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Abstract—This article deals with iterative Frequency Domain
Equalization (FDE) for Single Carrier (SC) transmissions over
Volterra non linear satellite channels. SC-FDE has gained much
importance in recent research for its efficient implementation
at the receiver and its interesting low Peak to Average Power
Ratio (PAPR) at the transmitter. However, nearly saturated
power amplifiers on board satellites generate linear and non
linear Inter Symbol Interference (ISI) at the receiver. It is thus
interesting to investigate the implementation of SC-FDE for
non linear channels. To do so, a frequency domain equivalent
satellite channel is derived based on the time domain Volterra
series representation of the non linear channel. Then a Minimum
Mean Square Error (MMSE)-based iterative frequency domain
equalizer is designed. It is shown that the proposed equalizer
consists of a Soft Interference Canceller (SIC) which subtracts
both the linear and non-linear soft frequency symbols. The
equalizer performance is then compared to the equivalent time
domain implementation. Results show that a channel-memory
independent efficient implementation is achieved at the price of
a negligible spectral efficiency loss due to cyclic prefix insertion.

Keywords-iterative equalization, volterra series, non linear
interference.

I. INTRODUCTION

The increasing demand for high data rates urges new

communication systems to provide both high spectral and

power efficiency. In recent satellite communications standards,

this trade off can be achieved using multi-level amplitude

constellations such as Amplitude and Phase Shift Keying

(APSK). However, such modulations increase the signal

fluctuations and thus, give rise to non linear distortions when

being passed through a High Power Amplifier (HPA) operating

near saturation. These distortions can be either mitigated at

the transmitter using signal or symbol pre-distortion, or at the

receiver using equalization. To do so, analytical expressions

for the non linear channel have been widely investigated [1],

[2] and [3]. [1] and [2] use a triple-effect representation of

the non linear channel, consisting of additive noise, a scalar

multiplication and warping. This approximation, although

practical, is not accurate for higher order modulations since

the additive noise can not be considered circular for outer

ring symbols. Another category of channel models consists of

a decomposition of the non linear channel by means of Taylor

series leading to the so called Volterra representation. The

Volterra series representation has been applied to different

transmission channels, namely in [4] for the non linear

magnetic channel and to differential impulse radio UWB

systems in [5]. As far as satellite channels are concerned, a

Volterra series expansion was derived in the leading work

of [6]. Such a decomposition depends on the chain filters,

the HPA model, the modulation type and the Input Back Off

(IBO). Based on this Volterra series expansion, the satellite

channel can be represented as a finite state machine, which

allows for optimal symbol and sequence detection, Maximum

A Posteriori (MAP) and Maximum Likelihood Sequence

Detection MLSD. However, as the complexity of these

optimal equalizers is exponential in the channel memory, low

complexity equalizers have been investigated among which

we will focus on iterative solutions. Indeed, new equalization

trends are based on iterative receivers for their excellent

Shannon-bound approaching abilities [7], [8], and [9]. In [10],

we presented an iterative time domain MMSE-based equalizer

to mitigate the channel linear and non linear interference.

Different low complexity approximations were investigated.

The performances showed that a No-Apriori approximation

has minor performance degradation but far less complexity

than the exact MMSE solution. In this paper, we are interested

in further reducing the computational complexity by applying

frequency domain equalization. Previous studies have derived

non iterative frequency domain equalization for non linear

channels [11] [12]. In [11] an adaptive block Least Mean

Square (LMS) equalizer is proposed and a complexity

comparison shows the advantage of using frequency rather

than time domain equalization. In this work, we use the

frequency domain Volterra channel model, to derive an

iterative linear MMSE FDE. As argued for the time domain

solution in [10], time domain linear equalization is able to

cope with both linear and non linear interference when used

in an iterative way. Similarly, the proposed iterative FDE is

able to cancel both linear and non linear soft symbols which

asymptotically approaches the Additive White Gaussian

Noise (AWGN) ISI-free performance. The remainder of this

paper is organised as follows. First, we present the frequency

domain Volterra channel model. In Section III, we derive the

iterative linear MMSE-FDE based on the no-Apriori MMSE

approximation. Finally, we investigate the performance of the

MMSE equalizer implementations before ending with some

conclusions.



