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ABSTRACT

Sparse signal/image recovery is a challenging topic that has captured

a great interest during the last decades. To address the ill-posedness

of the related inverse problem, regularization is often essential by

using appropriate priors that promote the sparsity of the target sig-

nal/image. In this context, ℓ0 + ℓ1 regularization has been widely

investigated. In this paper, we introduce a new prior accounting si-

multaneously for both sparsity and smoothness of restored signals.

We use a Bernoulli-generalized Gauss-Laplace distribution to per-

form ℓ0+ℓ1+ℓ2 regularization in a Bayesian framework. Our results

show the potential of the proposed approach especially in restoring

the non-zero coefficients of the signal/image of interest.

Index Terms— MCMC, sparsity, smoothness, hierarchical

Bayesian models, restoration

1. INTRODUCTION

Sparse signal and image restoration is an open issue and has been

the focus of numerous works during the last decades. More recently,

and due to the emergence of the compressed sensing theory [1],

sparse models have gained more interest. Indeed, recent applica-

tions generally produce large data sets that have the particularity

to be highly sparse in a transformed domain. Since these data are

generally modeled using ill-posed observation systems, regulariza-

tion is usually required to improve the quality of the reconstructed

signals/images through the use of appropriate prior information. A

natural way to promote sparsity is to penalize or constrain the ℓ0
pseudo-norm of the reconstructed signal. Unfortunately, optimiz-

ing the resulting criterion is a combinatorial problem. Suboptimal

greedy algorithms, such as matching pursuit [2] or its orthogonal

counterpart [3] may provide reasonable solutions to this NP-hard

problem. However, despite recent advances which made the ℓ0-

penalized problem feasible in a variational framework [4], fixing the

regularization hyperparameters is still an open issue. Conversely,

the solutions of the ℓ0-penalized problem can coincide with those

of a ℓ1-penalized problem [5] provided that appropriate sufficient

conditions are fulfilled. Based on this convex relaxation of the prob-

lem, an amount of works has been conducted to propose efficient

algorithms to solve ℓ1-penalized problems (see for instance [6, 7]).

Again, choosing appropriate values for the hyperparameters asso-

ciated with the ℓ1-penalized (or the ℓ1-constrained) problems re-

mains a difficult task [8]. These hyperparameters can for instance

be estimated using empirical assessments, cross-validation or some
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external empirical Bayes approaches such as [9, 10]. In this con-

text, fully Bayesian approaches have demonstrated their flexibility

to overcome these issues. More specifically, Bernoulli-based mod-

els [11–14] have been proven to be efficient tools to build sparsity

promoting priors. Moreover, these Bayesian approaches allow the

target signal and the regularization hyperparameters to be jointly es-

timated directly from the data, avoiding a difficult and painful tuning

of these regularization hyperparameters.

In this paper, a hierarchical Bayesian model is proposed to en-

force a smoothness-sparsity constraint by using an ℓ0+ℓ1+ℓ2 regu-

larization. At the first level of the model, a sparsity constraint is guar-

anteed by using a Bernoulli process, equivalent to an ℓ0-penalization

which favors zeroes in the reconstructed signal. At the second level

of the model, the non-zero signal values are subject to a ℓ1 + ℓ2
penalization which allows both sparse (ℓ1) and smooth (ℓ2) parts

of the target signal to be recovered. The use of this twofold pe-

nalization has been for instance previously advocated in [15, 16]

and the resulting so-called “elastic net” model has demonstrated its

efficiency to perform smooth regularization and variable selection

jointly. In this paper, the ℓ1 + ℓ2 penalization is modeled within a

Bayesian framework using a generalized-Gauss-Laplace (GGL) dis-

tribution [15]. The resulting sparsity promoting prior consists of a

distribution mixture leading to a Bernoulli-GGL (BGGL) prior. To

the best of our knowledge, this is the first time that an ℓ0 + ℓ1 + ℓ2
regularization model is fully developed. Such a regularization is still

an open issue in the variational regularization literature since the in-

herent cost function is not convex (see Section 2), and is thus not

easy to optimize with standard algorithms. Note that recent works

have addressed the ℓ0 + ℓ2 regularization [4, 17, 18] in a variational

framework. This variational regularization would be equivalent to its

Bayesian counterpart in which Bernoulli-Gaussian models are used

as priors [19].

