
HAL Id: hal-01147230
https://hal.science/hal-01147230

Submitted on 30 Apr 2015

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Towards a Modular and Flexible SDN Control Language
Messaoud Aouadj, Emmanuel Lavinal, Thierry Desprats, Michelle Sibilla

To cite this version:
Messaoud Aouadj, Emmanuel Lavinal, Thierry Desprats, Michelle Sibilla. Towards a Modular and
Flexible SDN Control Language. Global Information Infrastructure and Networking Symposium -
GIIS 2014, Sep 2014, Montreal, Canada. pp. 1-6. �hal-01147230�

https://hal.science/hal-01147230
https://hal.archives-ouvertes.fr

Open Archive TOULOUSE Archive Ouverte (OATAO)
OATAO is an open access repository that collects the work of Toulouse researchers and
makes it freely available over the web where possible.

This is an author-deposited version published in : http://oatao.univ-toulouse.fr/
Eprints ID : 13228

To link to this article : DOI :10.1109/GIIS.2014.6934254
URL : http://dx.doi.org/10.1109/GIIS.2014.6934254

To cite this version : Aouadj, Messaoud and Lavinal, Emmanuel and
Desprats, Thierry and Sibilla, Michelle Towards a Modular and
Flexible SDN Control Language. (2014) In: Global Information
Infrastructure and Networking Symposium - GIIS 2014, 15 September
2014 - 19 September 2014 (Montreal, Canada).

Any correspondance concerning this service should be sent to the repository

administrator: staff-oatao@listes-diff.inp-toulouse.fr

http://oatao.univ-toulouse.fr/
http://oatao.univ-toulouse.fr/13228/
http://oatao.univ-toulouse.fr/13228/
http://dx.doi.org/10.1109/GIIS.2014.6934254
mailto:staff-oatao@listes-diff.inp-toulouse.fr

Towards a Modular and Flexible

SDN Control Language

Messaoud Aouadj, Emmanuel Lavinal, Thierry Desprats, Michelle Sibilla

University of Toulouse, IRIT

118 Route de Narbonne, F-31062 Toulouse, France

Email: {aouadj, lavinal, desprats, sibilla}@irit.fr

Abstract—Software Defined Networking (SDN) is a recent
paradigm that aims to reshape the way we configure and manage
today’s networks. To fulfill this goal, SDN relies on control
languages to programmatically express the desired network
behavior, making it possible to quickly change and innovate
within the network. As a consequence, having an expressive and
powerful control language will unlock the full potential of this
approach and enable new opportunities for developing network
control applications. As such, numerous works addressed this
issue, where the most recent ones have used network abstractions
in order to spare administrators from dealing with the complex
and dynamic nature of the physical infrastructure. However,
we think that these languages rely on abstractions that are not
the most appropriate ones for expressing modular and reusable
control policies. In this paper, we present work in progress
towards a new high-level, modular and flexible SDN control
language. One novelty of this language is to integrate a network
abstraction model that allows a clear separation between simple
transport functions and richer network services. We believe that
this approach will allow administrators to design and deploy
control applications that can be easily maintained and reused.

I. INTRODUCTION

Networks have become increasingly dynamic, complex and
hard to control due to major evolutions in computing envi-
ronments, such as the exponential growth of mobile devices,
desktop and server virtualization, the wide adoption of cloud
computing or the advent of “Big Data”. Administrators are
therefore looking for more flexible networks that can quickly
adapt to the evolving needs of today’s enterprises, carriers, and
end users. Software Defined Networking (SDN) is the latest
attempt in order to respond to this lack of flexibility of current
network architectures. In order to do so, SDN decouples the
control plane (which decides how to handle packet flows)
from the data plane (which forwards packet flows according
to decisions taken by the control plane), and centralizes it in a
logical and programmable entity called controller [1, 2, 3, 4].
By using this logical and central point of control, network
administrators are able to quickly define and change network
behavior by simply (re)programming the controller using the
provided programming interfaces. Communications between
the control plane and the data plane are then enforced via
an open and a well-defined protocol such as Openflow, which
is currently the most accepted standard [5].

