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ABSTRACT

Collaboration in software engineering projects is usually intensive and requires adequate support by well-
integrated tools. However, process-centered software engineering environments (PSEE) have traditionally
been designed to exploit integration facilities in other tools, while offering themselves little to no such facilities.
This is in line with the vision of the PSEE as the central orchestrator of project support tools. We argue that this
view has hindered the widespread adoption of process-based collaboration support tools by incurring too much
adoption and switching costs. We propose a new process-based collaboration support architecture, backed by a
process metamodel, that can easily be integrated with existing tools. The proposed architecture revolves around
the central concepts of ‘deep links’ and ‘hooks’. Our approach is validated by analyzing a collection of open-
source projects, and integration utilities based on the implemented process model server have been developed.
Copyright © 2014 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Software engineering is usually a highly collaborative activity [1]. Moreover, the collaboration

involved is often complex and has different aspects: task coordination, artifact change management,

defect tracking, communication, and so on. The various efforts to support some specific aspect

of collaboration have produced different formalizations of collaboration. Every collaboration

support tool embodies some idea, some formalization, some knowledge, and some ‘model’§ of a

software project. The harmonious integration of all such models is essential for supporting collaborative

work [2, 3].

However, process-centered software engineering environments (PSEEs), which manipulate process

models, have traditionally been developed with design assumptions that hurt their integration

capabilities and therefore their adoption.

On the one hand, PSEEs, as evident in the name PSEE, assume that the whole working environment

revolves around the process model [4]. It is therefore not surprising that most PSEEs expect that

activities are launched and ended inside them by clicking buttons (that is, these actions need not be
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automatically invokable from a third-party tool), that they take care of launching tools, and that almost

all the support they provide is by native components of the PSEE, not by third-party tools through an

extension mechanism.

Such process-centric view of the software project marginalizes process-based tools because it

leads to high adoption costs, as well as high switching costs. Adopting a PSEE means giving it

total control of the development setup, which is most of the time unrealistic, as other tools were

probably in use before the introduction of the PSEE. The integration between PSEEs and

external tools is also usually performed by PSEE-specific configuration procedures and not

through generic mechanisms such as environment variables, composable textual interfaces,

Hypertext Transfer Protocol (HTTP) APIs, and so on. This means existing tools cannot be easily

retrofitted to communicate with the PSEE and makes switching between different PSEEs a major

hurdle.

On the other hand, control and data integration between a PSEE and other tools is usually one-

way [2, 5]. The PSEE can invoke other tools or detect that they have been invoked (control integration)

and read the artifacts created using another tool (data integration). The flow of information goes from the

external tool to the PSEE and is at the initiative of the PSEE, not the reverse. Unfortunately, unlike

existing collaboration solutions, PSEEs make it difficult for other tools to integrate with them, as they

do not offer a simple way to be invoked or queried.

For example, Abriola et al. [5] lament the fact that some external tools do not expose enough

data and control so that the PSEE can control them but do not point out that the PSEE itself

does not expose its data nor does it provide control integration mechanisms. Even the surveyed

and recommended data integration approaches in [5] assume that the PSEE should know about

editors but not the reverse. This is actually not surprising, as the PSEE usually does not offer

any simple facility to read its data or control it. Things would have been different if the PSEE

did not act as the responsible of control integration in the workspace but as a participant like

any other tool.

We argue that the idea of the process model being the most important representation of a software

project and therefore must be the foundation of tool support is misguided. It either leads to PSEEs

trying to support every aspect of a project or considering every other aspect as secondary to the

process followed. This has unfortunate design implications that hurt the adoption of PSEEs. A bug

model, for example, is an abstraction of software defects and people responsible for them. Similarly,

a process model can be considered as just another abstraction, which happens to focus on activities,

the people carrying them out, and the artifacts they produce and consume. Process-support tools can

thus be designed, such as bug and artifact tracking tools, to provide core services related to activities

and most importantly to expose this model so that it can be integrated with other models of the

software project. Such design can be used to easily provide context for developments activities by

linking to their definition in the process model or automatically reflect process events on the

development environment and vice versa.

Our contribution is, on the one hand, additional concepts and relationships for the representation of

collaboration in process models. On the other hand, we propose a mechanism for the integration

of process-support tools with other collaboration support tools, which follows the Unix

principle of loosely coupled tools, each fit for a narrow purpose. Indeed, supporting a software

project requires to have appropriate information on the ongoing project. While traditional

process models can provide information on what is planned, additional details are needed to be

able to use a process model as an information source on what is happening. We propose

Collaborative Model-based Software and Systems Process Engineering Metamodel (CMSPEM),

a metamodel that augments SPEM with the ability to describe project-related concerns and an

engine that can participate in collaboration support using information extracted from CMSPEM

models.

The rest of this paper is structured as follows. Section 2 describes and conceptualizes some

integration capabilities in the collaboration support tools that we would like to integrate process-

based tools with, and Section 3 investigates how information in process models can contribute to

collaboration support. Section 4 describes how our metamodel captures that information, Section 5

presents the implementation of our process-support approach and its application to an example from



the industry, and Section 6 describes a statistical study conducted on a collection of open-source

projects to validate the approach and discusses the implementation of some integration utilities.

Section 7 summarizes related works, and Section 8 closes with a conclusion and perspectives of our

contribution.