Moreover, as for the variational formulation of the sparsity reg-

ularized problems, the quality of the Bayesian reconstruction dras-

tically depends on the values of the three hyperparameters associ-

ated with the penalizing terms ℓ0, ℓ1 and ℓ2. In this paper, fol-

lowing the unsupervised approaches of [12,14], these hyperparame-

ters are included within the Bayesian model by assigning them non-

informative prior distributions. Finally, these hyperparameters and

the signal of interest are jointly estimated from the data in a fully

unsupervised framework.

This paper is organized as follows. Section 2 introduces the

ℓ0 + ℓ1 + ℓ2 regularized problem we intend to solve. This prob-

lem is reformulated within a hierarchical Bayesian model detailed in

Section 3. Section 4 presents a Gibbs sampler which can be used to

generate samples asymptotically distributed according the posterior

of this Bayesian model and thus to compute Bayesian estimators of

the unknown model parameters. Finally, we validate the proposed

method in Section 5 before concluding in Section 6.



2. HIERARCHICAL SPARSE REGULARIZATION

2.1. Problem formulation

In this paper we focus on real-valued digital signals of length M as

elements of the Euclidean space R
M endowed with the usual scalar

product and norm denoted as 〈·|·〉 and ‖ · ‖, respectively. Let x ∈
R

M be our target signal, which is measured by y ∈ R
N through a

distortion linear operatorH. The resulting observation model can be

written

y = Hx+ n (1)

where n is an additive noise often considered as white Gaussian

with covariance matrix σ2
nIN . Since we generally have M ≫ N ,

the inverse problem in Eq. (1) is ill-posed. In this situation, its di-

rect inversion yields distorted solutions presenting reconstruction ar-

tifacts that possibly interfere with the useful signal. This is the case

in a number of recent applications in the field of signal and image

processing, such as in parallel MRI [15, 20] and positron emission

tomography (PET) [21]. This paper focuses on such kind of prob-

lems where the target signal/image x is sparse. Consequently, we

propose here to adopt a sparse regularization strategy for estimat-

ing the unknown signal/image x. More precisely, the signal of in-

terest x is assumed to contain both zero and non-zero coefficients.

Moreover, the non-zero coefficients are decomposed into sparse and

smooth groups. Under these assumptions, we propose to investigate

an ℓ0+ℓ1+ℓ2 regularization to tackle a hierarchical sparsity model.

2.2. Variational formulation

Performing an ℓ0 + ℓ1 + ℓ2 regularization consists of solving the

following minimization problem

x̂ = arg min
x∈RM

1

σ2
n

||y−Hx||22+λ0||x||0+λ1||x||1+λ2||x||22 (2)

where λ0, λ1 and λ2 are regularization parameters that have to be es-

timated. In Eq. (2) || · ||0, || · ||1 and || · ||2 denote the ℓ0 pseudo-norm

and the ℓ1 and ℓ2 norms, respectively. To the best of our knowl-

edge, mainly because the problem in Eq. (2) is not convex, it cannot

be solved using standard optimization algorithms. For this reason,

we propose to define a new hierarchical Bayesian model with ap-

propriate prior distributions allowing Eq. (2) to be solved in a fully

Bayesian framework.

3. BAYESIAN MODEL FOR HIERARCHICAL SPARSE

REGULARIZATION

In a Bayesian framework, y and x are assumed to be realizations of

random vectors Y and X . We then aim at characterizing the prob-

ability distribution of X|Y , by considering some parametric prob-

abilistic model and by estimating the associated parameters and hy-

perparameters. In the following, we derive the hierarchical Bayesian

model proposed for the sparse regularization problem of Eq. (2).

