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Abstract—In this paper, we derive an asymptotic analysis
for the design of serially concatenated turbo schemes that
works for both systematic generalized irregular repeat accu-
mulate (GIRA) and low density generator matrix (LDGM)
codes concatenated with a continuous phase modulation
(CPM). The proposed design is based on a semi-analytic
EXIT chart optimization method. By considering a particu-
lar scheduling, inserting partial interleavers between GIRA
accumulator and CPM and allowing degree-1 variable nodes,
we show that one can achieve very good thresholds.

I. INTRODUCTION

Continuous phase modulation (CPM) represents a sub-

set of phase modulation family where the phase is kept

continuous between signal intervals. The phase continu-

ity and the constant envelope characteristics makes this

family a very good choice to achieve excellent spectral

efficiency and bit error rates in comparison to other

phase modulations especially in nonlinear systems and

channels. Because of these theoretical properties, this kind

of modulation is considered with a big interest particularly

since [1] rewrites the CPM modulator as a concatenation

of a time-invariant continuous phase encoder (CPE) with

a time-invariant memoryless modulator (MM).

Many studies have been conducted trying to jointly

optimize iterative schemes with different CPM configu-

rations and convolutional outer codes [2]–[4]. Later on,

several code families emerged such as irregular repeat

accumuluate (IRA) codes [5]. The main advantage of

IRA codes is their low encoding and decoding complexity

(linear in code length) while showing similar performance

to low density parity check (LDPC) codes. Only few

papers studied the convergence behaviour and the asymp-

totic design for general CPM schemes without relying on

properties of some particular CPM families. [6]–[8] have

considered an non systematic IRA-like coded CPM. The

proposed structure replaces the IRA accumulator with a

CPM modulator. This was motivated by the fact that CPM

acts as a phase accumulator. Recently, [9] has investigated

the design of both unstructured LDPC and protograph

codes. All these methods, when applied to systematic

general IRA codes, are not straightforward.

The main contribution of this paper is to propose a

general framework to represent, analyse and design any

generalized systematic IRA code (GIRA) serially con-

catenated with any CPM scheme. In GIRA codes, the

accumulator 1/(1 + D) is replaced with a generalized

accumulator with a polynomial transfer function 1/G(D).
Not only this class offers more flexibility but also em-

braces all previously discussed codes by choosing the

right accumulator function. Furthermore, we point out that

for systematic GIRA codes, the optimization is not as

straightforward as the non systematic case [6], [10] but

requires a well-thought scheduling. Also, we have not to

consider, at the difference of [6], [11], to carefully design

doping check nodes [12]. Additionally, we can remark that

the extrinsic information transfer function (EXIT) [13] of

CPM detectors, at the difference of the MIMO detector in

[11], joins the point (1, 1). Consequently, we are allowed

to introduce degree-1 variable nodes.

The paper is organized as follows: Section II describes

the general model of serially concatenated GIRA-CPM

systems. Section III provides the convergence analysis

based on asymptotic EXIT analysis. Finally, Section IV

presents some design and performance examples.

II. SYSTEM DESCRIPTION

A systematic GIRA code serially concatenated with a

CPM modulator is depicted in Fig. 1a. GIRA encoder can

be seen as a serial concatenation of repetition codes with a

convolutional code named accumulator. In non systematic

GIRA codes, the information bits are not transmitted.

At the beginning of the coding process, each bit of a

binary message u ∈ {0, 1}K is irregularly repeated with a

factor corresponding to the node degree of its associated

variable node. After interleaving by a random interleaver

πGIRA, the repeated bits are first combined (using the

so-called combiner) and then are fed to the ”generalized”

accumulator, with polynomial transfer function 1/G(D).
The parity check matrix of a systematic GIRA code

is of the form H = [HuHp] where Hu refers to the

connections between the systematic bits variable nodes and

the check nodes while the squared matrix Hp describes the

connections between check nodes and parity bit variable

nodes. To name only a few, when G(D) = 1, we obtain a

LDGM code, or again when G(D) = 1 +D we have an

IRA code. As for irregular LDPC, the sub-matrix Hu of

GIRA codes ensemble can be represented with its edge-

perspective degree distribution polynomials:

