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† Institut Mines Télécom/Télécom SudParis, CNRS UMR 5157 SAMOVAR France firsname.lastname@telecom-sudparis.eu
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Abstract—With the Internet of Things (IoT) paradigm, ambi-
ent systems move from locally distributed systems to Internet
distributed systems. These systems become huge in term of
number of devices and imply high heterogeneity (e.g., of devices,
of networks). They are continuously evolving with appearing
and disappearing devices at runtime. The inner complexity of
these systems, called multiscale systems, requires autonomic
deployment middleware. Such middleware should deploy com-
ponents where and when necessary, and adapt the architecture
of the deployed systems considering the different scales of
the systems. In this paper, we define MuScADeL, a domain-
specific language (DSL) dedicated to multiscale and autonomic
software deployment. MuScADeL allows designers to abstractly
define deployment properties without exact knowledge of the
devices and networks the system will be deployed on. This
DSL is based on a scale-awareness framework, which helps
designers to characterize the multiscale nature of a system from
several viewpoints such as device, network, administration and
geography. With MuScADeL, deployment designers may express
multiscale properties of systems to deploy. MuScADeL is a
building block for deployment middleware that targets multiscale
distributed systems. We illustrate the possibilities of MuScADeL
through a smart transport scenario.

Keywords-Multiscale distributed systems, Software deploy-
ment, Domain-specific language

I. INTRODUCTION

Smart systems built over the IoT are distributed on many

various computing nodes from smart sensors and mobile

computers to cloud computers. Each family of host devices

deals with its specific set of technologies, languages and com-

munication protocols. Systems cross geographic and admin-

istrative boundaries, and each geographical or administrative

domain requires specific rules (e.g., of communications, of

privacy). We call those systems “multiscale systems”. A major

issue with multiscale systems is to deal with high levels of

heterogeneity.

IoT projects such as SmartSantander [1] and IoTI [2],

come with examples of smart applications deployed at a city

scale. Those applications are composed of a mass of software

components in interaction. The distributed sets of machines

that host them (called deployment domain) are huge, and

present high heterogeneity (e.g., of devices, of networks).

Moreover, these systems are mostly pervasive, and highly

dynamic with devices that appear and disappear during the life

of the system. Despite this, IoT projects and ambient projects

rarely address software deployment issue. Nonetheless, we

believe that smart deployment middleware that autonomically

deploys multiscale systems, becomes essential. These middle-

ware should adapt the architecture of the deployed systems

considering the different scales of the systems by deploying

components where and when necessary.

In this paper we present MuScADeL (MultiScale

Autonomic Deployment Language), a domain-specific lan-

guage (DSL) dedicated to autonomic software deployment of

multiscale systems. MuScADeL allows designers to declare

multiscale deployment properties without exact knowledge

of the deployment domain. For example, the designer may

specify that one server should be deployed in each local

area network, or in each district of a city. One foundation of

MuScADeL is MuScA (Multiscale distributed systems Scale

Awareness framework), a scale-awareness framework, which

includes a multiscale characterization process, and multiscale

probe generation software. Through a model driven approach,

MuScA helps designers to identify the multiscale nature of

each system from its relevant viewpoints: for example device,

network, geography or administration viewpoints. Besides,

we show how multiscale probes are produced from MuScA

models and how they are referenced by MuScADeL. Those

probes provide scale-aware capability to future deployment

middleware. This paper focuses on the MuScADeL DSL

and on the multiscale probes, others parts of deployment

middleware are not presented.

The organization of the paper is the following. In Section II,

we motivate our work through a smart transport scenario. We

depict our approach in Section III. Then, in Section IV, we

position our work compared to the main DSL for software

deployment and their ability to handle multiscale concerns. In

Sections V and VI, we respectively present the MuScA charac-

terization framework and the MuScADeL DSL. We show how

to express multiscale deployment properties for the transport

scenario. Finally, we conclude in Section VII.

II. MULTISCALE DEPLOYMENT MOTIVATIONS

In this section we introduce our deployment and multiscale

vocabulary, and present a scenario that will support our

illustrations through the paper.



