between v and the closest boundary of the
range values. The AVRT can directly exclude v by modifying
one of its boundaries. It can also tend to exclude v by changing
the value of its boundary but not sufficiently to make v ending
outside of the values range. If there is at least one validity
range in the contradicted context agent for which the exclusion
mechanism can lead to the exclusion of v, this solution is
applied in order to resolve the contradiction.

3) Context agents adaptation (second proposition): If the
first proposition cannot be applied, another solution is to
change the estimated gain of the contradicted context agent.
When the controller agent sends a contradiction to a context
agent, it completes its message by giving the list of context
agents that were valid at the same time. Then, a contradicted
context agent c adds these agents in its list of superior agents
Supc (symmetrical, each new superior context agent csup adds
c in its list of inferior agents Infcsup

). This addition causes
the automatic update of the estimated gain value of c, so that
this value becomes lower than the estimated gain value of all
the context agents of the list. Thus, if c becomes valid for the
same situation as the one when it proposed its contradicted
action, it can be sure that at least one other context agent will
propose another action with a bigger estimated gain, and so
will be selected. The automatic update of the estimated gain
value is performed thanks to a mechanism belonging to c and
is explained in the next section.

IV. ORDERING MECHANISM BETWEEN context AGENTS

A. Definitions and properties

The proposed ordering mechanism ensures that if a context
agent ci is inferior to another context agent cj , then the

estimated gain of ci is lower than the estimated gain of cj .
Lec C be the set of all the context agents; each agent c ∈ C
has a list Supc of superior context agents and a list Infc
of inferior context agents. The ordering relation between two
agents ci and cj is transitive and is defined by the formula 1.

∀ci, cj ∈ C, ci < cj ⇒

∣

∣

∣

∣

∣

∣

∣

cj ∈ Supci and ci ∈ Infcj

∃cn ∈ C such as cn ∈ Supci and
ci ∈ Infcn and ci < cn < cj

(1)
The context agent c ∈ C is supposed to have a list of superior
context agents Supc, and a list of inferior context agents Infc.
Its goal is to provide its estimated gain value η(c). This value
has to respect the constraints given by the formulae 2 and 3.

∀i ∈ Infc, η(i) < η(c) (2)

∀s ∈ Supc, η(c) < η(s) (3)

We define the “degree of freedom” δ(ci, cj) between two
context agents ci and cj linked with an ordering relation, as
the absolute value of the difference between their estimated
gain values η(ci) and η(cj) (formula 4).

δ(ci, cj) = |η(ci)− η(cj)| (4)

δ(ci, cj) is the maximal value that the inferior agent can
add (respectively, that the superior agent can remove) to its
estimated gain) without breaking their ordering relations.

A context agent is also characterized by (i) its “superior
degree of freedom” δSUP (c) that represents the degree of free-
dom between itself and the superior agent having the lowest
estimated gain, and by (ii) its “inferior degree of freedom”
δINF (c) that represents the degree of freedom between itself
and the inferior agent having the highest estimated gain. These
values can be seen as the flexibility the context agent c has in
order to modify its estimated gain η(c). Moreover, a context
agent knows the estimated gain η(s) and the superior degrees
of freedom δSUP (s) of each superior agent s, as well as
the estimated gain η(i) and the inferior degrees of freedom
δSUP (i) of each inferior agent i.

B. Resolution of the incoherence between two context agents

Let us consider a new context agent anew added to the
list of superior agents Supa of another context agent a. The
agents a and anew have their own estimated gain value η(a)
and η(anew). Considering that a < anew, we are supposed
to have η(a) < η(anew). If this inequality is not checked, in
other words if η(a) ≥ η(anew), the agents a and anew have
to cooperate in order to solve this conflict.

Two solutions are possible: either a decreases its estimated
gain η(a), or anew increases η(anew). At every cycle, each
agent has to determine if it is the most appropriate to modify
its value, or if it seems more appropriate to let the other agent
modify its value. To determine which agent has to act, we
use the notion of criticality, defined in section III. We define
the criticality of a context agent as its inability to modify its
estimated gain value. Because context agents are cooperative,
they seek to decrease the criticality of the most critical agent.

In our example, agent a seeks to decrease its estimated
gain η(a) under η(anew). The more its ability to decrease its



estimated gain without being in conflict with other agents is
low (in other words, its inferior degree of freedom δINF (a) is
low), the more a is critical. In the same way, the agent anew
seeks to increase its estimated gain above η(a), so the more its
superior degree of freedom δSUP (anew) is low, the more anew
is critical. The least critical agent modifies its value. If it is a,
a decrements the value of η(a), whereas if it is anew, anew
increments η(anew). This resolution is made incrementally. At
each step, the agents a and anew determine which one is the
most critical. Then this agent increments (or decrements) its
value by 1. This step is repeated until the conflict is solved
(so η(a) < η(anew)).