Unfortunately, current SDN controllers provide low-level
programming interfaces that have several limits, the most
restrictive ones being: i) the inability to write separate modules
that compose and ii) the obligation to directly deal with the
complex and dynamic nature of the physical infrastructure.

Regarding the first restriction, it is well known that ad-
ministrators often need to install multiple functions on their
networks such as routing, monitoring, access control or load
balancing. Using programming interfaces of current controllers
to implement these functions as independent and separate
modules, that can later be composed to achieve high-level
goals, is a complicated and error-prone process. Indeed, to
compose existing control modules, it is necessary to manually
combine their logic in a totally new program in order to avoid
overlapping problems between rules of different modules that
apply on the same packet flows.

The second restriction is that network administrators are
obliged to specify their control policies directly upon the
global view of the physical infrastructure that is provided
by the controller. The drawbacks with this approach is that
administrators need, on the one hand, to deal with a large
amount of informations that are irrelevant to their high-level
goals (e.g. even in the case of specifying an access control
policy, administrators must also consider issues related to
packet forwarding between intermediate nodes) and, on the
other hand, they have to constantly adapt their policies to
changes that may occur in the physical infrastructure (e.g.
discovery of a new path, link or device failure).

All these limits make the controller’s programing interfaces
less productive and difficult to use in practice, since they do
not allow to build modular control programs that can be easily
maintained and reused.

In this paper, we present work in progress towards the
definition of a new high-level control language for SDN plat-
forms. The goal is to design a control interface that overcomes
the previously presented deficiencies. In order to do so, we
designed our language so that it satisfies the following key
principals:

• Expressiveness: the language’s primitives must enable
administrators to specify behaviors that describe their
high-level goals, rather than specifying instructions
that describe how these goals will be implemented on
the underlying network.

• Modularity: network administrators must be able to
implement their network functions as separate mod-
ules that can be, on the one hand, easily composed to
build control programs and, on the other hand, reused
over different physical infrastructures.

• Flexibility: the language must allow to specify control
policies that respond to the variety of current function-

alities (e.g., routing, access control, monitoring), and
in various contexts of use (e.g., campus networks, data
centers, operator networks). Moreover, the language
must not impose too strong restrictions in order to be
able to meet, as far as possible, future requirements
as they arise.

To satisfy these requirements, we put network virtualization
at the very heart of our language. While there are many
motivations to virtualize networks (e.g., isolation, customized
network services), easing their management is probably the
most important one [6]. Indeed, virtualization exposes logical
abstractions (i.e, virtual networks) that are decoupled from the
physical infrastructure. These abstractions provide just enough
information to specify high-level goals, thus making control
policies both easier to write, since only the desired behavior
is expressed, and modular (subsequently reusable), since they
are no more attached to a particular infrastructure. However,
virtualization presents two major design challenges: the choice
of the network abstraction model that will be used to abstract
the physical infrastructure (i.e., the forwarding plane), and the
technology needed (i.e., the network hypervisor) to map the
logical state onto the underlying physical infrastructure [7].
In this paper, we mainly address issues related to the first
challenge.

The novelty introduced by our proposal language is that
unlike existing works, we rely on a new network abstraction
model that we think is more appropriate for our language
design requirements. Indeed, since we consider virtualization
as a cornerstone component, we must be mindful of the fact
that the choice of the abstraction model will significantly
impact the language’s fundamental properties, namely: it’s
expressiveness, modularity and flexibility.

The remainder of this paper is organized as follows: in
section II, existing works are briefly presented. In section
III, we discuss network abstraction models that are currently
used by existing control languages, then we describe our new
approach. Section IV gives an overview of our language’s key
elements. An illustration program is exposed through a toy
example in section V. Finally, we conclude and shortly present
ongoing work.