A. Deployment and multiscale concepts

Software deployment is a post-production process that con-

sists in making software available for use and then keeping

it operational. It is a complex process that includes a number

of inter-related activities such as installation of the software

into its environment (transfer and configuration), activation,

update, reconfiguration, deactivation and deinstallation [3].

A deployment plan is a mapping between a software sys-

tem (a system of software components) and the deployment

domain, completed with configuration data. It must take

into account two kinds of dependencies: (1) between the

components themselves and (2) between the components and

their runtime environment. At runtime, the software system

is deployed on the hosts in accordance with the deployment

plan. Traditionally, the mapping and the deployment activities

are undertaken or controlled by a human operator.

Multiscale systems have very complex architectures. In

order to deploy these systems, and more specifically to express

the properties, it is necessary to be able to describe precisely

their architecture. Therefore we propose a multiscale vocab-

ulary that aims at describing the architecture of multiscale

distributed systems. As presented in [4], the architecture of

a system is obtained from the study of this system from

different viewpoints, each viewpoint leads to a view of the

system. Following this general approach, we study multiscale

distributed systems from different viewpoints. There are many

viewpoints and views to consider: e.g., devices included in

the system, networks crossed for interacting, administrative

or social organization of the users of the system, geograph-

ical distribution of the system. Then, each viewpoint of a

multiscale system can be studied through several analysis

dimensions, associated with measures, to define the different

scales of the system. For example, the device viewpoint can

be analyzed through the storage capacity dimension, measured

in bytes, which leads to identify different scales of devices

in terms of storage capacity: e.g., kilobytes scale, gigabytes

scale and petabytes scale. This multiscale vocabulary is more

detailed and formalized in Section V-B.

B. Motivating scenario

In this section, we present a motivating scenario inspired

from smart city projects such as CIVITAS1, and developed

within the INCOME2 project (Multiscale Context Manage-

ment for the Internet of Things), where we focus on context

management for mass market context-aware applications [5],

[6]. The context management middleware is a highly hetero-

geneous and dynamic component-based multiscale system. Its

components can be as various as ontological knowledge bases,

social network analysis components, GUI components, low-

level sensors. They must be dynamically deployed at different

levels of the system, from communicating objects to cloud

computers. In this project, we aim at developing a framework

for the deployment of multiscale context managers and beyond

1http://www.civitas.eu/content/public-transport-control-and-guidance-system
2http://anr-income.fr

of multiscale systems. The following scenario depicts some

specific parts of a multiscale system, which will be used to

illustrate our proposition throughout this paper.

City of Toulouse, France, 2015. The IT Department of the

city recently invested in a system called ”MultiModal Mobility

in MultiscalE” (4ME). Its purpose is to provide citizens with

a multimodal public transport control and guidance system,

which aggregates data sources and services from institutional

and professional providers all around the city. Offered services

are for example bus itineraries, timetables and their real-time

positions, bike availability in bike sharing stations, traffic

alerts, parking system information. Users of this system are

equipped with a smartphone connected to a network. They

can benefit from dynamic guidance services, which customize

their trips according to a large set of pieces of information

and events (e.g., weather conditions, night vs day, preferred

itineraries collected by social networks, wish to meet friends

on the road).

This multiscale system mainly contains three families of

software components. At the lower level, there are components

dedicated to context acquisition, such as context data collectors

that should be deployed in each bus, in each bike sharing

station, or in each parking. Next, there are infrastructure

components, such as middleware components that transport

data and events between components, or components that

filter and aggregate data to infer more abstract information.

At the last level, the system includes business components

that comprise for example the graphical user interface for the

clients, or components of the route planner that should run on

some cloud computers.

These various components should be deployed on many

devices (from smartphones to cloud computers). They com-

municate with each other on different networks (from personal

area network to the Internet). They must be deployed either

over the whole city or at a short distance from a given

place. They allow different actors to interact (from single

users to communities of users). Their host devices belong to

different administrative entities. Thus, this system is multiscale

in the device, network, user, geography and administration

viewpoints.

Within the motivating scenario, we focus on the deployment

of some 4ME software components, which highlight the

interest of multiscale deployment properties. The deployment

process of such a system should consider a dynamic deploy-

ment domain. Moreover, multiscale properties related to the

deployed components and to the deployment domain should

be expressed by the deployment designer. For instance, a

context management component that contains probes counting

available bikes must be deployed on each bike sharing station.