λ(x) =

dv
∑

i=1

λix
i−1 , ρ(x) =

dc
∑

j=1

ρjx
j−1

where λi (resp. ρj) is the proportion of edges in the Tanner

graph connected to variable nodes (VN) of degree i (resp.

to check nodes (CN) of degree j) and dv (reps. dc) is the

maximum VN (resp. CN) degree. When the GIRA code is

systematic and check-regular, the design code rate is given

by:

R =
dc
∑

λi/i

1 + dc
∑

λi/i
(1)

Each code word c is then interleaved, mapped into M-

ary symbols α = {αi}i and finally encoded by the CPM:



(a) GIRA encoder (b) Systematic GIRA soft decoder

Fig. 1: GIRA encoder and decoder

Fig. 2: GIRA Tanner graph

s(t,α) =

√

2Es

T
cos (2πf0t+ θ(t,α) + θ0) (2)

with

θ(t,α) = πh

N−1
∑

i=0

αiq(t− iT ), q(t) =

{

∫ t

0
g(τ)dτ

1/2, t > L

f0 is the carrier frequency, θ0 the initial phase shift, θ(t,α)
the information carrying phase, g(t) the frequency pulse,

h = k/p the modulation index, L the memory and ℜ the

real part. Practically, the shape of q(t) (rectangular (REC),

raised-cosine (RC), ...) and L determine the smoothness of

the signal.

At the receiver side, the soft-input soft-output (SISO)

CPM decoder is based on the Rimoldi decomposition [1]

which splits the CPM modulator into a serial concatenation

of the CPE, represented by a trellis, and the MM, seen

as a filter bank. The information symbols α are taken in

{±1, ...,±(M−1)} whatever the parity of M is and figure

in the tilted phase as:

ψ(τ + nT,α) =

[[

2πh
n−L
∑

i=0

αi

]

mod p+W (τ)

+ 4πh
L−1
∑

i=0

αn−iq(τ + iT )

]

mod 2π , 0 ≤ τ ≤ T

where W (τ) is a data independent term [1]. Rimoldi

decomposition generates a trellis of pML−1 states de-

fined by the tuple σn = [Un−1, ..., Un−L+1, Vn] where

Vn = [
∑n−L

i=0 Ui]mod p. The MM is formed by pML

different pulses {si(t)}i corresponding to CPE output

symbols Xn = [Un, ..., Un−L+1, Vn], where Ui is a M-ary

modified data digit [1]. The transmitted signal s(t,α) is

corrupted with an additive white Gaussian noise (AWGN)

having a double-sided power spectral density N0/2. From

Eq. (2), the complex baseband noised signal can be written

as follows:

y(t) =
√

2Es/Texp{jψ(t,α}+ n(t) , t > 0 (3)

The outputs of receiver matched filters bank {s∗(T−t)}
are sampled once each nT to obtain the correlator out-

put yn = [yni =
∫ (n+1)T

nT
y(l)s∗i (l)dl]1≤i≤pML . It is

shown that {yn}n are sufficient statistics to estimate

symbols. Furthermore, using any orthonormal expansion

of receiver matched filters bank [2], the joint probability

density function of yn can be reduced to p(yn/Xn) ∝

exp{2Re(yni )/N0}. This measure can be used to compute

transition metrics of the CPE trellis exploiting the BCJR

algorithm [14]. For the outer decoder, we can use ei-

ther LDPC-like decoding exploiting the belief-propagation

(BP) algorithm [15] on the Tanner graph associated to

GIRA code (see Fig. 2) or turbo-like decoding expanding

the GIRA code into a serial concatenation of an LDGM

and an accumulator [10]. Actually, these two methods are

equivalent when the GIRA parity check matrix H is cycle

free. Figure 1b depicts GIRA soft decoder architecture.

III. CODE DESIGN

Density evolution algorithms to study the asymptotic

convergence behavior of concatenated system can be

cumbersome, instead, EXIT charts [16] are exploited. In

AWGN, it is generally assumed that the probability density

functions of exchanged log likelihood ratios (LLRs) can

be well modeled with a consistent Gaussian distribution.