2. INTEGRATION CAPABILITIES IN EXISTING COLLABORATION SUPPORT TOOLS

If we want to integrate process-based tools with other collaboration support tools, we need to

understand their integration capabilities and which design decisions enable such capabilities. Bug

trackers, version control systems (VCSs), communication tools (chat, mailing list, etc.), build tools,

and knowledge centers (websites, wikis, etc.) are some common collaboration support tools used in

software engineering projects [6]. This section investigates the integration capabilities of two

popular tools (bug trackers and VCSs), identifies which design decisions enable those capabilities,

and proposes a conceptualization of such design decisions.

2.1. Examples of integration capabilities

Bug trackers are based on a model of the defects in software products, their resolution states, their

severity, their interdependencies, and participant responsibilities with respect to them. This model is

used by the bug tracker and third-party tools to offer a set of collaboration support tools such as

email notifications on bug status changes, duplicate bugs identification, release engineering (which

bugs should be resolved for the next release), quality control (which parts of the code exhibit the

most bugs and which participants usually introduce bugs), and so on.

Version control systems are another example of collaboration tools based on a model of the software

project. A VCS works with a model of the artifacts in a software project, their modification history,

changes made to them and the participants who made those changes, identification and manipulation

of product states (with tags and branches), and so on. The VCS implements the modification of such

model and the resolution of potential problems during such modification such as artifact merging.

However, much of its usefulness lies in the rich model that it allows third-party tools to query. The

model can be directly queried, for example, to find out the last time a file was changed, by whom,

why, and so on. Tools can also take actions on specific events such as after a commit, before a

merge, after receiving code in a remote repository, and so on.

The previous examples show that existing tools concentrate on a core problem, solve it, and expose

the model of the specific project aspect related to the problem they solve. They are therefore useful

beyond their core competency and can easily participate in the ecosystem of collaboration support

tools. These tools do not assume that they are the only ones used in a project, that they are the entry

points of every action, or that the information they have on the project is only useful for them. The

design of such tools recognizes that collaboration concerns are interlinked and automation can only

deliver on its promises when different automation solutions can be automatically linked, so that, for

example, a commit in a version control tool can automatically trigger a bug resolution state change

in the bug tracker. Without such automatic connections between tools, practitioners waste time with

manual bookkeeping tasks. They have to manually search one tool for information that gives

context to data in another tool or must manually instruct one tool to react to events generated by

another tool.

2.2. Conceptualization

The analysis of the integration capabilities of existing collaboration support tools highlights two

important integration mechanisms: deep linking for data integration and hooks for control integration.

2.2.1. Deep linking. Popular software engineering tools for version control, bug tracking, continuous

integration, documentation, communication, and so on usually make their data available over the

network and exploit the resource linking facilities provided by the Web, that is, hypertext links. This

makes it possible for a commit in a VCS to refer to the bug it fixes or for a discussion on Internet



Relay Chat to directly refer to a build failure in a continuous integration tool. This easy linking requires

tools to support ‘deep linking’ [7], that is, the ability to address a single item of the data managed by a

tool (a particular build, a particular commit, a particular comment on a bug, etc.). Deep linking only

requires that a global identifier is assigned to each data item that can be deep linked to, by using a

well-known addressing scheme.

2.2.2. Hooks. Integration problems can be approached by creating new interoperability standards.

However, this results in an all-or-nothing situation, where tools that use the same standard

communicate with no additional effort, and those that do not, cannot communicate. Another

approach is to design tools so that simple glue scripts can be written to make them communicate

with little effort. This requires the definition of ‘hooks’ [3, 8], which are specific events that can

occur in a tool. Each time they occur, hooks trigger the execution of the glue scripts defined for

them. For example, hooks are used in continuous integration systems to announce build failures in

company chat rooms. They are also used in VCSs to run tests and trigger deployments after

commits. Hooks are actually lightweight event notification mechanisms, where listeners can be

defined by writing scripts that are stored in a conventional location,¶ and event notifications are sent

by executing the scripts defined as listeners.∥

3. PROCESS-RELATED COLLABORATION SUPPORT IN SOFTWARE ENGINEERING

3.1. Generalities

This section discusses a set of collaboration support facilities that can be provided using a process

model. These facilities are illustrated on an industrial software development project case study. The

understanding gained by analyzing and conceptualizing the integration capabilities of existing

collaboration support tools in Section 2 suggests that such opportunities come in two groups:

• Core opportunities: support based only on pure process considerations. Such considerations involve

roles, products, and activities and their relationships, regardless of actual role affectations, product

contents, or domain-specific details of activities.

• Transversal opportunities: support based on the intersection of process aspects with other

development aspects such as bug tracking, version control, communication, and so on. Such

development aspects, while usually acknowledged in process models, are typically modeled in

detail and stored outside of the process model (bug tracking database, version control metadata,

communication tool settings and history, etc.).

Process models are, fundamentally, project abstractions that focus on the activities to be carried out,

their properties and relationships, as well as their parameters such as the people assigned and the

artifacts consumed and produced. Such abstractions enable core support scenarios such as enforcing

preconditions and post-conditions on activities, or tracking the status of each task. These concerns

have largely been addressed by existing PSEEs.

One should however note that the core support opportunities for process-based tools are mostly

about managing work. They are helpful to the manager interested in the global progress of the

project or the quality manager interested in how much the organization is sticking to recommended

work practices. However, for developers working on specific tasks, the part of the process they are

working on is a guide and as such is more useful when it gives context to their daily activities such

as design, coding, bug fixing, release engineering, browsing documentation, and so on. Arguably,

the sometimes difficult adoption of software processes and associated tools has some roots in the

poor integration between such tools and daily developer preoccupations.