For load sharing purpose, a component that provides the bike

availability service must be deployed every five bike sharing

stations on a device connected to a WiFi network in order

to distribute the computational load close to the users. A

component offering the route planner must be deployed on

a cloud computer hired by the city. A middleware commu-

nication component that transfers historical data to the cloud



must be deployed on each local network. For each smartphone

in the group of 4ME users arriving in the city, a graphical

user interface component dedicated to the services currently

available in the city must be deployed. The system should be

able to catch any new device appearing during the lifetime

of 4ME. To enrich the service, a social network compo-

nent should be deployed on one smartphone chosen among

the smartphones of each group of friends. This smartphone

should have at least a CPU of 1Ghz, and 1Mb of available

memory. This component has to be always reachable. If ever

the component or the smartphone becomes unreachable, the

component is dynamically redeployed on another smartphone

of the group. Finally, a business component that stores the

history of messages exchanged on the social network must be

deployed on the cloud owned by the bike sharing service of

the city.

III. MULTISCALE DEPLOYMENT APPROACH

In this section, we justify the need for software autonomic

deployment in multiscale systems (Section III-A), then we

exhibit multiscale deployment features from the scenario of

the previous section (Section III-B), and discuss the need for

a domain specific language. Finally, we introduce our approach

for multiscale software deployment (Section III-C).

A. Autonomic software deployment

The traditional way of deploying a software system consists

in defining a static deployment plan, enumerating which

components have to be deployed on which devices. It is

often made by a human operator. Multiscale systems, come

with high dynamics, devices availability concerns, topology

evolutions when new devices appear, and others disappear

due to disconnections or failures. With multiscale systems,

the deployment domain has to be discovered just in time

(i.e., just before application runtime). Thus, the deployment

plan must be continuously adapted to take into account the

instability of the network of machines (i.e., connections and

disconnections), mobility and openness, and to variations of

the availability and of the quality of the resources. Moreover,

a high number of devices and of software components (with

their different versions) is involved in multiscale systems.

Automation and autonomy in deployment management is

required again.

Traditional deployment is not an option anymore. An au-

tonomic deployment middleware is required to be able to

adapt at runtime, in an uninterrupted process, the deployment

plan to the effective deployment domain topology and its

properties. Indeed, the autonomic computing approach [7],

where the system self-manages some properties (both for self-

configuration and self-healing purpose) provides interesting

options for multiscale distributed software deployment. This

is what we call “autonomic deployment”.

Appropriate methods and tools are necessary to design, con-

trol and automate the deployment process. For the deployment

design, we propose to describe the deployment properties,

coming from different stakeholders, considering two different

sets: deployment requirements concerning the architecture of

the system and constraints. As an example of deployment

requirement, the deployment designer may want that a given

component should be installed on every smartphone of a given

geographical area, or that two components should be deployed

on two different devices connected to a same local network.

In addition, as an example of a constraint, the designer may

specify that the mobile devices considered should run Android,

have an active GPS, or be connected by WiFi. All these

properties should be gathered at design time by the deployment

designer.

The deployment middleware ensures the satisfaction of the

requirements and constraints: at deployment design time, it

computes and realizes a deployment plan that satisfies all of

them (if possible) then, it checks the properties during the

whole life-time of the system, handles the deployment and

adapts the plan after failures or changes in the topology. Note

that presenting the way to handle and adapt the plan at runtime

is out of the scope of this paper.

B. DSL for multiscale deployment design

To support the description of the deployment properties,

the existing platforms propose formalisms such as architecture

description languages, XML or DSLs. DSLs present several

advantages: they use idioms and abstractions of the targeted

domain, so they can be used by domain experts; they are light,

easy to maintain, portable, and reusable; they are most often

well documented, coherent and reliable, and optimized for the

targeted domain [8], [9], [10].