As a result, we can evaluate the asymptotic evolution of

different modules of the receiver by tracking only the vari-

ance σ2 of their exchanged LLRs [16] using the function

J(σ) = 1 − Ex(log2(1 + e−x)) with x ∼ N(σ2/2, σ2).
Partially inspired from [6], our optimization method re-

turns the best degree profiles using EXIT curve-fitting. In

our case, since we have an accumulator and a systematic



encoder, we need to define a particular scheduling to

obtain linear equations with respect to {λi}: the CPM

decoder communicates its extrinsic LLR values to all

variable nodes. Systematic variable nodes perform a data-

pass operation to the check nodes that in turn forward

their information to the accumulator. At this point, we

can consider a subsystem formed by a serially concate-

nated convolution codes: the accumulator and the CPE.

After a certain number of turbo-iterations, that will be

characterized later, the accumulator propagates its extrinsic

information back to the systematic variable nodes. This

defines one global iteration ℓ. GIRA codes generalize IRA

codes in that the accumulator 1/1+D is replaced by any

convolutional code with transfer function 1/G(D) where

G(D) = 1+
∑i=r

i=1 giD
i with gi ∈ {0, 1}. In this paper, we

will consider tail-bited GIRA codes. When choosing the

accumulator, we must insure that the girth of Hp is greater

than 4, for instance, G(D) = 1+D+D2 is not allowed.

Furthermore, we will consider systematic GIRA codes so

that there is no need to consider introducing doping check

nodes [12].

Designing a GIRA code consists in picking out variable

nodes profile λ(x) and check nodes profile ρ(x) that

maximize the design rate for a given signal to noise

ratio (SNR) Es/N0 with respect to the convergence of

the decoding trajectories. Fig. 1b introduces the main

notations of different mutual information associated with

LLR messages and corresponding coded bits involved

in the design. Basically, in our modelling, the set of

edges connecting check nodes to parity variable nodes in

Fig. 2 is not included neither in λ(x) nor in ρ(x). These

connections, directly linked to the type of the accumulator,

are taken into account in the EXIT transfer function as it is

going to be explained later on. Besides, partial interleavers

one per each VN degree between CPM and the systematic

part of IRA are considered, the reason will be clarified in

the following.

A. CPM transfer function

Assume I.,cpm and Icpm,. denote respectively the apriori

and extrinsic mutual information of the CPM soft decoder.

Analytical study of the input-output EXIT transfer func-

tion of SISO CPM module is not straightforward. Alter-

natively, we compute the CPM transfer chart Tcpm,σnoise

using Monte Carlo simulation and polynomial approxima-

tion. Thus, we have:

Icpm,. = Tcpm,σnoise
(I.,cpm) (4)

As we will consider a curve fitting approach and based

on the commonly observed generalization of the re-

sults of [13] for the binary erasure channel, an up-

per bound on the achievable rate for the outer code

given an SNR Es/N0 can be approximately using the

area under the CPM detector EXIT curve, i.e.: R ≤
R∗ =

∫ 1

0
Tcpm,σnoise

(Ivn−cpm)dIvn−cpm. Unlike MIMO

receiver in [11], CPM detector EXIT curves join the

point (1, 1): it allows us to introduce degree-1 VNs. Also,

it will be implicitly assumed that BCJR recursions are

run independently between different trellis section groups

delimited by each partial interleaver. This is not the case in

practice but this assumption allows us to neglect transition

effects when running BCJR decoding. Marker-free line in

Fig. 3 presents EXIT chart of GSM GMSK with L = 3,

h = 1/2 and BT = 0.3 at Es/N0 = 0dB.