¶For example, a hook that must be executed in the git version control system, before each commit, must be an executable
script named .git/hooks/pre-commit.
∥Event parameters are usually transmitted with general purpose mechanisms such as environment variables or HTTP re-
quest parameters.



For developers, most support opportunities require a synergy between process-based tools and other

collaboration support tools. One important consideration is the ease of access to contextual information

[9]. Fixing a bug, for example, requires access to documentation (programming language and library

tutorials, requirement documents), bug tracking information (bug status and comments), version

control information (the date when the bug was introduced), test results (the tests that are broken by

the bug), communication tools (relevant discussions on a chat or a mailing list), and release

engineering information (systems running a version affected by the bug and the release that the bug

fix is scheduled for). Productivity is improved when developers can have fast access to such context

without needlessly interrupting each other, thus making collaboration frictionless [10, 11].

A process-based tool can contribute valuable contextual information such as the activities involved

in the creation and resolution of the bug (with their description, duration, and preconditions and post-

conditions), the roles and people who participate in such activities, the artifacts produced and

consumed by such activities (which may also need to be modified or which offer additional insights

on the bug), which deadlines one must comply with, and so on.

Another consideration is the automation of the reaction of one tool to an event that occurs in another

tool. If a process engine makes its internal events available to other tools, some manual procedures can

be eliminated. For example, deadline reminders can be automatically sent to bug discussions threads.

Activity completion notifications can trigger test executions or builds. A work product state change,

from ‘document completed’ to ‘document validated’, for example, can lead to the creation of a tag

in a version control tool. The manual bookkeeping work that practitioners are usually required to do,

to reflect process constraints on their work, will be reduced.

3.2. An industrial case study

Our case study is part of the French ANR Galaxy project, whose goal is to provide collaboration

support infrastructure for the development of complex systems using the model-driven engineering

approach.

3.2.1. High-level overview. The case study is based on the development practices of the ‘Software

and Systems’ pole of AKKA Technologies, a European engineering and consulting firm, with

offices in over 10 countries, a headcount of over 7000 engineers, and expertise in the aeronautics,

railway, defense, space, and automobile sectors.

Each project follows a high-level division into core and transversal activities,** as shown in Figure 1.

Sub-activities of the ‘Develop’ activity include specification, conception, implementation, testing,

delivery, and support. Depending on the development process chosen for a particular project, these

activities may overlap in time or be repeated as much as necessary.

The description of these general activities includes their objective, input and output products, result

control procedures, realization hints, references of supporting documents, and roles involved.

3.2.2. Integration opportunities. Let us consider the example of a project that, similar to the

development work carried out at AKKA Technologies on the Galaxy project, uses Git for version

control, Eclipse as editor, BugZilla as bug tracker, and Microsoft project for project management.

Project participants are constantly switching between these applications, each supporting a particular

aspect of collaboration.

If an explicit process model, backed by a PSEE, is to be used, much of its usefulness for developers

lies in how tightly it is integrated in the existing setup.

For the needs of the case study, we focus on the ‘Change management’ activity, which consists in

fixing the defects reported by the client after the product has already been deployed or enhancing the

product with new functionalities. Tickets (enhancement requests or bugs reports) are created in

BugZilla and assigned to a group of developers. Each developer is assigned a number of tasks

(TaskUse in SPEM), each task being composed of a number of tickets. Each task is considered as

completed when all the tickets it is made of are solved.

**This is not related to the core and transversal opportunities discussed in Section 3.1.



When dependencies are discovered between tickets, they are added to the process model as

precedences. For example, if solving a ticket requires the resolution of another ticket, a finish to

finish precedence is used. Sometimes, ticket dependencies are discovered when investigating bugs

and added to the process model as task dependencies. A bug can also be discovered to be the

symptom of separate defects, in which case the bug is split, and newly created bugs are assigned.

While investigating individual defects, developers regularly need context information on the task

and version control revision in which it was introduced, as well as people that are most likely to

provide valuable information about such bugs.

This sample situation exhibits a couple of integration opportunities between the process-support tool

and other tools. For example, tasks can be represented in the process-support tool, and each task can

link to the tickets in Bugzilla, which must be fixed in the task. Whenever a particular bug changes

state, the process-support tool can be notified, and if appropriate, mark the task as completed. As

such notification includes the identity of the developer who fixed the bug, a third-party tool,

integrated in the process-support tool, can generate a weekly progress report for each developer. A

utility can also monitor bug report creations and automatically provide process context information

for participants and tasks referenced in the report, by posting comments for example. Section 6.2

discusses the implementation of such utilities.

4. MODELING COLLABORATIVE PROCESSES

A PSEE or any process-based collaboration support tool is based on a model of the software project

that focuses on process aspects. To enable the creation of such model, we defined CMSPEM, a

metamodel for the description of collaborative software processes.

4.1. Collaborative Model-based Software and Systems Process Engineering Metamodel: a metamodel

for collaborative processes

The CMSPEM is an extension of SPEM2 [12].

Our extension is based on the insight that in an ongoing software engineering project, where issues

such as collaboration are manifest, the concepts involved for the practitioners are the actual people

doing the job, what each of them is doing, and which artifacts they are manipulating. However,

process models are usually described using roles (a role may be played by different people, and

someone may play different roles), products (a product such as a source file may have different

physical representations in different workspaces), and tasks (a task may be carried out by different

people, each focusing on a specific part of a product). We introduce concepts to account for these

precisions, and describe how they relate to each other.