3.1. Likelihood

Under the assumption of additive white Gaussian noise of variance

σ2
n, the likelihood can be expressed as follows

f(y|x, σ2
n) =

(
1

2πσ2
n

)N/2

exp
(
− ||y −Hx||22

2σ2
n

)
. (3)

3.2. Priors

Let us denote by θ = (x, σ2
n)

T the unknown parameter vector to

be estimated. For the noise variance σ2
n, we use a non-informative

prior that guarantees the positivity of this parameter. More precisely,

σ2
n is assigned a Jeffreys’ prior distribution defined as (see [22] for

motivations)

f(σ2
n) ∝

1

σ2
n

1R+(σ
2
n) (4)

where 1R+(·) is the indicator function on R
+, i.e., 1R+(ξ) = 1 if

ξ ∈ R
+ and 0 otherwise.

In order to promote the sparsity of the target signal, one can choose a

Bernoulli-Gaussian (BG) [11, 23], a Bernoulli-exponential [12] (for

positive real-valued signals), or a Bernoulli-Laplace (BL) [14] prior

for every xi (i = 1, . . . ,M ). To promote hierarchical sparsity and

further distinguish smooth and sparse coefficients for the non-zero

part of the target signal, we use here a Bernoulli-Generalized Gauss-

Laplace (BGGL) distribution for every xi

f(xi|Φ) = (1− ω)δ(xi) + ωGGL(xi|α, β) (5)

with Φ = (ω, α, β)T is the vector of unknown hyperparameters and

GGL(xi|α, β) =

√
β
2π

erfc( α√
2β

)
exp

[
−
(
α|xi|+ β

2
x2
i +

α2

2β

)]

(6)

where erfc(·) denotes the complementary error function

erfc(x) = 1− 2√
π

∫ x

0

e−t2dt.

In (5), δ(·) is the Dirac delta function and ω ∈ [0, 1] represents the

prior probability of having a non-zero signal component. We use a

generalized Gauss-Laplace (GGL) model as a prior for the non-zero

coefficients xi in order to account for both smoothness and sparsity

constraints for the xi’s. Using the BGGL model for x1, . . . , xm

and assuming these variables are a priori independent, the joint prior

distribution for the full signal vector x is

f(x|Φ) =
M∏

i=1

f(xi|Φ) (7)

=
M∏

i=1

{
(1− ω)δ(xi) + ωGGL(xi|α, β)

}
.

The resulting BGGL model consists of a two-level sparsity pro-

moting prior, and also accounts for possible smoothness properties

of the target signal. The first level of sparsity is guaranteed thanks to

the Bernoulli model and the Dirac delta function. The second level

of sparsity is ensured by the GGL distribution. This prior distribu-

tion generalizes several standard regularizations used in the statis-

tics and signal/image processing literatures. Indeed, for ω = 1, the

BGGL model is reduced to a GGL, which can be interpreted as the

Bayesian counterpart of the elastic net model introduced in [16] and

successfully used in [15] for parallel MRI reconstruction. Moreover,

for α = 0, the GGL distribution reduces to a Gaussian distribution,

inducing a standard smoothing ℓ2-regularization, which results in a

Bernoulli-Gaussian prior for xi, for instance used in [11, 19, 23, 24].

Finally, for β = 0, the GGL distribution boils down to a Laplace

prior distribution, i.e., a sparsity inducing ℓ1-regularization advo-

cated in [25] within a Bayesian framework. In this later case, the

prior for the signal component xi is a Bernoulli-Laplace process in-

troduced in [26] and successfully used in [14].



3.3. Hyperparameter priors

In the variational formulation of the considered ℓ0 + ℓ1 + ℓ2 regu-

larization in (2), the levels of the various penalizations are adjusted

via the hyperparameters λ0, λ1 and λ2 for a given noise variance

σ2
n. Choosing appropriate values for these regularization hyperpa-

rameters is a challenging issue that is usually addressed using em-

pirical approaches, e.g., cross-validation or subjective inspections of

multiple results. In the Bayesian formulation of the ℓ0 + ℓ1 + ℓ2
regularization, similar roles are played by the hyperparameters ω, α
and β. It can be easily observed that the quality of the Bayesian re-

construction also drastically depends on these hyperparameters that

need to be properly chosen. In absence of additional prior knowl-

edge regarding the signal to be reconstructed (e.g., proportion and

mean of non-zero signal components), these hyperparameters can be

included within the Bayesian model by assigning them prior distri-

butions. Consequently, these hyperparameters can be directly esti-

mated from the data, in a fully unsupervised framework. It is the

strategy considered in this paper and the hyperparameter prior dis-

tributions are detailed below.