B. IRA transfer functions

1) EXIT Transfer Function of VNs and CNs: Let Iℓvn,cn
denotes the averaged mixture of extrinsic MI output from

a variable node to check node at the ℓth iteration. The

mixture of MIs sent from VNs to CNs is then equal to:

Iℓvn,cn =

dv
∑

i=1

λiI
ℓ
vn,cn(i) (5)

where Iℓvn−cn(i) is the expected mutual information asso-

ciated with LLRs passed from a VN of degree i to CNs

and is given by:

Iℓvn,cn(i) = (6)

J

(

√

(i− 1)[J−1(Iℓ−1
cn,vn(i))]2 + [J−1(Iℓcpm,vn(i))]

2

)

Likewise, VN to CPM direction update function is given

by:

Iℓ−1
vn,cpm(j) = J(

√
iJ−1(Iℓ−1

cn,vn)) (7)

Since the VN profile is not regular, assuming Eq. (7)

is equivalent to considering partial interleavers per VN

degree between CPM and the systematic part of GIRA.

The idea behind this choice is in essence equivalent to [10]

to enable linear programming optimization. Nevertheless,

if one uses one global interleaver between CPM and

GIRA, we are not allowed to write Eq. (7) but instead:

Iℓ−1
vn,cpm =

dv
∑

i=1

λ̃iJ(
√
iJ−1(Iℓ−1

cn,vn))

where λ̃i is the proportion of VN of degree i. When

injecting this expression into Eq. (6), this assumption leads

necessarily to nonlinear convergence constraints 1.

On the other hand, the information passed from CN of

degree j to the parity bits nodes and to systematic variable

nodes are respectively:

Iℓ−1
cn,acc(j) = 1− J(

√

jJ−1
(

1− Iℓ−1
vn,cn)

)

(8)

Iℓ−1
cn,vn(j) = 1−

J

(

√

(j − 1)J−1
(

1− Iℓ−1
vn,cn) + J−1

(

1− Iℓ−1
acc,cn)

)

(9)

Without loss of generality, we can suppose check-

regular GIRA with uniform check degree dc.

2) EXIT Transfer Function of Accumulator: [11] ap-

proximates Iℓacc,cn by

[

1−q

1−qIℓ
cn,acc

]2

, q = 1− Iℓcpm,acc

where Iℓcpm,acc corresponds to the convergence threshold

between CPM seen as inner code and the accumulator

seen as outer code. However, this expression is correct

only for G(D) = 1 + D and dc = 1 [5]. In the general

case, we shall precompute the different EXIT charts of

1Note that Eq. 8 in [17] is not consistent with the authors’ proposed
framework.
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Fig. 3: Iℓacc,cpm as a function of Iℓcpm,acc with different aprioris

Iℓcn,acc at Es/N0 = 0dB.

the accumulator (Iℓacc,cn and Iℓacc,cpm) using Monte Carlo

approximations:

Iℓacc,cn = Tacc,cn(Iℓcpm,acc, I
ℓ
cn,acc) (10)

Iℓacc,cpm = Tacc,cpm(Iℓacc,cn, I
ℓ
cpm,acc) (11)

The former is the MI over uncoded bits whereas the latter

is the MI over encoded bits.

Figures 3a and 3b illustrate the location of the con-

vergence (intersection points) of the concatenated subsys-

tem CPM+ACC. The unmarked curves correspond to the

CPM (here a GMSK). The marked curves represent EXIT

transfer functions of different accumulators as function

of different apriori values. Figure 4 shows how Iℓcpm,acc

varies as function of the apriori mutual information Icn,acc.

One can clearly observe that the convergence threshold

is significantly improved if Icn,acc is relatively decided.

The threshold of the system {accumulator, CPM} for

a particular SNR can be easily provided by a curve-

approximating polynomial of the curves depicted in Fig. 4.

Even if GIRA codes present a small degradation of the

decoding threshold in comparison to IRA codes [18],

observe that the EXIT chart of former is better than the

latter. Finally, we point out that for the special case of

a LDGM code, there is no accumulator, i.e. G(D) = 1,

therefore, Iℓacc,cn and Iℓacc,cpm are equal to Iℓcpm,acc and

Iℓcn,acc respectively.