Let us consider MaxInfa the list of the inferior agents of a
having the highest estimated gain of Infa, and MinSupanew

the list of superior agents of a having the lower estimated
gain of Supanew

. To determine which agent between a and
anew is the most critical, a and anew compare their respective
degree of freedom δINF (a) and δSUP (anew). The one having
the lower degree of freedom is the most critical. For example
(figure 2), as the inferior degree of freedom δINF (a) is equal
to 2 due to the agent i2 and the degree of superior freedom
δSUP (anew) is equal to 1 due to the agent s1, anew is the
most critical agent.
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Fig. 2. Evaluation of the most critical agent by comparing δINF (a) and
δSUP (anew)

If δINF (a) and δSUP (anew) are equals a and anew com-
pare the number of agents that limit their respective degree
of freedom (in other words, the sizes of MaxInfa and
MinSupanew

); the agent that has the biggest list is the most
critical. For instance, in the figure 3, the agent a has an inferior
degree of freedom δINF (a) equal to 2 (because of two inferior
agents i2 and i3), while anew has a superior degree of freedom
δSUP (anew) equal to 2 (because of only one superior agent
s1). The agent a is then the most critical.

If MaxInfa and MinSupanew
have the same size the

agents a and anew have to determine which one is the most
critical depending on the degree of freedom of the agents of
MaxInfa and MinSupanew

. The inferior degree of freedom
min

i∈MaxInfa
δINF (i) of the agent of MaxInfa having the

lowest inferior degree δINF (i) is compared to the superior
degree of freedom min

s∈MinSupanew

δSUP (s) of the agent of

MinSupanew
having the lowest superior degree of freedom

δSUP (s). The agent having the lowest value is the most
critical. For example (figure 4), the lowest inferior degree

min
i∈MaxInfa

δINF (i) among the agents of MaxInfa is equal to
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Fig. 3. Evaluation of the most critical agent by comparing Size(MaxInfa)
and Size(MinSupanew )

those of i2 and i3 (that is to say equal to 1), while the lowest
superior degree min

s∈MinSupanew

δSUP (s) among the agents of

MinSupanew
is the one of s1 (equal to 2). The agent a is

then the most critical.
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Fig. 4. Evaluation of the most critical agent by comparing max
i∈Infa

δINF (i)

and min
s∈Supanew

δSUP (s)

In case of a perfect equality of the criticality the context
agent that started this process (the agent a in the example)
modifies its estimated gain. The algorithm 1 summarizes all
cases to define the most critical agents between two self-
ordered agents (a and anew).

However, the conflict resolution between two agents a and
anew can induce other conflicts (for example, the decrease
of the estimated gain of a can bring it to have an estimated
gain lower than those of one of its inferior agents), and the
resolution of these new conflicts can induce other conflicts,
etc. These disturbances therefore propagate step by step until
all conflicts have disappeared. A last case can then appear; let
us consider the resolution of the conflict between a and anew
that brings, by propagation, an agent asup superior to the agent
a (directly or by transitivity) to be in conflict with an agent
ainf inferior to the agent a. The agent ainf is then unable
to increase its estimated gain, as the agent asup is unable to
decrease its. Indeed, the agent ainf cannot be lower than a and
higher than asup at the same time. In this case, we consider
than the oldest ordering relationship has to disappear.



Algorithm 1 Evaluation of the most critical self ordered agent
between a and anew

1: If δINF (a) < δSUP (anew) Then
2: Return(a)
3: Else If δINF (a) > δSUP (anew) Then
4: Return(anew)
5: Else
6: MaxInfa = {}
7: ηmax = ( max

i∈Infa
δINF (i)), the maximal inferior degree

of the Infa agents
8: For all agent i ∈ Infa, the list of a inferior agents a

Do
9: If η(i) = ηmax Then

10: MaxInfa.Add(i)
11: End If
12: End For
13: MinSupanew

= {}
14: ηmin = ( min

s∈Supanew

δSUP (s)), the minimal superior

degree of the Supanew
agents

15: For all agent s ∈ Supanew
, the list of anew superior

agents Do
16: If η(s) = ηmin Then
17: MinSupanew

.Add(s)
18: End If
19: End For
20: If Size(MaxInfa) < Size(MinSupanew

) Then
21: Return(a)
22: Else If Size(MaxInfa) > Size(MinSupanew

) Then
23: Return(anew)
24: Else If ηmax < ηmin Then
25: Return(a)
26: Else If ηmax > ηmin Then
27: Return(anew)
28: Else
29: Return(a) by default
30: End If
31: End If

V. EVALUATION

The proposed solution was implemented using
Speadl/MAY [11], which is a tool to assemble reusable
components in order to build architectures supporting the
development and execution of multi-agent systems. Our
solution was evaluated through a simulator allowing to
simulate a virtual environment, to design a behaviour for
virtual users, and then to simulate the users’ actions in
their environment. Each virtual user is initialized with a
set of preferences (about luminosity, temperature, etc.), and
his behaviour (turn on lights for example) is generated
depending of these preferences and the evolution of the
user’s environment. In this section, we study the capability of
Amadeus to adapt itself to the change of a user’s preferences,
thanks to the mechanisms previously presented.