We advocate for a DSL dedicated to the expression of

multiscale deployment properties. In this paper, we propose

MuScADeL. It must answers to multiscale requirements, and

thus allows the deployment designer to express:
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R1 Device requirements in terms of scales (e.g., of local

memory, storage capacity, processing power or network

connectivity);

R2 Network or geography requirements in terms of the small-

est scale shared by two devices (e.g., the two considered

devices are required to be in the same local area network,

or in the same city);

R3 Deployment requirements concerning the network, geog-

raphy, user and administration scales to which the deploy-

ment devices should belong (e.g., deploy a component on

the smartphones that arrive in the city);

R4 Deployment requirements to specify ratios of components

(e.g., deploy one component A for every four components

B).

With this DSL, the deployment designer can describe de-

ployment properties from which a deployment plan can be

computed. The computation of the deployment plan is done

during the deployment runtime by a constraint solver that also

needs as input the list of all available hosts and their properties.

In order to do that, the deployment system has to handle

a system of probes that collects all the required information

about the hosts. Probed data range from concrete system prop-

erties such as free RAM to more abstract multiscale properties

such as dimensions and scales. As an example, a multiscale

geographical probe with the three scales of city, country and

continent can give the information for the underlying device

for each scale if available.

C. Overview of the multiscale deployment design process

Fig. 1 shows the general approach we adopt for the deploy-

ment design process. The process is detailed with a SPEM [11]

diagram. It is divided into two main steps. In the first step,

we use the MuScA metamodel and a multiscale characteri-

zation process in order to define the multiscale nature of the

deployment domain (select viewpoints, dimensions and scales)

with a multiscale model. This model is then used through a

model driven approach to generate multiscale probes, which

consolidate data given by lower level probes, called basic

probes. This first step of our approach is detailed in Section V.

The second step aims at expressing the deployment properties

using our DSL MuScADeL, described in Section VI. By using

the MuScA specific model and the multiscale probes obtained

in the first step as a support of properties expression, we are

able to define a deployment policy that is naturally multiscale

aware. During deployment runtime at the right of Fig. 1, the

deployment middleware use the data collected from the probes

installed in the deployment domain to deploy and adapt the

software distribution.

IV. RELATED WORKS

In this section we present an overview of related works

on software deployment that propose the use of a DSL.

Additionally we examine how some multiscale concerns take

place to a certain extent in existing solutions for software

deployment.

To facilitate the deployment designer’s work, Dearle et

al. [12] define the DSL Deladas. The designer specifies the

deployment domain and its characteristics and a set of deploy-

ment properties (called constraints). From this specification,

the framework generates a deployment plan. The constraint-

based approach frees the deployment designer from specifying

exactly the location of each component, and from rewriting

the plan in case of problems with a resource. Deployment

is resilient: at runtime, when the deployment middleware

detects a constraint violation, it tries a local repair if pos-

sible. Otherwise, a new plan is generated and then executed

by a “satisfy/enact” component without human intervention.

However, the management is centralized and openness is not

taken into account, because the set of hosts being statically

defined in a file by the deployment designer. Besides, Deladas

does not allow the designer expressing multiscale properties.

Matougui et al. [13] present a middleware framework

designed to reduce the human cost of setting up software

deployment and to deal with failure-prone and change-prone

environments. This is achieved by the use of a high-level

constraint-based language and an autonomic agent-based sys-

tem for establishing and maintaining software deployment.

In the DSL j-ASD, some expressions dedicated to deal with

autonomic issues are proposed. But, they only target large-

scale or dynamic environments (such as grids or P2P systems),

at the same network scale.

Sledviewsky et al. [14] present an approach that incorpo-

rates a DSL for software development and deployment on the

Cloud. Firstly, the developer uses a DSL in order to describe a

model of the application. Secondly, this DSL code is translated

into a specific code in charge of the automatic deployment onto

the Cloud. Authors highlight the need to facilitate the work

of the deployment designer, and that using DSL is a solution

for that. Nevertheless, this approach is specific to deploying

on the Cloud.

When we have considered existing works on software

deployment, we also tried to figure out if some multiscale

concerns could be expressed. Considering the network point

of view, we noticed that there is actually no tool that handles

more than one kind of network (most of them target local net-

works). From the device point of view, deployment solutions

such as the one presented in [15] for Cloudlet, or Kalimu-

cho [16], which both allow to transfer computations from

devices with limited capacity to powerful computers, handle

devices at different scales. But most software deployment tools

are specialized for one kind of devices: personal computers in

most cases, smartphones, etc. From the geography point of

view, some technologies such as Codewan [17], Kalimucho,

or Cloudlet basically take into account the proximity between

hosts. So, these technologies can be considered for deploying

software for multiscale systems in the geographical viewpoint.