Individual non-informative priors are used for the hyperparame-

ters ω, α and β which are assumed to be a priori independent. First,

to reflect the absence of prior knowledge regarding the proportion of

non-zero signal components, a uniform distribution on the simplex

[0, 1] can be used for ω, i.e., ω ∼ U[0,1]. Since the parameters α
and β are real-positive, a commonly used prior in this situation is a

conjugate inverse-gamma (IG) distribution IG(α|a, b) defined as

IG(α|a, b) = ba

Γ(a)
α−a−1 exp

(
− b

α

)
(8)

where Γ(·) is the gamma function, and a and b are hyperparameters

to be fixed to obtain vague hyper-priors (in the experiments reported

in Section 5, these hyperparameters have been set to a = b = 10−3

both for α and β).

4. RESOLUTION SCHEME

Using a maximum a posteriori (MAP) strategy, the model parameter

vector θ = (x, σ2
n)

T is estimated based on the likelihood f(y|θ),
the priors f(θ|Φ) and hyperpriors f(Φ) introduced in the previous

section. According to the Bayes’ paradigm, the joint posterior dis-

tribution of {θ,Φ} can be expressed as

f(θ,Φ|y) ∝ f(y|θ)f(θ|Φ)f(Φ) (9)

∝ f(y|x, σ2
n)f(x|ω, α, β)f(σ2

n)f(ω|x)f(β|x)f(α|x).

We propose here to resort to a Gibbs sampler [22] that iteratively

samples according to the conditional posteriors f(x|y, ω, α, β, σ2
n),

f(σ2
n|y,x), f(ω|x), f(α|x) and f(β|x). Calculations similar

to [12, 14] show that the posteriors for σ2
n and ω are simply inverse

gamma and beta distributions, respectively

σ2
n|x,y ∼ IG

(
σ2
n|N/2, ||y −Hx||2/2

)

ω ∼ B(1 + ||x||0, 1 +M − ||x||0). (10)

Unfortunately, no closed-form expression can be obtained fort the

conditional distributions of α|x, ω, β and β|x, ω, α. Metropolis-

Hastings moves with positively truncated Gaussian proposals are

therefore used to sample according to f(β|x, ω, α) = f(β|x) and

f(α|x, ω, β) = f(α|x).

The distribution of xi conditionally to the rest of the signal x−i

and the other model parameters is easy to be derived. Straightfor-

ward computations lead to the following result

f(xi|y,x−i, ω, α, β) =ω1,iδ(xi) + ω2,iN+(µ+
i , σ

2
i ) (11)

+ ω3,iN−(µ−i , σ2
i )

where N+ and N− denote the truncated Gaussian distribution on

R
+ and R

−, respectively. Akin to [12, 14], we first decompose x

on the orthonormal basis B = {e1, . . . , eM} such that x = x̃−i +
xiei, where x̃−i is the signal vector x whose ith element is set to 0.

Denoting vi = y −Hx−i and hi = Hei, the weights (ωl,i)1≤l≤3

are given by

ωl,i =
ul,i

3∑
l=1

ul,i

(12)

where u1,i = 1− ω

u2,i = ω

√
β
2π

e
−α2

2β
+

µ
+
i

2

2σ2
i

erfc( α√
2β

)

√
2πσ2

iC(µi+, σ
2
i )

u3,i = ω

√
β
2π

e
−α2

2β
+

µ
−

i

2

2σ2
i

erfc( α√
2β

)

√
2πσ2

iC(µi−, σ
2
i ) (13)

and σ2
i =

σ2
n

||hi||2 + βσ2
n

µi+ = σ2
i

(
hT

ivi

σ2
n

− α

)
,

µi− = σ2
i

(
hT

ivi

σ2
n

+ α

)

C(µ, σ2) =

√
σ2π

2

[
1 + erf

( µ

2σ2

)]
. (14)

The resulting sampler is summarized in Algorithm 1. After con-

vergence, Algorithm 1 provides samples that are asymptotically dis-

tributed according to the full posterior of interest. These samples can

be used to compute a MAP estimator in order to get x̂, as in [24].