II. USEFUL NOTATIONS AND RESULTS ON CIRCULANT

MATRICES

Let us introduce some useful notations and results. Vectors

are written in bold letters and matrices in capital letters. Im
stands for the identity matrix of size m and 11×m for the

all ones vector of size 1 × m. (.)m refers to the modulo-

m operator. Let F be the normalised 1-Dimensional Discrete

Fourier Transform (1D-DFT) matrix of size N . The matrix

element Fi,j is:

Fi,j =
1√
N

W
−ij
N (1)

where W k
N = e

√
−12πk

N . We then have FH = F−1. Let H

and G be two circulant matrices of size (N ×N). A circulant

matrix can be diagonalised using the DFT matrix F . More

precisely:

H = FHHdF (2)

G = FHGdF

where the notation Hd and Gd stands for the diagonal matrix

containing the eigenvalues of H and G respectively. H and G

satisfy the following properties:

1) HG is a circulant matrix and HG = FHHdGdF .

2) HH is a circulant matrix HH = FHHH
d F .

3) H−1 is a circulant matrix and H−1 = FHH−1
d F .

4) ∀(n,m) ∈ {0, . . . , N − 1}2, uT
mHum = uT

nHun

where um = [0m 1 0N−m−1]
T

The N-3D normalised DFT of 3D symbols y
(3)
m,n,l for

m,n, l ∈ {0, . . . , N − 1} is:

Y (3)
p,q,r ,

1
√
N

3

N−1
∑

m=0

N−1
∑

n=0

N−1
∑

l=0

y
(3)
m,n,lW

−mp
N W

−nq
N W−lr

N (3)

Similarly, the N-3D normalised IDFT of 3D frequency sym-

bols Y
(3)
p,q,r writes as follows:

y
(3)
m,n,l ,

1
√
N

3

N−1
∑

p=0

N−1
∑

q=0

N−1
∑

r=0

Y (3)
p,q,rW

mp
N W

nq
N W lr

N (4)

III. FREQUENCY DOMAIN NON-LINEAR VOLTERRA

CHANNEL MODEL

A satellite High Power Amplifier (HPA) is a memoryless

device characterized by two frequency independent functions

[13] A(.) (AM/AM) and Φ(.) (AM/PM) relating both the

power and phase of the output signal y to the amplitude of

the input signal x as follows:

y = c(|x|) exp(jϕ(x))
= A(|x|) exp (j(Φ(|x|) + ϕ(x))) (5)

On-board reception resp. transmission filters introduce

memory in the overall satellite transponder response which

Fig. 1. System model description

is expressed at the receiver by a Volterra odd-series

decomposition of the received symbols zn in the form [6]:

z̃n =
v

∑

m=0

∞
∑

n1=−∞
. . .

∞
∑

n2m+1

x̃n−n1
. . . x̃n−nm+1

x̃∗
n−nm+2

. . . x̃∗
n−n2m+1

hn1,...,n2m+1
+ wn

(6)

where v defines the decomposition order of the Volterra

series, hn1,...,n2m+1
are called the Volterra kernels and wn

is the filtered sampled additive noise with variance σ2
w. The

overall system can be described by Fig. 1. An example

of Volterra decomposition of a satellite transponder with

butterworth on-board filters is given in [6]. This shows the

negligible contribution of orders higher than three. Hence,

this has been selected as the order of the Volterra series

decomposition in this paper.

z̃n =

M−1
∑

i=0

hix̃n−i +

M−1
∑

i=0

M−1
∑

j=0

M−1
∑

k=0

hijkx̃n−ix̃n−j x̃
∗
n−k + wn

(7)

where M is the memory order. After removing the cyclic

prefix, the received samples in (7) can be expressed as follows:

zn =

M−1
∑

i=0

hix(n−i)M +
M−1
∑

i=0

M−1
∑

j=0

M−1
∑

k=0

hijkx(n−i)Mx(n−j)M

x∗
(n−k)M

+ wn

= z(1)n + z(3)n,n,n + wn (8)

The RHS of (8) consists of a sum of both a circular

convolution z
(1)
n and a third order circular convolution z

(3)
n,n,n

expressed as follows:

z(1)n =

M−1
∑

i=0

hix(n−i)M (9)

z
(3)
m,n,l =

M−1
∑

i=0

M−1
∑

j=0

M−1
∑

k=0

hijkx(m−i)Mx(n−j)Mx∗
(l−k)M

(10)