But in practice, proximity is more related to network properties

than to geographic location.

The result of this study shows that there is a lack of

expressiveness in existing deployment languages for defining

various multiscale properties.



V. SCALE-AWARENESS FRAMEWORK

In this section we present the MuScA framework. We

present the model driven approach, detail the MuScA meta-

model, and its use through an example of MuScA model and

generated artefacts.

A. Model driven approach

The concept of multiscale viewpoints has been introduced

in Section II-B as a way to analyze the multiscale nature of the

motivating scenario. Our experience shows that each system

may be analyzed through different viewpoints and scales. Each

characterization defines a multiscale vocabulary for the char-

acterized system. It can be used by the deployment designer in

MuScADeL and leads to the generation of specialized probes

used for scale-awareness purpose at runtime.

In order to formalize the multiscale characterization process

and to use it in the deployment design, we have chosen to

follow a model driven architecture (MDA) approach (using the

four OMG meta-modeling layers [18]). We define the MuScA

metamodel (M2 level) with the Ecore meta-metamodel [19]

(M3 level). The classes of the MuScA metamodel represent

multiscale concepts. With MuScA, we are able to define

characterization models (M1 level). This characterization may

be used for one or several real world systems (M0 level).

We also follow the model driven approach in order to auto-

matically produce artefacts, for instance probe artefacts for

scale-awareness purpose.

B. MuScA metamodel

Fig. 2. MuScA: Multiscale characterization metamodel

The MuScA metamodel is shown in Fig. 2. This metamodel

is based on the vocabulary used in the multiscale characteri-

zation process —i.e., multiscale characterization, viewpoint,

dimension, measure, scale set, and scale. An instance of

MSCharacterization is the result of a characterization process.

A characterization considers several ViewPoints (e.g., at M1:

Geography, User, Device, and Network viewpoints). Each

viewpoint determines a restricted view of the studied system.

In a given viewpoint, the view of the system is studied

through several Dimensions, which are measureable caracter-

istics of the elements of the view. For example, for the Device

viewpoint, the system devices can be analyzed through the

StorageCapacity (M1) dimension. As previously mentioned, a

Dimension is measurable, which means it can be associated

with one or several Measures. For example, at the M1 level,

the StorageCapacity dimension may be measured with the

Bytes measure or the KiloBytes measure. For the association

of one dimension with one measure, the designer defines a

ScaleSet, which is an ordered set of scales relevant for the

studied system. For numeric measures, a Scale is defined by its

min and max bounds. For some viewpoints, the system may

present several instances of one scale. For example, if we take

the Geography viewpoint, in the Administrative dimension, the

Town scale (M1) has several instances (M0 level) —i.e., the

different towns where entities of the system are present.

C. MuScA model as a multiscale characterization

In this section we apply a multiscale characterization pro-

cess to the scenario described in Section II-B in order to build

a MuScA model of the scenario. The deployment domain

of the scenario is multiscale in the device, administration,

network, and user viewpoints, but we only describe the device

and the administration viewpoints. Firstly, we decide to study

the device viewpoint through two dimensions: the storage

capacity measured in bytes (numeric measure) and the type of

device measured in what we call the “device type measure”

(semantic measure). For the type dimension, we identify three

scales (hidden in the figure): smartphone, cloudlet, and cloud.

For the storage capacity dimension, we also identify three

scales: kilobytes, gigabytes, and petabytes. Secondly, we study

the administration viewpoint through the administrative level

dimension measured in what we call the “administration level

measure” (semantic measure). We identify three scales: team,

service, and enterprise.

D. MuScA probes

With a MuScA model, we automatically produce artefacts

for scale-awareness purpose. In particular, we generate soft-

ware artefacts called multiscale probes used in the deployment

middleware. These probes are monitoring programs that are

to be deployed on each device of the deployment domain in

order to return its associated scale for a specific scale set —

i.e., for a specific dimension associated to a measure in a

viewpoint. We generate one probe per viewpoint, and each

probe exposes one method by dimension that returns a scale.