II. RELATED WORK

Proposing advanced programming interfaces for SDN con-
trollers has already been the subject of numerous research
projects. In this section we briefly present the most important
ones and their main contributions.

Early works have addressed issues related to the low-level
nature of programming interfaces and their inability to build
control modules that compose. The FML language [8] is one of
the very first, it allows to specify policies about flows, where a
policy is a set of statement, each representing a simple if-then
relationship. FML also includes two conflict resolution mech-
anisms which provide administrators with a convenient way to
specify how different rules should be composed. Frenetic [9]
is a high-level language that pushes programming abstractions
one-step further. Frenetic is implemented as a python library
and comprises two integrated sub-languages: i) a declarative
query language that allows administrators to read the state of
the network and ii) a general-purpose, functional and reactive

library for specifying packet forwarding rules. Like FML,
Frenetic provides constructors and operators that make queries
and functions composition a straightforward exercise.

Additional recent proposals introduced modern features
that allow to build more realistic and sophisticated control
programs. Indeed, languages such as Procera [10] and NetCore
[11] offer the possibility to query traffic history, as well as
the controller’s state, thereby enabling network administrators
to construct dynamic policies that can automatically react to
conditions like authentication or bandwidth use.

Traffic isolation issues were also addressed in works like
FlowVisor [12] and Splendid Isolation [13]. FlowVisor is a
software slicing layer placed between the control plane and
the data plane. This slicing layer allows to divide the data
plane into several slices completely isolated, where each slice
can have its own and distinct control program. Following the
same idea, Guts et al. proposed splendid isolation which is a
language that allows, on one side, to define network slices in
a simple and elegant way and, on the other, to formally verify
isolation between these slices. Splendid isolation was proposed
as an alternative to FlowVisor. Indeed, the authors argued that
isolation should be formally verified at the language level
instead of relaying on potentially buggy low-level mechanisms
such as an intermediate software layer.

Recently, Monsanto et al. proposed the Pyretic language
[14], which we believe is by far the most advanced work on
building modern programming interfaces for SDN controllers.
Indeed, Pyretic introduced two main programming abstractions
that have greatly simplified the creation of modular control
programs. First, they provide, in addition to the existing
parallel composition operator, a new sequential composition
operator that allows to apply a succession of functions on the
same packet flow (e.g., access control then routing). Second,
they enable network administrators to apply their control
policies over abstract topologies, thus constraining what a
module can see (information hiding) and do (protection).

Pyretic abstract topologies may contain a mix of physical
switches, and virtual ones that are overlayed over the physical
infrastructure. We believe there is a better alternative that will
best suit our language design requirements. In the next section,
we discuss in detail abstraction models that are proposed in
the literature, then we present our new approach.

III. CHOOSING THE RIGHT ABSTRACTION MODEL

One of the major challenges of virtualizing software-
defined networks is the choice of the network abstraction
model that will be used to abstract the physical infrastructure.
There are currently two main approaches: i) the overlay
network model and ii) the single router abstraction model.

To the best of our knowledge, most network control lan-
guages use the overlay network model (Fig. 1a) which consists
in overlaying a virtual network of multiple switches on top
of a shared physical infrastructure [7]. Virtual switches are
very similar to standard switches in the physical infrastructure:
they include lookup tables, ports and expose a set of basic
forwarding actions. Virtual switches can also map to one or
more physical switches, and are connected to each other within
a logical topology via virtual links.

As an alternative to the overlay network model, Keller
and Rexford proposed the Platform as a Service model (Fig.
1b) [15]. This model abstracts the network view in a single
logical router (which may also be viewed as one big switch)
in order to enable network administrators to focus solely on
their in-network functions (i.e., any functionality that benefits
from being inside the network) rather then worrying about
managing the virtual network. The single router includes three
main processing components: 1) a routing component that
provides the ability to customize path selection 2) a data
plane component that exposes some basic functionalities like
forwarding and 3) a general-purpose processing component
that exposes in-network functions like firewall, load balancing
or access control. Also, the model has been extended by
McCauley et al. [16] in order to better respond to large-scale
networks characteristics.