The CMSPEM introduces the concept of Actor, a specific human participant in a project. This

addition not only allows a better description of collaboration but also can be easily linked to a

commit author, a bug reporter, or a chat room participant.†† This makes it easy to integrate process

††The promotion of concepts such as Actor to the metamodeling level is one way to address the problems with the Object
Management Group (OMG) metamodeling framework, which arise when ontological and linguistic concepts need to be
mixed. See [27] and [28] for a complete description and other solutions.

Figure 1. Main activities of the AKKA generic process.



data with data manipulated by other tools. For example, a commit in a VCS can be linked to a task in

the process-support tool using the author of the commit (an Actor in CMSPEM), which may be

identified by his/her email address. CMSPEM also introduces the concept of ActorSpecificWork,

which is a unit of work performed by a specific Actor in the context of a task (TaskUse in SPEM),

and the concept of ActorSpecificArtifact, which is the personal copy of a WorkProductUse (from

SPEM), in the workspace of a given Actor.

Figure 2 is a succinct representation of the metamodel that focuses on collaborative aspects. The

three central concepts are linked to the SPEM concepts (blue/shaded) they add precision to. For

example, ActorSpecificWorks detail what each project participant does in a task, and Actors detail

which project participants play a specific role.

The three central concepts can be related to each other using relationships that capture a particular

aspect of collaboration. For example, an ActorSpecificWorkRelationship can be used to specify the

precedence relation between two ActorSpecificWorks, and ActorRelationships can be used to

materialize the fact that a given Actor reports to another. Relationships are also used to denote

assignment or possession. For example, a TaskAssignment is used to assign an ActorSpecificWork

to an Actor, and an ArtifactOwnership precises the owner (an Actor) of an ActorSpecificArtifact.

In our approach, CMSPEM models can evolve at enactment time, in response to the availability of

new information [13]. Such changes to a CMSPEM process model, such as the addition of a new actor,

generate events (see [14] for a complete discussion). This allows third-party tools to listen to specific

events on the process model and react to them. Events in CMSPEM enable control integration with

other collaboration support tools. For example, when an activity changes state in a CMSPEM

model, it can be automatically announced on the company’s chat room or mailing list. A detailed

description of CMSPEM is available in [15, 14], and the semantics of the CMSPEM concepts have

been formalized in Object Constraint Language.

4.2. A domain-specific language for the description of collaborative processes

We developed CMSPEM DSL, a textual domain-specific language (DSL) based on Eclipse, by using

the XTEXT framework. It offers an intuitive syntax for representing CMSPEM process models, code

organizations facilities such as packages, and configurable visualizations that can be used to

highlight particular relationships such as task dependencies. The DSL editor provides extensive, on-

the-fly model checking, using consistency rules written in Object Constraint Language. Models

created with the DSL editor can be exported in the XML Metadata Interchange format.

Figure 2. Main concepts of the CMSPEM metamodel.



A graphical editor, based on the TOPCASED [16] environment, is already available for editing

CMSPEM models [14]. One of the motivations for using a textual DSL to represent CMSPEM

models is that it makes it easy to generate part of a CMSPEM model from a third-party tool with

simple text manipulations. For example, a CMSPEM model can be kick-started by generating Actor

instances using the information in an organization’s Lightweight Directory Access Protocol

directory. Another motivation is the availability of the Eclipse platform’s refactoring and code

navigation facilities, which are very helpful when editing large models.

4.3. Modeling the case study

The case study easily lends itself to a representation in CMSPEM. Each developer is represented as an

Actor and logical groups of defect tickets (for example, usability problems) as ActorSpecificWorks.

Defect tickets are referenced by their Bugzilla identifiers in the definition of ActorSpecificWorks.

Figure 3 shows a part of the model, represented using CMSPEM DSL. Most concepts are defined

using a similarly named keyword: for example, Actors are introduced with the actor keyword and

ActorSpecificWorks by the asw keyword. Defect tickets are included, with the tickets keyword, as

properties of the ActorSpecificWorks they must be fixed in, using their identifiers.

In this example, Laurent is defined as the project manager, Florin as a developer, and Jacques as a

front-end designer. An ActorSpecificWork that consists in fixing a set of synchronization bugs is

defined, with the related defect tickets listed by their numeric BugZilla identifier (31045, 31047, and

31050) and assigned to Florin the developer.

5. IMPLEMENTATION

5.1. A conceptual framework for process support

The Unix philosophy championed the use of pipes, filters, and short shell scripts as a lightweight

integration solution between independently developed programs that operate on plain text data.

However, such approach is only appropriate for integrating local tools or remote tools for which a

local client is available. For the integration of possibly distributed tools, a solution that can work

over a network is needed.

We propose a distributed conceptual framework for editing and exploiting process models, which

enables deep linking and hooks (cf. Section 2.2) and is depicted in Figure 4. At the center of this

Figure 3. Eclipse-based domain-specific language for editing Collaborative Model-based Software and
Systems Process Engineering Metamodel models.



framework is the CMSPEM process engine, a server that stores the authoritative version of the process

model and manages process modifications and event notifications. Process model editors and external

collaboration tools can update, query, or receive notification from the process model, through the

process engine.

The CMSPEM engine assigns a globally unique identifier to each process model element, which

allows deep linking to particular activities, roles, and so on. One should therefore be able to refer to

a particular activity, by simply including a link to it in a commit message, or a mailing-list

discussion. This use of deep linking addresses data integration needs.

Process editors can connect to the engine and send model change requests. This decouples model

editing from updating the model in the process engine. The engine receives change requests and

runs consistency checks before accepting them and updating the reference version of the model.