As mentioned in Section V-B, for some viewpoints, there may

be several scale instances for a scale. For example, the Town

scale has as many instances as real world towns involved in the

system. Therefore, the multiscale probes of these viewpoints

contain one more method per scale set that returns the scale

instance associated to the probes’s device for a specific scale.

These probes and the generated methods can be completed to

implement a specific logic, in particular to call basic probes, as

shown in Fig. 1, or to implement specific semantic measures.



E. MuScA achievements

We have implemented MuScA with the Eclipse Modeling

Framework Project3 (EMF). The MuScA metamodel is defined

as an instance of the Ecore metametamodel. EMF generates

a specialized model editor, which can be used to build the

MuScA model presented in Section V-C. Then, we use the

Acceleo4 code generator to produce multiscale probes, which

are implemented in Java. We have currently implemented

device and geography multiscale probes.

VI. MUSCADEL

In this section we detail our proposition of a DSL dedicated

to the autonomic deployment of multiscale distributed systems,

named MuScADeL, and the use of MuScA in it.

A. Elements of the language

With MuScADeL deployment designers may express mul-

tiscale deployment properties in terms of both designer re-

quirements and components constraints. It is possible to

express the deployment properties of a monolithic or of a

huge component-based software on a deployment domain,

which can be composed by one to thousands of devices.

MuScADeL provides abstractions and can be used without a

strong expertise in the realization of the deployment activities.

The MuScADeL grammar has been defined in EBNF syntax5.

For the presentation of the language, we rely on the scenario

presented in Section II-B. The code is presented in five

extracts, which respectively present components (Listing 1),

criteria (Listing 2), probes (Listing 3), multiscale probes

(Listing 4), and deployment requirements (Listing 5).

The unit of deployment is the component. The MuScA-

DeL code lists the component types of the system (key-

word Component in Listing 1). A Component descrip-

tion has several fields. The URL field specifies the ad-

dress where the component is reachable for download. The

DeploymentInterface field specifies the interface of

the component, that is necessary for the interactions with

the deployment system since the latter must configure, start,

manage, and stop the component. The Dependency field

lists required components: when installing the component, the

deployment system checks that whether the required compo-

nents are installed, or if not, installs them. Constraints can be

given when specifying a component. The Constraint field

lists hardware and software criteria defined using the keyword

BCriterion, see line 4 of Listing 2 — Bcriterion

stands for basic criterion in opposite to multiscale criterion,

cf. VI-B — and that the component must satisfy. By default,

these constraints are permanent, i.e.they must be satisfied both

when generating the deployment plan and at runtime, so that

the deployment system must check that there is no constraint

violation at runtime. Constraints can also be defined in order to

be satisfied only when generating the initial deployment plan

3http://www.eclipse.org/modeling/emf/
4http://www.eclipse.org/acceleo/
5The full grammar is available at http://www.anr-income.fr/T5/

muscadel-ebnf.html

and disregarded at runtime: the keyword InitOnly allows

to specify this kind of constraint.

1 Component SocialNet {

2 Version 1

3 URL "http://income.fr/4ME/SocialNetwork.jar"

4 DeploymentInterface fr.income.4me.DISocNet

5 Constraint CPURAM

6 }

7 Component History {

8 Version 1

9 Dependency FileManagement

10 URL "http://income.fr/4ME/History.jar"

11 DeploymentInterface fr.income.4me.DIHistory

12 InitOnly Constraint MaxFile

13 }

Listing 1. Component type definition in MuScADeL

Criteria are named and specified using the BCriterion

keyword. A criterion is a conjunction of conditions concerning

probed values, like in CPURAM (Listing 2, line 4). There are

two kinds of conditions concerning either the existence or

liveliness of a probe, or a specific value given by a probe.

In the first case, the condition is composed by the probe

name and the keywords Exists or Active, which are

defined for any probe interface. For example, in Listing 2, at

line 3, the used probe is Wifi, and the condition uses default

methods Exists and Active. If it is a value condition, it

is composed by the probe name, a method call, a comparator,

and a value. In this case, the method is probe-specific, and

defined in the probe interface. For example, in Listing 2 at

line 6, the used probe is RAM, the information method used is

Free, and its value is compared to the number 1, for 1Mb. A

criterion can be used to define both a component constraint (cf.