The question, then, is which model to choose for our
network control language, taking into account that the abstract
model must ensure the expressiveness, the modularity and the
flexibility of the language.

��

��

��

��

��
�� ��

��

��

��

��

��

���������	�
���
��

���	��
��
�����
���

��������
���������������

���

����	������
����
���

��

��

��

��

��������	�
����
���
���

��
����	���
���
��
	������

��	���
�
����������������������������
�
��

�

��

��
��

��

���	� ������������������
�
������!
��
�����
��� ��

Fig. 1. Existing network abstraction models

A. Models discussion

As mentioned earlier, the biggest advantage of using the
Platform as a Service model is that it allows network ad-
ministrators to focus only on the expression of in-network
functions that they plan to install on their network. However,
we think that, from a network programming language point
of view, this model suffers from a big disadvantage: it forces
network administrators to put different in-network functions
within the same router, thereby the resulting application will
be a monolithic program in which the logic of different in-
network functions are inexorably intertwined, making them
difficult to test, debug, maintain and reuse. Moreover, forcing
network administrators to always use a single router as an
abstract topology can significantly affect one of the language’s
fundamental characteristics, namely its flexibility. For instance,
using this model clearly makes it difficult to define middlebox
functions (e.g., firewall, deep packet inspection) or to represent
a network that contains multiple administrative boundaries.

On the other hand, the overlay network is a more modular
approach, since the model allows network administrators to

define multiple logical switches, on which they can install in-
network functions. These switches can be afterwards reused
to, easily and quickly, construct sophisticated network control
applications. However, we think that this model suffers from
one major shortcoming, that is, unlike the platform as a service
model, there is no distinction between in-network functions
and packet transport functions, despite the fact that these two
auxiliary policies solve two different problems. Indeed, this
shortcoming makes the definition of in-network functions more
difficult, since their specification must consider issues related
to packet transport across the virtual network (e.g., selecting
the appropriate virtual path among several available).

B. Edge and Fabric: lifting up the modularity at the language
level

In order to overcome the limitations of both models, we
relied on a well-known idea within the network designer
community, which is making an explicit distinction between
the network edge and network core devices, as it is the case
with MPLS networks.

Explicitly distinguishing between edge and core functions
was also used by Casado et al. in a proposal for extending
current SDN infrastructures [17]. We propose to integrate this
concept in our network abstraction model (Fig. 2), thereby
lifting it up at the language level. Network administrators will
thus build their virtual networks using two types of virtual
devices:

• Edges which are general-purpose processing devices
used to support the execution of in-network functions.

• Fabrics which are more restricted processing devices
used to deal with packet transport issues.

Considering the above discussion, using edges and fabrics
will allow us to overcome the limitations of both previous
models. Indeed, using fabrics enables network administrators
to abstract packet transport issues, thereby allowing them to
focus solely on the definition of complex in-network functions.
By contrast, the possibility to use multiple edges allows, on
one side, to maintain the language’s flexibility and, on the
other side, to decouple and distinguish in-network functions,
thus facilitating their test, debug and, more especially, their
reuse.

Finally, we believe that decomposing control policies into
transport and in-network functions will enable network admin-
istrators to write control programs which are much easier to
understand, reason about and maintain.

��

��

��

�������	
�

������� �

�

������	
��
�����������
���
�

����������
�
�����������
���
�

���

���

���
��

Fig. 2. “Edge and Fabric” network abstraction model

IV. LANGUAGE OVERVIEW

Using the Pyretic language, that we have previously pre-
sented in section II, to specify control policies upon an abstract
topology is a challenging task, mainly because administrators
need to use a complex transformation process which involves
writing three auxiliary policies that make use of switches and
links of the physical infrastructure.