Editors update the model by making API calls to the CMSPEM engine. The process model can also

be serialized‡‡ by model editors for local persistence or to guard against power failures on the

server. In the architecture depicted in Figure 5, the process modeling tool can be a process editor,

such as the visual CMSPEM editor that has been developed with TOPCASED.

To address control integration needs, the CMSPEM engine allows external tools to subscribe to

process events. Each update to the process model on the server generates events, which external

tools can be notified of, provided a matching subscription exists. Such events, such as a state change

in an activity or the addition of a new actor to the process model, are hooks for which integration

scripts can be written. The CMSPEM engine is responsible for invoking these scripts when the

relevant events occur. An external tool can also raise events on the CMSPEM model, which other

tools or the CMSPEM engine itself can react to. For example, a bug tracker can be configured to

raise a ‘bug marked as duplicate’ or a ‘bug split’ event. Such events can be used to automatically

update the model (by marking some ActorSpecificWorks as completed) or delivered as notifications

to the project manager who decides how to update the process model. When a dependency is

introduced between two bugs in the bug tracker, it could trigger the addition of a relationship

between the corresponding ActorSpecificWorks in the process model.§§ Similarly, an editor or a

VCS could notify the CMSPEM engine of the availability of a new artifact. The CMSPEM engine

can then react by introducing a previously configured relationship between the new artifact and an

existing one (composition, refinement, etc.).

‡‡Serialization is the translation of data structures or object states into a storable format, which can be later retrieved and
translated back.

§§Most external tools such as bug trackers already support hooks. For example, BugZilla refers to them as extensions, and
they are Perl scripts that can raise events by making requests to the CMSPEM server. By using HTTP, for example, a
POST request to https://www.example.com/cmspem/events, with a form parameter named event set to bug split (and
other form parameters such as the original bug’s id etc.) can be issued by a BugZilla extension to notify that a bug
has been split.

Figure 4. Process-based collaboration support conceptual framework.



5.2. Supporting the case study needs with tools

The abstract framework described in the previous subsection can be realized using existing

communication protocols. For example, HTTP has proved itself a robust interoperability solution for

distributed systems or even between desktop tools (such as the Eclipse editor in Jazz [11], or

process modeling tools) and web-based tools. This is largely due to the ubiquity of the Web and its

firewall friendliness [17, 2]. HTTP already has extensive support for defining and linking to

Uniform Resource Locators (URLs), which can be mapped to process elements, thus making such

elements easy to address and link to. Notifications can be implemented with Web hooks, which

allow systems with HTTP endpoints to notify each other of specific events. For example, Web

hooks are used in continuous integration systems to announce build failures in company chat rooms.

They are also used in VCSs to trigger deployments after commits.

With this setup, simple solutions to the integration needs of the case study are possible. Linking to

BugZilla tickets is simply a matter of including BugZilla ticket URLs or numerical identifiers in the

description of the tasks (SPEM TaskUse) or individual ActorSpecificWorks (cf. Figures 2 and 3).

Each ActorSpecificWork can be addressed by its own URL in the CMSPEM engine. Such URLs are

actually HTTP endpoints, which can be used as Web hook URLs by external tools. Thus, BugZilla can,

for example, be configured to send an HTTP request to such URL whenever the status of a bug

changes. Upon receiving such notification, the CMSPEM engine could execute its own logic to

decide if the enclosing task can be marked as completed or not. This discussion voluntarily leaves

security considerations out, but incoming requests to the CMSPEM engine can be encrypted and

authorization and authentication schemes included as needed.

Any tool using information that could be found in or derived from process data and events can

benefit from integration with the CMSPEM engine. Such information could be task status

(dashboards), task assignments (performance reports), activity starts and stops, or major changes to

artifacts (broadcasts in various awareness and communication tools), actor availability (resource

management), and so on.

The CMSPEM process engine is part of a broader framework, the Galaxy framework, which has

been developed in the Galaxy project. The Galaxy framework (cf. Figure 5) supports model

fragmentation and virtualization, user management, communication, and process enactment. The

framework is composed of the Galaxy server, which offers collaboration facilities for a set of

software development projects, and clients such as model-driven engineering tools (Modelio [18] or

Papyrus [19] in the Galaxy project) and process management tools.

Figure 5. The Galaxy framework.



6. VALIDATION STUDY

The goal of this section is the description of the validation study carried out for our proposal. The study

addresses the conceptual proposal (deep links and hooks) and its practical implementation in a process

server.

On the one hand, we demonstrate how deep linking and hooks are used to structure existing software

projects, by analyzing their mailing list messages. This demonstrates the suitability of those concepts to

the integration of software engineering tools.

On the other hand, we show how the introduction of process data can make process support more

useful and efficient, by discussing the implementation and benefits of some utilities enabled by such

introduction. Those utilities have been identified in the case study of Section 3.2.

6.1. Usage of deep linking and hooks in software projects

To validate our conceptual proposal for the integration of process-support tools in software engineering

environment with deep links and hooks, a study was carried out on a collection of open-source

projects. The project list was compiled by searching the internet for mailing list archives available

for download. Of this initial set, we restrict ourselves to the 219 most active ones¶¶ as needed for

the study. The resulting set contains major open-source projects such as PostgreSQL, QEMU,

Emacs, Python, The Linux Kernel for ARM, Mythtv, FreeBSD, and LLVM. These projects each

have hundreds of contributors and are thus appropriate for an analysis of collaboration.