In the frequency domain, the 1D-DFT of the circular

convolution in (9) translates into an element-wise

multiplication of the 1D-DFT linear filter coefficients



Fig. 2. SIC MMSE turbo FDE

and the 1D-DFT of symbols xn as follows:

Z(1)
m = Hd(m)Xm (11)

where 0 ≤ m ≤ N − 1. For general values of (m,n, r), it

can be shown that the 3D-DFT of zm,n,l is [14]:

Z(3)
p,q,r =

√
N

3
H(3)

p,q,rXpXqXr (12)

where X is the N 1D-DFT of conjugate symbols x∗
n and

H
(3)
p,q,r are the N-3D-DFT of 3rd order Volterra kernels hi,j,k.

Equivalently for m = n = l, the time domain symbols z
(3)
n,n,n

can be expressed as:

z(3)n,n,n =
1

√
N

3

N−1
∑

p=0

N−1
∑

q=0

N−1
∑

r=0

Z(3)
p,q,rW

n(p+q+r)
N

=

N−1
∑

α=0

Wnα
N

N−1
∑

p=0

N−1
∑

q=0

N−1
∑

r=0

H(3)
p,q,rXpXqXr

δN (p+ q + r − α)

where the delta-function modulo N is defined as follows:

δN (m) = 1 if (m)N = 0 (13)

Equation (13) shows that z
(3)
n,n,n is the mono-dimensional N-

1D-IDFT of a combination of N-3D-DFT Volterra kernels.

The non linear interference can thus be projected on a 1D-

DFT instead of a 3D-DFT. The mth N-1D-DFT output of the

received symbols can thus be written as follows:

Zm = Hd(m)Xm +
√
N

N−1
∑

p=0

N−1
∑

q=0

N−1
∑

r=0

H(3)
p,q,rXpXqXr

δN (p+ q + r −m) (14)

It should be noted, that triplets (p, q, r) satisfying δN (p+ q+
r −m) = 1 are disjoint for different frequency indexes m.

IV. LINEAR FREQUENCY DOMAIN VOLTERRA-MMSE

TURBO EQUALIZATION

In this section, we derive the frequency domain MMSE

equalizer. Let us define the following notations:

z , [z0, . . . , zN−1]
T

, x , [x0, . . . , xN−1]
T

w , [w0, . . . , wN−1]
T

It follows that:

z = Hx+
∑

i

∑

j

∑

k

Hijkx
ijk +w

where H , Circ ([h001×N−MhM−1 . . . h1]) is the circular

convolution matrix having [h001×N−MhM−1 . . . h1] at its first

row; Hijk = hi,j,kIN are the non linear ISI matrices and xijk

are the third order ISI terms:

xijk ,









x(0−i)Mx(0−j)Mx∗
(0−k)M

...

x(N−1−i)Mx(N−1−j)Mx∗
(N−1−k)M









A. Turbo MMSE FDE

The linear MMSE equalizer consists of an affine estimation

of the received symbols [15]:

x̂n = aHn z+ bn (15)

which computes estimates that minimize the mean square error

with the transmitted symbols E
[

|x̂n − xn|2
]

. The time variant

MMSE coefficients are given as follows:
{

an = Cov (z, z)
−1

Cov (z, xn)

bn = E [xn]− aHn E [z]
(16)

where Cov (x,y) , E
[

xyH
]

− E [x]E
[

yH
]

, leading to:

x̂n = aHn (z− E [z]) + E [xn] (17)

In order to cancel all the linear and non linear interference,

the contribution of the symbol xn is subtracted only for the

linear terms. This allows for a perfect reconstruction of the

non linear soft interference and thus its full cancellation at

perfect priors. The estimated symbols can thus be expressed

as:

x̂n = aHn (z− E [z]) + aHn HunE [xn] (18)

As discussed in [10], the time varying exact MMSE im-

plementation is computationally prohibitive. This encourages

investigating some low complexity implementations, among

which we select the No-Apriori implementation. Recalling

the results in [10], the MMSE solution writes with the NA

approximation as:

CZZ , Cov(z, z) = σ2
wIN +HHH +

∑

(i,j,k)

|hijk|2IN

CZxn
, Cov(z, xn) = Hun

The non linear interference appears as additive white Gaussian

noise with variance σ2
i =

∑

(i,j,k) |hijk|2. Thus, by defining

the overall noise variance, σ2
w̃ = σ2

i + σ2
w,

CZZ = σ2
w̃IN +HHH (19)