Listing 2, line 5) or a deployment requirement (cf. Listing 5,

line 5).

1 //Maximum file size must be at least 2G

2 BCriterion MaxFile { FileSize.Max > 2; }

3 BCriterion WifiActive { Wifi Exists, Active; }

4 BCriterion CPURAM {

5 CPU.Proc > 1; // at least 1Ghz of CPU

6 RAM.Free > 1; // at least 1Mb free RAM

7 }

Listing 2. BCriterion definition in MuScADeL

Probes are defined using the keyword Probe, with two

mandatory fields: ProbeInterface and URL (cf. List-

ing 3).

1 Probe FileSize {

2 ProbeInterface fr.income.MaxFileSize.DIimpl

3 URL "http://income.fr/4ME/filesize.jar"

4 }

Listing 3. Probe definition in MuScADeL

The code in Listing 4 was generated by MuScA and

integrated when the deployment designer chose a multiscale

characterization model. It defines multiscale probes using

the keyword MultiScaleProbe. A specific keyword is

necessary because basic and multiscale probes are considered

in a different way when generating the deployment plan

(see Section VI-B). As Probe, MultiScaleProbe has

two fields: MultiScaleProbeInterface and URL. At

runtime, a multiscale probe allows to identify the scale of

their host device in a given viewpoint/dimension/measure .



1 MultiScaleProbe Admin {

2 MultiScaleProbeInterface

3 fr.income.AdministrationProbeImpl

4 URL "http://income.fr/AdminProbe.jar"

5 }

Listing 4. MultiScaleProbe definition in MuScADeL

Once all of these elements have been specified, the de-

ployment properties of the overall multiscale system can be

expressed. The operator @ allows to specify requirements

specific to a component. The overall properties can take several

forms as it is illustrated in Listing 5. We describe below

each deployment requirement and link it to the requirements

expressed in Section III-B:

1 Deployment {

2 //the bike sharing station

3 ContextMan @ Device.Type.Cloudlet,

4 Admin.Level.Service("Toulouse.SharingBikes");

5 BikeAvail @ 1/5 ContextMan, WifiActive;

6 RoutePlanner @ Device.StorageCapacity.Giga,

7 Admin.Level.Entreprise("Toulouse");

8 Comm @ Each MSNetwork.NetworkRange.LAN;

9 GUI @ All, Device.Type.Smartphone;

10 SocialNet @ All, User.NumberOfUsers.Group;

11 SocNetHist @

12 SameValue User.NumberOfUsers.Group(SocialNet);

13 History @ Device.StorageCapacity.Giga,

14 Admin.Level.Service("Toulouse.SharingBikes");

15 Stat @ 5..10, Device.Type.Cloudlet;

16 }

Listing 5. Deployment requirement definition in MuScADeL

The component ContextMan must be installed on all

the devices that (i) have the scale Cloudlet on the

dimension Type of the viewpoint Device (requirement

R1 — line 3) (ii) and are administrated by the ser-

vice "Toulouse.SharingBikes" (requirement R3 —

line 4). Components BikeAvail must be deployed on

devices satisfying the basic criterion WifiActive, the

ratio expression (requirement R4) 1/5 specifying that

there should be one BikeAvail component deployed

for five ContextMan components (line 5). One compo-

nent RoutePlanner must be deployed (i) on the scale

Device.StorageCapacity.Giga (requirement R1) and

(ii) in the city of Toulouse (requirement R3 —line 6

and 7). Components Comm must be deployed on one device

of each local network area (LAN) (requirement R3 — line 8).

The component GUI must be deployed on all devices of

the scale Device.Type.Smartphone (requirement R1),

i.e., on all the smartphones of the domain (line 9). The

component SocNetHist (which keeps a history of the social

network chatroom) must be deployed on a device that belongs

to the same group as the device on which the component

SocialNet is deployed (requirement R2 — line 12). The

component Stat (which calculates statistics on bike use) must

be deployed on 5 to 10 devices (requirement R4) of the scale

Device.Type.Cloudlet (requirement R1 — line 15).