6.1.1. Deep linking. Most of the discussion about open-source projects happens on project mailing

lists. Theses discussions not only reveal how participants collaborate on the project but also show

how they exploit software engineering tools to do so. More specifically, one can analyze references

made by project participants to other tools. In this study, we restrict ourselves to hypertext links to

precise pieces of data in software engineering tools, that is, deep links.

Linking to other resources is pervasive in mailing list discussions. Over the 219 studied projects,

there are on average 0.93 link per message, and it can get as high as 15 links per message. As much

as 70% of all links are deep links; that is, they refer to a precise piece of information in an external

system.

Deep links point to a variety of project resources. PostgreSQL is the biggest project studied with

247,489 messages over 14 years (between January 1997 and May 2012), containing 120,325 links of

which 17,873 are unique (0.48 link per message). The content of some link targets can be inferred

from the structure and the keywords of the link’s URL. On a subset of 22,623 links for which such

inference can be done, the link distribution in the PostgreSQL project is as shown in Table I.

The data in Table I clearly show that deep links to documentation, mailing lists, and version-control

data are the most frequent. In particular, it highlights how the availability of links to specific version

control information items (commit, file at a specific version, pull requests, etc.) allows collaboration

discussions to be contextualized. One can also note the high number of link repetition ratio for

references to third-party bug information. Those are generally bugs in software (such as an operating

system or a library) that PostgreSQL depends on, which requires the PostgreSQL developers to

follow the evolution of such bugs, so they can modify PostgreSQL accordingly. This would not

have been possible if the third-party bug trackers did not expose deep links to bug information.

6.1.2. Hooks. Some special project mailing lists are simple examples of using hooks for

announcements. Typical examples are new commits, new bug reports or changes to bug status, and

automatic build or deployment reports.

The PostgreSQL project, for example, has a special mailing list where CVS and Git commit

notifications are sent (http://archives.postgresql.org/pgsql-committers/). Each notification message

contains a short description, an expanded version, the branch name, a summary of changes

(modified files), and most importantly, a deep link to more details about the commit, made available

by the version control software (Figure 6).

¶¶Project activity is estimated by the number of mailing list messages and the age of the project.



6.2. Improving tool support with process information

The CMSPEM server is an implementation of the CMSPEM engine described in Section 5. It makes a

simple process model manipulation API available over HTTP. The server has been developed in Java,

using the Play framework (http://www.playframework.org/), Eclipse EMF model manipulation libraries

(http://www.eclipse.org/modeling/emf/), and EMFJSON (https://github.com/ghillairet/emfjson) for

EMF to Javascript Object Notation (JSON) conversion. For the purpose of the validation study, the

server is deployed at http://cmspem.herokuapp.com and exchanges data with clients using JSON. JSON

is a data representation format commonly preferred for the integration of Web-based systems for its

simplicity and easy interpretation by Web applications (as it can be natively decoded in Javascript).

The CMSPEM server enables three main use cases:

• Querying the process model for process information. For example, a request to /projects/XXX/

asworks/YYY returns data (attibutes and their values, as well as references to other model ele-

ments) about the ActorSpecificWork identified by YYY, in the project identified by XXX

(Figure 7).

• Subscribing to process events and receiving notifications when they occur. A request to /projects/

XXX/tasks/YYY/subscriptions can be used to request a notification when the task YYY ends, for

Figure 6. Example of a commit notification on a mailing list (PostgreSQL).

Table I. Link distribution on the PostgreSQL main mailing list.

Link type Link count Unique link count Link repetition ratio

Industry standards 25 14 1 78
PostgreSQL sub-projects 64 36 1 77
Third-party bug trackers 73 5 14 60
Shared code snippets 102 25 4 08
Third-party version-control data 106 70 1 51
Internet forum posts 194 128 1 51
Developer home pages 292 93 3 13
Research papers 339 93 3 64
Third-party project mailing lists 407 254 1 60
PostgreSQL bugs 515 267 1 92
PostgreSQL builds 729 292 2 49
Encyclopedia, dictionaries, references 733 328 2 23
PostgreSQL software downloads 734 270 2 71
Third-party documentation 876 441 1 98
Third-party software 1306 616 2 12
PostgreSQL version-control data 1651 586 2 81
PostgreSQL’s other mailing lists 3002 1396 2 15
PostgreSQL’s main mailing list 5728 2398 2 38
PostgreSQL documentation 7074 1870 3 78



example (Figure 8). When the event occurs, the CMSPEM server sends a request to the handler,

the URL specified as a parameter in the subscription request.

• Raising process events. Some process events do not occur as direct modifications to the process

model but simply consist in taking into account what happened in another development tool.

For example, when a developer is on a sick leave, the actor unavailability event can be raised

on the process model, by making a request to /projects/XXX/actors/YYY (Figure 9).

Integrating process-support tools in the development environment provides contextual information

for some development activities and allows other tools to take actions in reaction to process events,

as identified in Section 3.2. The following section presents three example scenarios.

Figure 7. Querying the process model for process information.

Figure 8. Subscribing to process events.

Figure 9. Raising process events.



6.2.1. Contextual information in notifications. Whenever a bug is reported or a build failure happens,

notifications are typically sent to some project participants. Upon receiving such notifications, one

must gather contextual information about people relevant to the event and their availability, relevant

tasks and their status, related work products and their states, and so on. This contextual information

is available in the process model and can be easily queried on the CMSPEM process server.

The steps in the execution of such utility for bug reports are as follows:

• Subscribe to the bug creation event on a third-party tool using its API (one-time setup).

• Upon receiving a notification of bug report creation, query the bug tracker for the bug description,

parse it, and extract references to tasks and actors.