Moreover, the proposed algorithm also allows σ̂2
n, α̂, β̂ and ω̂ to be

computed.

Algorithm 1 Gibbs sampler.

Initialize with some x(0).

repeat

Sample σ2
n according to f(σ2

n|y,x).
Sample α according to f(α|x, a, b).
Sample β according to f(β|x, a, b).
Sample ω according to f(ω|x).
for i = 1 to M do

Sample xi according to Eq. (11).

end for

until convergence

5. EXPERIMENTAL VALIDATION

The conducted experiment addresses a 1D signal recovery problem

based on realistic simulated data. A sparse signal x of size 100 is



recovered from its distorted observation y according to the obser-

vation model in Eq. (1). Distortion is due to the application of the

second order difference operator (H) in addition to a white Gaussian

noise of variance σ2
n = 0.5. The results are compared to other reg-

ularization techniques based on visual inspections as well as output

signal-to-noise ratios given by

SNR = 20 log10
||x0||

||x0 − x̂||

where x0 and x̂ are the reference and estimated signals, respectively.

For the sake of comparison, the sparse regularization scheme (BL)

of [14] is applied in addition to the proposed method (BGGL). More-

over, results using the orthogonal matching pursuit (OMP) algorithm

are also provided. Fig. 1 illustrates the ground truth and the recon-

structed signals using the BL and BGGL models, in addition to the

OMP algorithm. Visual inspection of restored signals show very

similar performance for the BL and BGGL models. Indeed, these

two methods recover an accurate sparsity support (non-zero coeffi-

cients): ||x̂BL||0 = ||x̂BGGL||0 = 29 and ||x0||0 = 28. As regards

OMP restoration, visual inspection show that non-zero coefficients

are not well recovered even if the sparsity support is quite accurately

recovered (||x̂OMP||0 = 24).
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−15
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Fig. 1. Original and restored signals using the proposed method (BGGL)
and BL regularization in [14].

To quantitatively assess the reconstruction quality, output SNR

are computed for the ℓ1- and ℓ0 + ℓ1 + ℓ2-regularized restoration

methods: SNRBGGL = 25.61 dB and SNRBL = 24.56 dB. Since

the two methods recover the same sparsity support, this performance

gain is due to a better estimation of the non-zero coefficients with

the proposed method. Indeed, the flexibility of the GGL distribution

allows us to better model both sparsity and smoothness of non-zero

coefficients, leading to better restoration results.

Moreover, since the proposed Gibbs algorithm generates sam-

ples asymptotically distributed according to the joint posterior dis-

tribution (9), the conditional posterior distributions for the noise

variance σ2
n and the regularization hyperparameters ω, α and β can

also be estimated. These estimated posteriors are depicted in Fig. 2

and the estimated parameters are reported below each plot.

To further assess the restoration performance of the proposed

method, 50 Monte Carlo simulations have been conducted with dif-

ferent acquisition noise levels (σ2
n ∈ {0.5, 1, 1.5, 2, 2.5, 3}). The

average SNR values computed using the 50 Monte Carlo runs are
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Fig. 2. Estimated posterior distributions of parameters σ2

n, ω, α and β.

depicted in Fig. 3 for all noise levels. The observed SNR values

confirm the ability of the proposed BGGL model to better restore

non-zero signal coefficients. Fig. 3 also shows that the proposed

method may be more efficient at high noise levels. As expected,

OMP gives lower performance compared to the two other methods.

S
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Fig. 3. Output SNR w.r.t. input noise variance σ2
n. Mean values are calcu-

lated based on 50 Monte Carlo simulations for every noise level.

6. CONCLUSION

In this contribution, we proposed a new method for hierarchical

sparse-smooth regularization involving ℓ0+ℓ1+ℓ2 penalization. The

proposed method relied on a hierarchical Bayesian model with ap-

propriate priors for the model parameters and hyperparameters, the

latter being automatically estimated from the data. Promising results

showed the potential of the proposed approach. Future work will in-

vestigate the application of this method to real magnetic resonance

imaging (MRI) and electroencephalography (EEG) signal recovery.
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