The keyword DifferentValue allows to specify the

contrary of SameValue. Using these keywords, it is possible

to define a requirement concerning a scale. For example, Comp

@ SameValue Device.Type(Comp2) expresses that the

component Comp must be deployed on a device that has the

same type as the component Comp2.

Some constructions of the DSL are particularly dedicated to

the expression of properties related to dynamics and openness.

We have already mentionned that, by default, constraints on

the deployed components have to be satisfied at runtime.

Besides, when specifying the Deployment, the keyword

All states that a component should be deployed on a domain,

even if the domain evolves dynamically, that is to say on

devices entering the domain (and considering those leaving

it). In the example, the component GUI should be deployed

on every smartphone of the domain, including those that

enter in the domain after activating 4ME application; so, the

deployment plan evolves dynamically according to entering

and leaving devices.

B. MuScA in MuScADeL

As shown in the previous code, deployment designer re-

quirements may include multiscale related requirements. As

a MuScADeL code is linked to a MuScA specific model,

the MuScADeL editor can check that dimensions and scales

conform to the ones defined in the MuScA model associated

with it. In addition, multiscale requirements are verified at

runtime by the multiscale probes generated for this MuScA

model.

Fig. 3 is a UML class diagram that summarizes the MuScA

and MuScADeL metamodels. Only some parts of the models

are shown in order to highlight the links between them. The

MuScADeL metamodel is limited to the criterion part of the

deployment requirement.

In the MuScADeL metamodel, Criterion is specialized in

MSCriterion to express multiscale criteria. This element is

specialized in CompValue, Each, and Simple to handle the dif-

ferent multiscale deployment requirements policies expressed

in Section VI-A (multiscale criteria appear in such a way in

the MuScADeL code, cf. Listing 5; contrary to BCriterion

there is no keyword to define them). For example, Each stands

for “on each device”. The expression of a multiscale criterion

can concern either a Scale (M1 level) or a Scale Instance

(M0 level). For example, we can express the deployment of

a component on each LAN (M1 level) or on a specific LAN

(M0 level).

This link between MuScA and MuScADeL insures a correct

use of the multiscale probes in the expression of deployment

requirements.

C. MuScADeL achievements

Using Xtext and Xtend frameworks6, we have realized an

Eclipse plugin for the edition of MuScADeL. Using Java and

Eclipse makes MuScADeL editor multi-platform compliant

and easy-to-use for the deployment designer. Moreover, it runs

alongside MuScA, allowing the deployment designer to be

able within the same engineering tool to define new multiscale

viewpoints, dimensions or scales, before using them in the

deployment DSL.

6www.eclipse.org/Xtext



Fig. 3. Part of the MuScADeL metamodel, including MuScA use

VII. CONCLUSION

Autonomic software deployment is essential to install up-

to-date multiscale distributed systems. Over the past decade,

some deployment frameworks for distributed systems have

emerged. They have limitations in terms of the targeted

deployment domain, and in term of autonomicity. In this paper,

we have presented MuScADeL a domain-specific language for

autonomic deployment of multiscale distributed systems such

as those experienced with the IoT.

MuScADeL allows designers to abstractly define multi-

scale deployment properties without exact knowledge of the

deployment domain. MuScADeL properties are expressed in

accordance with the multiscale characterization of the system

to deploy. The multiscale nature of a system is defined with

MuScA, a framework to identify the relevant viewpoints, di-

mensions, measures, and scales for a given multiscale system.

MuScA has been used with the INCOME project for software

infrastructure for context management in the context of the

IoT. This project targets the deployment of mass market smart

applications. For this project, we have analyzed many scenar-

ios and use cases in ambient systems. With the characterization

process, we have been able to select, among existing ones,

the viewpoints, dimensions and scales relevant for a given

system, or to define new ones. Each characterization enables

the framework to extend its multiscale vocabulary and its

multiscale probes. Thus the framework learns and memorizes

new viewpoints, dimensions and scales to be proposed for the

next characterization.

Our contribution has been validated through a complete

chain of frameworks. Specialized editors allow designers to

define and validate multiscale characterization and multiscale

deployment descriptors. MuScA generates multiscale probes

for scale-awareness purpose. This chain will be used by

multiscale deployment middleware that apply deployment

properties defined with MuScADeL.
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