• Query the CMSPEM server for status information about the aforementioned tasks and actors.

• Use the bug tracker API to add a comment on the bug report, with the contextual information

extracted from the process model.

An implementation of such utility, using the Github (a code hosting and collaboration service) API

generates the automatic comment depicted in Figure 10. An issue ticket has been opened, which

references process model concepts such as participants and actor-specific tasks. Contextual

information about two participants and actor-specific tasks (including its deadline) are automatically

made available as an issue comment.

6.2.2. Automated reporting. Participants in software projects, especially in industrial settings, usually

need to produce weekly progress reports. Such reports contain planned tasks carried out by the

individual, exceptional tasks, and remaining work to do on assigned tasks.

Information needed to produce such reports is available in bug trackers, version control tools, and so

on. However, it needs to be placed in the context of planned tasks. The concepts introduced in

CMSPEM are exactly those needed to realize such mappings. For example, code contributions in a

version control system are tied to participants by their email addresses. Actor instances in a

Figure 10. A comment on a Github defect ticket offering automatic context information.



CMSPEM model also have their email addresses specified, which allows to map these code

contributions to an Actor.

Examples of mappings are as follows:

• commit author ↦ Actor (using the commit author’s email address and the email property of the

Actor concept);

• commit ↦ ActorSpecificWork (using a reference to the actor-specific work in the commit message);

• commit ↦ ActorSpecificArtifact (using the names of the files modified in the commit);

• bug report author ↦ Actor (using the bug report author’s email address and the email property of

the Actor concept); and

• bug report ↦ ActorSpecificWork (using a reference to the actor-specific work in the bug report

description).

6.2.3. Cleanup actions. Generally speaking, information found in tools such as VCSs and bug

trackers is finer grained than process information. The immediate consequence is that changes on a

single process element affect a whole group of entities in third-party tools. This presents an

automation opportunity, which can be implemented by listening to process events and automatically

carrying out the needed actions.

A typical case is related to cleanup actions. For example, when a team member is temporarily

unavailable or replaced, defect tickets assigned to him can be automatically updated accordingly,

comments added to them and so on. The CMSPEM server enables the implementation of such utilities

by exposing process events such as the availibity or unavailability of an actor and the end of a task.

6.3. Lessons learned

In this validation study, we showed how existing open-source projects use deep linking and hooks to

integrate software development tools. We also demonstrated an integration script that integrates the

CMSPEM server with a third-party service, Github. The development of such utility highlighted the

usefulness of adopting existing tool integration conventions. The use of Web hooks between Github

and the CMSPEM server and the fact that the two systems used JSON as a data exchange format

minimized the amount of glue code needed. The ability to reference specific model elements such as

actor-specific tasks by URL, combined with the automatic handling of links in comments by the

Github service, means that participants can click on links in context-information messages and

access further details on the CMSPEM server.

Initial applications of CMSPEM to practical cases yielded some insights. For example, it is not clear

how the concept of ActorSpecificArtifact must be mapped to file system objects. In a version control

system, for example, files are natural information units. However, at the level of process models, the

concept of WorkProductUse refers to deliverables, which could correspond to some large group of

files such as ‘User Interface Code’. This may lead to a too sharp drop in granularity, which makes

the link between ActorSpecificArtifacts and WorkProductUses less meaningful. A possible solution

is to map ActorSpecificArtifacts to intermediary concepts such as programming language modules

or packages, or file system directories.

New concepts introduced in CMSPEM are finer grained than the role, product, and activity concepts

from SPEM. This results in a much higher number of model elements, which makes direct manipulation

of the model in a graphical representation unpractical. It is therefore necessary to extract visualizations

that highlight particular features of the process model. Fortunately, the model manipulation API made

available by the CMSPEM server allows the development of third-party utilities that can be used to

manipulate part of the model. For example, a visualization can be extracted that shows how ‘close’

project participants are by analyzing the tasks they collaborate on. A third-party tool can also

implement user management and expose a view of the process model that contains only Actor elements.

While analyzing existing development tools, we found some creative uses of semi-structured text for

integration. For example, Github, a code hosting service, parses commit messages, extracts defect

tickets references, generates automatic comments as needed, or closes the tickets. Generalizing such

existing conventions to other concepts such as participants, activities, and so on considerably reduces

the work needed to implement integration utilities and improves their usability for software developers.



The implementation of the CMSPEM server is based on a share-nothing, stateless, HTTP

framework. Such design avoids complexity induced by server-side state (session invalidation, object

life cycle issues, etc.). However, one practical consequence is that each read and write request on

the server requires loading the model from disk. Fortunately, loading even big models from disk

does not produce any noticeable delay.∥∥ Model size is also not an issue, as a 1000-element model

only uses approximately 170Ko of disk space. Thanks to the negligible overhead added by the

JSON data format, bandwidth usage is also negligible, as server responses are dominated by model

element data. One potential scalability issue is related to event handling. Currently, handlers are

called sequentially before an update operation is executed on the server. As each handler call

corresponds to an HTTP request, this can generate important delays when a lot of handlers are

defined. However, the mechanism used in the prototype is not inherent to the server architecture and

can be improved if needed. For example, a task queue can be used, so that the server can send the

update response right away, and then (asynchronously) call defined handlers.

7. RELATED WORKS

The main research axes related to the work presented in this paper are requirements for collaboration

support in software engineering, the design of collaborative development environments, the need to

support incomplete process models, which may be enhanced at runtime, and the integration of

process-support tools in software development environments.