A. User’s behaviour variation

We analyse first the effect of a small variation of the user’s
behaviour on the Amadeus learning. The largest part of the
previously learnt behaviour of Amadeus remains correct, there
are just some situations where it performs wrong actions.

1) Study framework: We simulate a room of an apartment
having a light and an electric shutter. A device AMAS is
associated with each device. We add a user who randomly
walks in this apartment; he performs actions in order to make
the room luminosity level satisfying when he is inside the
room, and to have the light turned off when he is outside
the room. Each simulation lasts 50 days. We perform a pertur-
bation (corresponding to a user’s behaviour change, through a
small variation of his luminosity preferences) in the Amadeus
environment at the 25th day. Concretely, he turns on the light
or opens the shutter more quickly, while he waits more time
before to turn off the light or to close the shutter. However,
his behaviour is quite similar once his change of preferences
is performed.

2) Results: We perform a set of 20 simulations of 50
days without Amadeus. The actions performed by the user are
represented by the figure 5 : the average number of actions
performed each day by the user increases from 78.9 in the
first part of the simulation to 80.9 in the second part.

� � �� �� �� �� �� �� �� ��

�
�
�
�
��
��
	�

�
�

�
�
�

��������	��
��

��

��

��

���

���

�

��

�������
��
��

Fig. 5. Number of user’s actions
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Fig. 6. Number of user and Amadeus actions

Now, we repeat the simulations by adding Amadeus. We
seek to observe the effect of the user’s behaviour modifications
on the Amadeus behaviour. We represent the actions performed
by the user and Amadeus in the figure 6. For the first half of the
simulation, Amadeus performs on average 65.4 actions the first
day versus 12.8 actions performed by the user; thus Amadeus
performs a total of 83.6% of actions the first day. If we enlarge
the comparison to the 10 first days, we obtain on average 76.4
actions by day performed by Amadeus versus 3.9 performed
by the user, so we have a total of 95% of actions performed
by Amadeus. Finally, on the 15 next days (which correspond



the first half of the simulation), Amadeus performs on average
78.6 actions by day while the user performs 0.9 action by day.
With a total of 98.9% actions performed by Amadeus during
these 15 days, we can consider that the learning is over when
we change the user’s preferences.
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Fig. 7. Average number of Amadeus contradictions

When the variation of the user’s behaviour occurs, we can
observe a slight upturn of the user’s actions. These actions
allow to correct the Amadeus actions that became misfit to
the new preferences of the user. The figure 7 shows more
precisely the contradictions detected by the system through
the simulations. In the first half of the simulations, the con-
tradictions are punctual. Then, after the change of the user’s
preferences, the number of contradictions strongly increases,
and then progressively decreases while Amadeus adapts its
learning to the new user’s behaviour. Finally, during the 10
first days of this second half of the simulation, the average
number of actions performed by Amadeus is equal to 80.5,
while the user performed on average 1.8 actions by day. If we
compare these results with the number of actions performed
by the user without Amadeus (equal to 80.3), we can observe
an average increase of 2 actions by day. This increase is
mostly due to contradictions, with on average 0.7 contradicted
Amadeus actions by day (6 in the worst case) plus the user’s
contradictions (on average 0.7 actions by day). For the rest
of the simulation (days 35 to 50), the average number of
Amadeus actions by day is equal to 81.3 whereas the average
number of user’s actions by day is equal to 0.6. So, Amadeus
performs 99.2% of the actions. Once the adaptation phase
passed, Amadeus possesses a new behaviour that suits the new
preferences of the user.

B. User’s behaviour change

We analyse now the effect of a big change in the user’s
behaviour on the Amadeus learning. The goal of Amadeus is
then to dynamically adapt itself to this radical change that
completely invalidates the previously learnt behaviour.

1) Study framework: The framework is the same as the one
of the previous study, but with a bigger variation of the user’s
preferences. The user wants now a very low luminosity level.
He wants the light always turned off, and he keeps the shutter
closed except if the luminosity level is very low (basically, he
wants to stay in the dark, with the shutter opened just at the
night). The objective is then to observe if Amadeus is able to
modify completely its learning, by “unlearning” the behaviour

previously learnt in order to adopt a more adequate behaviour.
A set of 20 simulations without Amadeus is performed, and
then the same 20 simulations with Amadeus are performed.
For each of these simulations, we completely change the user’s
preferences at the end of the 25th day.