In order to avoid such difficulties, we have chosen to
make a complete separation between control policies and the
physical infrastructure. Indeed, our programming approach is
that network administrators provide two separate modules: the
first one contains the principal control program, and the second
one is a simple initialization module that gives information
about the mapping between virtual units and switches present
at the physical level. Regarding the control program, it will
be composed of two main parts: the first part deals with the
design of the virtual network, and the second part contains
control policies that will be applied over the virtual network,
without any reference to the physical infrastructure. In the
following, we describe in more detail each of these parts.
Figure 3 summarizes the key elements of the language.

A. Virtual network design

In order to allow network administrators to easily and
clearly design their virtual networks, we have chosen a fully
declarative approach. Thus, building a virtual network would
only imply describing virtual devices and the connections (i.e.,
virtual links) that exist between them.

Virtual Network Design:
addHost (name)
addNetwork (name)
addEdge (name , ports)
addFabric (name , ports)
addLink((name , port) , (name , port))

Edge Primitives:
Filters : match(h=v) | all packets | no packets
Actions : forward(destination) | modify(h=v) | tag(label) | drop
Queries : packet(limit) | byte count(every) | packet count(every)

Fabric Primitives:
catch(flow)
carry(destination, requirements=None)

Composition Operators:
parallel composition: +
sequential composition: ≫

Fig. 3. Summary of the language’s key elements

We distinguish three types of components, depending on
their role in the virtual network.

The first type of components are hosts and networks which
are used to represent sources and destinations of data flows.
A host can represent a single end system (e.g., end host,
application-level gateway or proprietary hardware appliance),
while a network can represent a range of end systems. Note
that the use of these two components is not mandatory, but
strongly encouraged as a way to make control policies easier to
read and write. Indeed, they allow administrators to manipulate
identifiers that are meaningful to their high-level goals, instead

of dealing with classical port numbers, network addresses and
all sorts of other low-level parameters.

The second type of components are edges which are
general processing devices placed at the border of the virtual
network in order to support in-network functions installation.
Edges can either play the role of host-network interfaces
or the role of middleboxes. Indeed, following the approach
we propose, ingress edges will receive incoming data flows,
inspect packet’s headers to identify which in-network function
is to be considered, and redirect flows either to an egress edge
for delivery to the destination or to an intermediate edge for
potential further treatment. In addition, it is important to stress
that edges are purely logical entities that can map to one or
more switches in the physical infrastructure.

The third and last type of components are fabrics which
represent the network’s raw forwarding capacities. The fabric’s
primary purpose is packet transport. It exposes only a minimal
set of forwarding primitives and uses a specific addressing
mechanism that is much simpler than the one used by edges
(i.e., using a unique label instead of several header fields). In
normal cases, all edges in the virtual network will be connected
to a unique fabric. However, in some specific cases, virtual
networks can include more than one fabric according to the
network administrator’s high level goals. Indeed, it is important
to note that two fabrics within the same model will map to
two separate collections of physical switches. This design
choice allows us to capture specific network policies such as
expressing an explicit physical backup path for critical data
flows.

Once network administrators have finished with the de-
scription of virtual devices, they will then just need to set-up
the different virtual links in order to connect hosts or networks
to edges, and edges to fabrics.

B. High-level policy functions

Using two types of virtual devices, namely edge and fabric,
implies having two distinct instruction sets. Indeed, this will
allow the two components to evolve separately, focusing on
their specific problems.

Fabrics expose two main primitives that are catch and
carry. The first primitive captures an incoming flow on one
of the fabric’s ports. Data flows are identified based on a label
that has been inserted beforehand by an edge. The second in-
struction carry transports a flow from an input port to an output
port, it also allows to specify some forwarding requirements
such as maximum delay to guarantee or minimum bandwidth
to offer.

Edges are more complex devices than fabrics, and hence
expose a richer set of instructions. Edge primitives are divided
into three main groups : Filters, Actions and Queries.