The NA- MMSE solution can thus be written as:

x̂n = uT
nH

HC−1
ZZ (z− E [z])+uT

nH
HC−1

ZZHunE [xn] (20)

Using the results in Section II, the term C =
uT
nH

HC−1
ZZHun is constant ∀n ∈ {0, . . . , N − 1}, and thus,



the estimated symbols x̂ = [x̂0, . . . , x̂N−1]
T can be written in

a compacted form as follows:

x̂ = HHC−1
ZZ (z− E [z]) + CE [x] (21)

The computation of these filters can be done efficiently in the

frequency domain. To do so, C−1
ZZ is computed as follows:

C−1
ZZ =

(

FH
(

σ2
w̃IN +HdH

H
d

)

F
)−1

= FHC−1
ZZ,dF (22)

where CZZ,d = σ2
w̃IN + HdH

H
d and the inverse is obtained

using the results of Section II. It follows that the frequency

estimated symbols are:

X̂ , F x̂ = HH
d C−1

ZZ,d (Z− E [Z]) + CE [X] (23)

where E[Z] = FE[z] and E[X] = FE[x]. The ith soft

frequency symbol E [Zi] is expressed as follows:

E [Zi] = Hd(i)E [Xi] +
√
N

N−1
∑

p=0

N−1
∑

q=0

N−1
∑

r=0

H(3)
p,q,r

E
[

XpXqXr

]

δN (p+ q + r − i) (24)

The constant C can be computed using u0 :

C = uT
0 H

HC−1
ZZHu0 = uT

0 F
HHH

d C−1
ZZ,dHdFu0

=
1

N

N−1
∑

i=0

|Hd(i)|2
σ2
w̃ + |Hd(i)|2

(25)

where the factor 1
N

comes from uT
0 F

H = 1√
N
11×N . Thus,

the computation of the frequency domain equalizer yields the

following estimates:

X̂i =
H∗

d (i)

σ2
w̃ + |Hd(i)|2

Zi +

(

C − |Hd(i)|2
σ2
w̃ + |Hd(i)|2

)

E[Xi]

− Hd(i)
∗

σ2
w̃ + |Hd(i)|2

N−1
∑

p=0

N−1
∑

q=0

N−1
∑

r=0

H(3)
p,q,rE

[

XpXqXr

]

√
NδN (p+ q + r − i) (26)

We recognise in (26) and Fig. 2 the structure of a soft

interference canceller where linear ISI E[Xi] and non linear

ISI E
[

XpXqXr

]

terms appearing in E [Zi] are cancelled.

To avoid the complexity of computing third order non linear

interference associated with E
[

XpXqXr

]

, we can compute

the non linear interference in the time domain and by means

of DFT, compute the non linear equivalent frequency interfer-

ence. More specifically, let:

E[Z(3)] =
√
N

N−1
∑

p=0

N−1
∑

q=0

N−1
∑

r=0

H(3)
p,q,rE

[

XpXqXr

]

∆N (p+ q + r)

= F
∑

i

∑

j

∑

k

HijkE[xijk] (27)

where we define ∆N (p+q+r) = [δN (p+q+r−0), . . . , δN (p+
q+ r−N − 1)]T . Computing soft non linear symbols is then

less computationally complex.

To obtain the MMSE coefficients one needs to compute

expectations of E[xijk] and E[x] i.e. expectation of products

of three symbols and symbol conjugates at different time

instants as mentioned in [6]. Due to the presence of an

interleaver between the decoder and the equalizer, symbols can

be considered mutually independent. Thus, we can write the

average of a product of p symbols and q−p symbol conjugates

as follows:

E
[

xn−i1xn−i2 . . . xn−ipx
∗
n−ip+1

. . . x∗
n−iq

]

=
∏

j

M
∑

m=1

svjms
∗v∗

j
m P

[

xn−ij = sm
]

(28)

where vj (v∗j ) represents the number of occurrences of symbol

xn−ij (x∗
n−ij

) in the product average, and sm m ∈ [1 . . .M ]

is the mth constellation symbol with probability computed as:

P (xn = sm) =

log2(M)
∏

i=1

P (cn,i = sm,i)

where cn,i is the ith coded bit of the symbol xn and sm,i is

the ith bit of constellation symbol sm.