From Eqs. (7) to (11) we can compute the transfer func-

tion of joint CN and ACC+CPM. When combined with

Eqs. (4) to (6), this leads to a linear programming problem

that maximizes of the design rate R in Eq. (1) under

the convergence constraints Φ(λ, I
(l)
vn,cn, σ2) = I

(l+1)
vn,cn >

I
(l)
vn,cn, ∀I(l)vn,cn ∈ [0, 1]. By convention, I

(0)
vn,cpm(i) =

0, ∀i = 1, ..., dv and I
(0)
cn,vn = 0.
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GMSK: Threshold -2.73dB

LDGM IRA

Threshold −2.7dB Threshold −2.22dB

λ1 = 0.051 dc = 3 λ1 = 0.185 dc = 2

λ2 = 0.357 λ2 = 0.551

λ5 = 0.023 λ8 = 0.086

λ6 = 0.568 λ9 = 0.176

G(D)=1 + D + D3 G(D)=1 + D + D4

Threshold −2.22dB Threshold −2.22dB

λ1 = 0.411 dc = 2 λ1 = 0.424 dc = 2

λ7 = 0.103 λ2 = 0.04

λ8 = 0.485 λ10 = 0.536

TABLE I: Optimized GIRA codes for design rate R ≃ 0.5. For LDPC
code, we obtain λ1 = 0.1125, λ2 = 0.5294, λ5 = 0.0086, λ10 =
0.3495, ρ3 = 0.2, ρ4 = 0.8 with a threshold of −2.7dB

IV. SIMULATION RESULTS

In this section, we present some simulation results

obtained from our optimization for four different GIRA

codes: LDGM, IRA, G1(D) = 1+D+D3 and G2(D) =
1 + D + D4. Figure 5 depicts obtained thresholds and

compares them to the maximum achievable rate R∗ for

GSM GMSK. We observe that we operate very close to

R∗. These results can be improved by allowing higher dv
(here dv = 10). Table I presents some optimized profiles

and their corresponding asymptotic thresholds. Note that

the profile coefficients λi and dc refer to Hu.

For comparison, taking the case of the memory-1 Min-

imum Shift Keying (MSK) CPM, the threshold for de-

signed nonsystematic rate-1/2 LDGM in [6] is Es/N0 =
−2.61dB, while our optimization gives a systematic rate-

1/2 LDGM code with threshold −2.7dB (values are to be

compared with the MSK theoretical threshold −2.8dB).

Figure 6 illustrates how the designed rates depend on

the minimum degree of VNs dv,min. While introducing

degree-1 VNs leads to a slight improvement in the case
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Fig. 6: Maximum achievable and optimized rates for some GIRA codes
with GMSK

of LDGM, in the case of IRA, GIRA G1(D) and GIRA

G2(D), it outperforms clearly dv,min = 2 schemes by a

gain of 0.4 dB, 0.9 dB and 0.92 dB respectively at rate of

0.5. Finally, Fig. 7 plots bit error rate (BER) as function of

Es/N0 for different optimized GIRA profiles in Table I.

We used around 16000 information bits with 200 CPM-

GIRA turbo iterations, the construction of the matrix H
is random. As expected, IRA presents a small gain in

the threshold region in comparison to the GIRA code

corresponding to the generator polynomial G2(D). The

floor of this latter arrives earlier in our study because of

the introduction of degree-1 variable nodes and the random

generation of H . For LDGM with dv,min = 1, we have

observed that the error floor region is generally higher for

GMSK than [6] for MSK. This is mainly due to the high

proportion of degree-1 VNs and the random generation

of H . Results could be improved with a more structured

design of the matrix H at finite length. Instead, for LDGM

only, we will constrain dv,min ≥ 2. The used profile,

always for Hu, is then λ2 = 0.367, λ10 = 0.633, dc = 4.

This has only a minor impact on the theoretical threshold

(cf. Fig. 6a).

V. CONCLUSION

We introduced a general framework for the asymptotic

analysis and design of systematic GIRA codes serial

concatenated with CPM. Among all families, it appears

from the obtained results that IRA and LDGM codes

present the best trade-off threshold performance. Future

works will investigate the finite length design of GIRA

codes family.
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