Filters are primitives that do not change the packet’s con-
tents. The language’s main filter is the match(h=v) primitive,
which, when installed on a edge, returns a set of packets that
have a field h in their header matching the value v.

Contrary to filters, actions are primitives that can change
packets value or location. They are applied on sets of packets
that are returned by installed filters. The simplest action is drop

which discards a packet received on one of the edges input
port. The forward action allows to move, within the same edge,
a packet from an input port to an output port. The modify action
is used to update one or more of the packet’s header fields.
Lastly, the tag action allows to attach a label onto incoming
packets, considering that labels are the unique information that
a fabric will use to identify a packet.

The third and last group of edge primitives are queries.
Like actions, queries are applied on filters. We distinguish two
main kinds of queries depending on the type of information
they return. The first kind is composed of packet count and
byte count which, as their name suggests, allow to periodically
poll packet and byte counters that are associated to filters. The
second kind of query is packet which allows to poll entire raw
packets. In addition to providing the ability to conduct network
monitoring, queries enable network administrators to construct
dynamic policies by allowing them to associate queries to
callback functions that are executed each time a raw data is
collected or a timer has elapsed.

Finally, we drew inspiration from Pyretic work in order to
provide our language with composition operators that enable
network administrators to easily combine, in a parallel (+) or
a sequential (≫) way, edge and fabric policies.

V. TOY EXAMPLE

This section presents a simple use case in which we illus-
trate a preliminary version of our high-level network control
language. The overall management goal of this use case is to
configure an enterprise network in order to prevent external
access to sensitive resources. The policy is that any user who
is part of the enterprise’s internal network can have access to
all available resources (i.e., web server and computer cluster).
On the contrary, external users can only have access to web
resources and are not allowed to access the enterprise’s cluster.

As described previously, the first step consists in describing
a virtual network that matches our high-level goals, thus
abstracting all irrelevant information that are related to the
physical infrastructure. The following extract is used to de-
scribe the virtual network showed in figure 4 (notice that not
all links are represented in this extract):

Virtual network topology

topo.addEdge(name="ingress", ports=(1, 2, 3))

topo.addEdge(name="egress", ports=(1, 2, 3))

topo.addEdge(name="gateway", ports=(1))

topo.addFabric(name="fabric", ports(1, 2, 3))

topo.addNetwork(name="internal_users")

topo.addNetwork(name="Internet")

topo.addHost(name="web_server")

topo.addHost(name="computer_cluster")

topo.addLink(("ingress",3), ("fabric", 1))

topo.addLink(("gateway",1), ("fabric", 2))

topo.addLink(("egress",3), ("fabric", 3))

...

Having described the virtual network, the next step is the
specification of the control policy. The subsequent piece of
code represents the in-network function that will be installed
on the ingress edge. This function configures an edge so that it
classifies incoming internal flows as “trusted” and the external
ones as “unreliable”. Once the classification has been done,
the edge will simply forward flows to the fabric in order to be
transported to their right destination.

Fig. 4. Virtual network topology use case

ingress function

def classify(VIdentifier):

match(edge=VIdentifier,source="internal_users") >>

tag("trusted_flow") >>

forward("fabric")

match(edge=VIdentifier,source="Internet") >>

tag("unreliable_flow") >>

forward("fabric")

In the context of this example, the gateway is only designed
to analyze unreliable flows. We therefore use the following
transport function to configure the fabric so that unreliable
flows are transported to the filtering gateway, while trusted
ones are directly transported to the egress edge.

fabric function

def transport(VIdentifier):

catch(fabric=VIdentifier,flow="trusted_flow") >>

carry("egress")

catch(fabric=VIdentifier,flow="unreliable_flow") >>

carry("gateway")

For the gateway’s configuration, we define the below in-
network function that performs two actions. The first one is
to discard all flows that want to reach the enterprise’s cluster,
since only unreliable flows are redirected to the gateway. The
second one is to reclassify all web flows as “trusted” flows,
since they are allowed to access the enterprise’s web server.