The coded bit probabilities can be computed from the

input Log-Likelihood Ratios (LLRs) La from the decoder as:

La (cn,i) = ln
P (cn,i=0)
P (cn,i=1) .

B. Soft demapper

In order to map the output of the equalizer to code LLRs,

we define the residual equalizer output error en = x̂n−κnxn.

Computing the distribution of the estimation error instead of

the distribution of x̂n given xn turns out to be a practical

choice, since one needs not track occurrences of xn in third

order covariances. For practical considerations, this error is

assumed to be Gaussian. More precisely:

κn = Cov(x̂n, xn)

= uT
nF

HHH
d C−1

ZZ,dHdFun

= C (29)

It can be shown that the expectation of the residual error is

E[en] = 0. The variance of the residual error writes as follows:

ven , Cov(en, en) = Cov(x̂n, x̂n)− |C|2

= uT
nF

HHH
d C−1

ZZ,d

(

HdF
(

V + (1− vn)unu
T
n

)

FHHH
d + σ2

w̃IN

)

C−1
ZZ,dHdFun − |C|2

where V = diag(v0, . . . , vN−1) and vi is the covariance

of the ith symbol. The term (1 − vn)unu
T
n is added due

to the subtraction of the contribution of symbol xn which

translates to vn = 1. In the computation of the Cov(Z,Z),
the covariance of non linear ISI terms was approximated by

σ2
i . This approximation was referenced as implementation-b

in [10] and was previosuly proposed in [16]. The equalizer

output x̂n ∼ N (Cxn, ven) and the output extrinsic LLR Le



TABLE I
TEST CHANNEL VOLTERRA KERNELS

1st order kernels 3rd order kernels

h0 = 0.8529 + 0.4502i h002 = 0.1091− 0.0615i

h1 = 0.0881− 0.0014i h330 = 0.0503− 0.0503i

h2 = −0.0336− 0.0196i h001 = 0.0979− 0.0979i

h3 = 0.0503 + 0.0433i h003 = −0.1119− 0.0252i

h110 = −0.0280− 0.0475i
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Fig. 3. BER comparison for different turbo equalizers

can write as:

Le(cn,i|x̂n) , ln
P (cn,i = 0|x̂n)

P (cn,i = 1|x̂n)
− La(cn,i)

= ln

∑

sj :sj,i=0

(

exp
(

−|x̂n−Csj |2
ven

))

∏

k 6=i P (cn,k = sj,k)

∑

sj :si,j=1

(

exp
(

−|x̂n−Csj |2
ven

))

∏

k 6=i P (cn,k = sj,k)

The a posteriori LLRs are made extrinsic (Le) by subtracting

the a priori probability fed by the decoder: Le(cn,i|x̂n) =
Lap(cn,i|x̂n)− La(cn,i).

V. SIMULATION RESULTS

Independent and identically distributed bits are encoded

using a 1/2 rate (7,5) non-recursive convolutional encoder.

The codewords are then interleaved and mapped into 8PSK

symbols using a gray mapping. A cyclic prefix of length 3
symbols is appended to each block of N = 512 symbols.

The overall baud-rate equivalent channel is represented by

the Volterra Kernels in Table. I proposed in [16] which have

been extracted from [6] but with a stronger non linear ISI.

Fig. 3 plots the BER performance for four turbo-iterations

for both the time and frequency domain MMSE equalizers:

the exact MMSE linear equalizer, the time domain MMSE

equalizer (MMSE-TDE) and the frequency domain MMSE

equalizer (MMSE-FDE). The exact MMSE refers to the full

complexity time domain equalizer, whereas the MMSE-TDE

refers to the time domain MMSE implementation-b in [10].

All time domain equalizers were simulated without CP, and

hence the MMSE-FDE is shifted by 0.0254dB to account for

the loss of spectral efficiency. Performance of the frequency

domain equalizer joins that of the time domain equalizer.

VI. CONCLUSION

This paper has proposed an iterative frequency domain

MMSE equalizer for non linear Volterra channels. The pro-

posed equalizer has the advantage of a channel-memory imple-

mentation, as well as a simplified multiplicative equalization

for the linear interference. The MMSE-FDE is equivalent to

its time domain realisation at the exception of an additional

cyclic prefix which is negligible for large block lengths and

small channel memory.
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