2) Results: The user actions without Amadeus are repre-
sented by the figure 8. For the first half of the simulation, the
obtained results are the same as the results of the first study.
For the second half of the simulation, the user decreases very
strongly the number of actions he performs by day because he
no longer uses the light.
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Fig. 8. Number of user’s actions
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Fig. 9. Number of user and Amadeus actions

Amadeus is then added to simulations. The ability of
Amadeus to learn the correct behaviour for the devices despite
of the user’s preferences change can be seen on figure 9. The
Amadeus performances during the first half of the simulation
are the same than in the first study. So, we can consider its
learning is over when we apply our perturbation. Once the
user’s preferences have changed, we can observe an increase
of the user’s actions. These actions are composed of contradic-
tions and other actions that represent the new user’s behaviour.

The largest part of the contradictions is performed the first
day (figure 10); the user corrects a big number of Amadeus
actions. More precisely, an average number of 7,1 actions is
performed by the user the 26th day. For the 10 first days of
the second half of the simulation, we can observe an average
number of 1,9 actions performed by the user. This number
decreases until 0,4 for the 15 last days of the simulation. As
the system adapts itself, the number of contradictions decreases
progressively.
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Fig. 10. Average number of Amadeus contradictions

C. Discussion

In the first study, the perturbation is relatively small,
because we have limited the change to an increase of the
luminosity level sought by the user. The user’s behaviour is
still more or less the same, except in some situations where
the luminosity level is the old and the new threshold. By
consequence, the necessary change in the behaviour learnt
by Amadeus was small too. The largest part of the context
agents created before the modification of the user’s preferences
remains still valid; only some of them became not adapted to
the new preferences of the user, and so were contradicted.
The context agents that are still correct continue to observe
that their action propositions are not contradicted. Moreover,
the introspection abilities of the incorrect context agents allow
them to detect that their action propositions did not satisfy
the user (when they are warned by their controller agent that
they were corrected by the user), and so to adapt themselves.
Then, we studied the effect of a big change in the user’s
preferences. This important change in the functionality to be
learnt involves many contradictions of the Amadeus actions by
the user. These contradictions decrease the estimated gain of
the contradicted context agents, but also increase the estimated
gain of the context agents that did not propose these actions. It
is in this way that Amadeus performs its “unlearning”, while
it simultaneously learns the correct actions to perform.

This study shows the ability of Amadeus to react and
adapt itself to a small and to a more important change in the
functionality to learn. The originality of this capability is that
it is not necessary to completely stop the Amadeus actions and
to restart its learning from the beginning. The capability of the
context agents to adapt themselves when they become incorrect
allows Amadeus to modify only the part of its functionality that
became incorrect without modifying the rest of its behaviour.
Furthermore, experimentations with several users (having or
not compatible preferences) have been performed. Even if they
cannot be explained here due to lack of space, they showed
that Amadeus was able to adapt a subset of its functionality
in case of change of preferences of a user without disturbing
the subset of its functionality for the other users.

VI. CONCLUSION

This paper presents an extended version of the multi-agent
system Amadeus, devoted to the learning of users’ behaviour
in ambient systems. Amadeus can learn situations and actions

performed by the user on effectors of devices in order to per-
form later these actions on behalf of the user. The originality
of Amadeus relies on the fact that this learning is performed
without any a priori knowledge. More precisely, it does not
require any profile of the users, neither an explicit feedback
of the users to evaluate its actions. Indeed, Amadeus observes
the activity of users and possesses introspection capabilities
in order to detect when its action does not suit the user. For
that it is able to determine when a user contradicts the action
it has performed. It is also able to take into account these
contradictions in order to adapt its learnt behaviour to the
preferences (possibly evolutive) of the user. We made some
experiments that show the adaptive capabilities of Amadeus to
take into account changes in the preferences of a user

Our main perspective is to apply Amadeus to a real ambient
system, in order to evaluate more efficiently its abilities to
dynamically learn a correct behaviour by observing actions
and contradictions of users. Moreover, we are also interested
in giving to Amadeus the capability to extract users’ profiles
from its knowledge. In particular, such profiles would enable
to validate more efficiently the learnt behaviours.

REFERENCES

[1] H. B Barlow. Unsupervised learning. Neural computation, 1(3):295–
311, 1989.
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l’information. Thèse de doctorat, Univ. de Toulouse, juillet 2011.

[11] V. Noel. Component-based Software Architectures and Multi-Agent

Systems: Mutual and Complementary Contributions for Supporting
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