gateway function (for unreliable flows)

def filter(VIdentifier):

match(edge=VIdentifier,destination="web_server") >>

tag("trusted_flow") >>

forward("fabric")

match(edge=VIdentifier,destination="computer_cluster") >>

drop()

The last in-network function simply configures the egress
edge in a manner that it forwards web requests to the web
server and forwards computation requests to the computer
cluster.

egress function

def deliver(VIdentifier):

match(edge=VIdentifier,destination="web_server") >>

forward("web_server")

match(edge=VIdentifier,destination="computer_cluster") >>

forward("computer_cluster")

Due to space constraints, we did not detail the control
policy responsible for handling server and cluster responses.

It is important to stress that none of the previous in-
network functions consider packet transport issues. Indeed, all
focus only on their high-level goal (i.e., classifying in ingress,
filtering in gateway and delivering in egress), and at the end,
functions just send data flows to the fabric which ensures the
transportation to the right destination.

main function

def main():

return classify("ingress") + filter("gateway") +

deliver("egress") + transport("fabric")

Finally, we call the main function that allows, on one
side, to pass arguments to transport and in-network functions
and, on the other, to orchestrate their execution in order to
obtain the overall desired network behavior. Here we pass the
identifier of the corresponding virtual device on which each
function will apply. After execution of this main program, the
policy resulting from the combination of the four functions is
processed and enforced onto the physical infrastructure by a
runtime system, which we are currently prototyping using the
Python language and the POX controller [2].

VI. CONCLUSION AND CURRENT WORK

This paper described the design of a new high-level
language for “programming” software-defined networks. We
used network virtualization as a main feature in order to
spare administrators the trouble of dealing with the myriad
of irrelevant information that are related to the physical in-
frastructure, thus complying with the SDN promise to make
network programming easier. The novelty of this language lies
in the use of a new abstract model that explicitly identifies two
kinds of virtual units: i) Fabrics to abstract packet transport
functions and ii) Edges to support, on top of host-network
interfaces, richer in-network functions (firewall, load balanc-
ing, caching, etc.). We think that this model offers the proper
level of abstraction, by providing just enough information, to
clearly specify the network’s desired behavior according to the
traffic’s type. Moreover, this network abstraction model covers
our language design requirements, namely its expressiveness,
modularity and flexibility.

Currently, we are working on the design and the technical
development of a network hypervisor that will support the
control language we presented. In addition to the main control
module, which contains virtual network and control policies
declaration, the network hypervisor will rely on a mapping
module consisting of initialization information and mapping
instructions linking virtual network components to real physi-
cal elements. The definition of this module will largely depend
on one side, on the physical infrastructure (network topology,
host deployment, etc.) and on the other, on the administrator’s
virtual network design choices.

Technically speaking, these mapping instructions will
mainly consist in associative arrays binding each virtual unit
(i.e., edge, fabric, host or network) as well as their parameters
to their respective physical counterparts of the underlying
infrastructure. Associating network addresses to hosts and
virtual networks, or mapping an edge’s ports to physical ones
(knowing that these physical ports may belong to different
physical switches) are examples of such mapping instructions.
These mapping rules will be reused afterwards by the network
hypervisor’s runtime in order to generate a policy for the
physical infrastructure that is semantically equivalent to the
one applied over the virtual network. It will then be the hy-
pervisor’s responsibility to enforce the policy on the underlying
network.

We are presently implementing our high-level network
control language as a domain-specific language embedded

in Python. To map the logical state of the virtual network
onto the physical infrastructure, the prototype relies on the
POX controller, an open source development platform for
Python-based SDN control applications. In the current state
of work, the initialization module will be manually specified
by network administrators, but our long term goal is to be able
to automatically generate part of this module, by relaying in
particular on topology information returned by the controller.

REFERENCES

[1] N. Gude, T. Koponen, J. Pettit, B. Pfaff, M. Casado, N. McKeown,
and S. Shenker, “NOX: Towards an operating system for networks,”
SIGCOMM Computer Communication Review, vol. 38, no. 3, 2008.

[2] “The POX controller,” online: http://www.noxrepo.org/pox/about-pox/,
accessed: 2014-05-28.

[3] T. Koponen, M. Casado, N. Gude, J. Stribling, L. Poutievski, M. Zhu,
R. Ramanathan, Y. Iwata, H. Inoue, T. Hama et al., “Onix: A distributed
control platform for large-scale production networks,” in Proc. of the 9th

USENIX Conference on Operating Systems Design and Implementation

(OSDI’10). USENIX Association, 2010.

[4] D. Erickson, “The beacon openflow controller,” in Proc. of the Second

ACM SIGCOMM Workshop on Hot Topics in Software Defined Net-

working (HotSDN’13). ACM, 2013.

[5] N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar, L. Peterson,
J. Rexford, S. Shenker, and J. Turner, “Openflow: Enabling innovation
in campus networks,” SIGCOMM Computer Communication Review,
vol. 38, no. 2, 2008.

[6] R. Jain and S. Paul, “Network virtualization and software defined
networking for cloud computing: a survey,” IEEE Communications

Magazine, vol. 51, no. 11, 2013.

[7] M. Casado, T. Koponen, R. Ramanathan, and S. Shenker, “Virtualizing
the Network Forwarding Plane,” in Proc. of the Workshop on Pro-

grammable Routers for Extensible Services of Tomorrow (PRESTO’10).
ACM, 2010.

[8] T. L. Hinrichs, N. S. Gude, M. Casado, J. C. Mitchell, and S. Shenker,
“Practical declarative network management,” in Proceedings of the 1st

ACM Workshop on Research on Enterprise Networking. ACM, 2009.

[9] N. Foster, R. Harrison, M. J. Freedman, C. Monsanto, J. Rexford,
A. Story, and D. Walker, “Frenetic: A network programming language,”
SIGPLAN Notices, vol. 46, no. 9, 2011.

[10] A. Voellmy, H. Kim, and N. Feamster, “Procera: A language for high-
level reactive network control,” in Proc. of the First Workshop on Hot

Topics in Software Defined Networks (HotSDN’12). ACM, 2012.

[11] C. Monsanto, N. Foster, R. Harrison, and D. Walker, “A compiler
and run-time system for network programming languages,” SIGPLAN

Notices, vol. 47, no. 1, 2012.

[12] R. Sherwood, G. Gibb, K.-K. Yap, G. Appenzeller, M. Casado, N. McK-
eown, and G. Parulkar, “Can the production network be the testbed?”
in Proc. of the 9th USENIX Conference on Operating Systems Design

and Implementation (OSDI’10). USENIX Association, 2010.

[13] S. Gutz, A. Story, C. Schlesinger, and N. Foster, “Splendid isolation:
A slice abstraction for software-defined networks,” in Proc. of the First

Workshop on Hot Topics in Software Defined Networks (HotSDN’12).
ACM, 2012.

[14] C. Monsanto, J. Reich, N. Foster, J. Rexford, and D. Walker, “Com-
posing Software Defined Networks,” in 10th USENIX Symposium on

Networked Systems Design and Implementation (NSDI’13). USENIX
Association, 2013.

[15] E. Keller and J. Rexford, “The “Platform As a Service” Model for
Networking,” in Proc. of the 2010 Internet Network Management

Workshop (INM/WREN’10). USENIX Association, 2010.

[16] J. McCauley, A. Panda, M. Casado, T. Koponen, and S. Shenker,
“Extending SDN to large-scale networks,” Open Network Summit 2013
(ONS), Research Track, 2013.

[17] M. Casado, T. Koponen, S. Shenker, and A. Tootoonchian, “Fabric: A
Retrospective on Evolving SDN,” in Proc. of the First Workshop on

Hot Topics in Software Defined Networks (HotSDN’12). ACM, 2012.