Whitehead, in [2], laid down a roadmap for collaboration in software engineering. Proposed

directions include collaboration infrastructures that support data as well as control integration. Our

contribution builds on this insight and is a proposal to enhance the data and control integration

abilities of process-based collaboration support tools. Whitehead also made the case for a deeper

integration between desktop tools and Web-based tools, which are more and more used in software

engineering. This proposal supports such integration using hooks, between a desktop tool, the editor,

and a web-based tool, the CMSPEM server.

IBM Jazz is one of the current major efforts that take a holistic approach to tool-based collaboration

support and is based on the Eclipse environment [11]. The Jazz project is well integrated with other

development tools such as version control, bug tracking, and instant discussion tools. The environment

uses the Eclipse editor as the central component, which aggregates information from other collaborative

tools. This is understandable as development teams interested in this solution arguably already spend

much of their time in Eclipse. However, this solution is not always applicable, as a team may be using

another editor. Our approach does not make any assumption about the editor used and does not seek to

make any tool the single responsible for the integration of collaboration tools.

Kobialka [20] makes the case for incomplete process models, which may be enhanced at runtime, by

directly modifying process instances. The proposal is based on the observation that it is not practical to

claim that all activities in software projects have to be completely defined. Incremental process support

is therefore needed. While the contribution in [20] is focused on how incomplete process models can

be supported by a PSEE using triggers and constraints, our proposal focuses on notifying external tools

of changes that are made to a process model, so as to enable control integration.

Barghouti [21] described how Provence, a PSEE, tries to minimize its intrusiveness, by listening to

information it needs at the file system level, rather than requiring high-level tool integration. However,

this only solves the need to adapt existing tools so that they can be controlled by a PSEE. Intrusiveness

can be further lowered by making the PSEE participate like any other tool in collaboration support, buy

exposing process data and control integration points, as advocated in our approach. This makes sure

that little glue scripts, which connect the functionalities offered by different collaboration tools, can

be written without modifying any one of them.

In [5], Ambriola et al. made an extensive survey of PSEEs. Main features are listed and different

implementations are discussed. This survey touches two points that are relevant to this work: control

∥∥Model element access and whole model access requests complete under 0.1 s on a model with 1000 elements, and el-
ement listing by kind for a list size of 1000 completes under 1 s.



and data integration. However, all surveyed approaches consider these forms of integration only when the

information flows from third-party tools to PSEEs. In other words, surveyed approaches only invoke

external tools or read their data. This is a clear indication of the one-way integration between PSEEs and

external tools that this contribution argues against. A similar survey, carried out recently [22], studied

seven modern PSEEs. However, all three PSEEs that scored well on the criterion of providing extension

points for tool integration are restricted to model-driven engineering. As such, their integration

capabilities are a natural result of the control they have on the kind of tools used in such style of

development (model editors, transformation engines, etc., all using the same metamodel). Therefore, such

integration style does not apply to generic software engineering tools.

Reviewing the state of the art in tool integration in 2004 [23], Wicks surveys several topics related to

tool integration, among which process-based tool integration. The author notes how the lack of

flexibility and adaptability prevents such solutions from being offered commercially in the

marketplace. In a later study [24], the authors, while proposing a research agenda for tool

integration, observed that defect tracking, change management, and configuration management are

usually far better integrated than project management, requirements management, analysis, design,

and implementation. The authors suggest that this is due to business decisions (e.g., because

a team previously failed to deliver to customers the required software components for a

specific software release). This study puts forth an additional hypothesis that links how much

a concern (such as process modeling) is integrated to how easily it allows other tools to

consume its data and events.

8. CONCLUSION

This work defined CMSPEM, a metamodel that extends SPEM with concepts and relationships needed

to capture collaboration, and proposed a new approach for the integration of process-based tools with

other collaboration support tools. We showed how supporting data and control integration in process-

based tools can enhance their usefulness for practitioners. We extracted two important integration

enablers in existing tools, namely, deep linking and hooks. We then proposed a framework for

process support, based on the CMSPEM metamodel, that offers deep linking and hooks by design.

A case study, based on the industrial practices of AKKA Technologies, a partner of the Galaxy

project this work is part of, showed how the proposed framework can be used to enhance

collaboration support, by combining the information in process models with the services offered by

other collaboration support tools.

A graphical editor based on TOPCASED and a DSL editor based on Xtext are available for the

edition of CMSPEM models and can communicate with the CMSPEM engine. The CMSPEM

engine can host process models for multiple software projects and exposes a model element

manipulation and a model event subscription and notification API over HTTP. Sample integration

scripts between the CMSPEM server and existing software development tools have been

developed. A validation study has been conducted on 219 open-source projects, which

demonstrates the use of deep links and hooks as integration strategies, and we have shown how

this strategy can be applied to process-support tools with sample integration utilities. This study

showed practical implementations of the integration opportunities that were identified on the

AKKA Technologies case study.

We plan to develop additional sample integration scripts (task deadline notification on mailing lists,

mapping bug state changes to activity state changes, etc.), and apply the framework to other industrial

case studies, especially in the context of model-driven development [25]. This will help us evaluate the

proposed architecture scales, with respect to the size of process models and the number of hooks

managed by the process engine. Another perspective for this work is the identification of specific

collaboration scenarios, which can be described and stored as patterns, so as to assist project managers

when creating and updating CMSPEM process models. Finally, a possible extension of this contribution

is the exploitation of the CMSPEM server in core activities such as design and requirements engineering.

The authors would like to thank the French ANR Galaxy project, which funded this research work.

The Galaxy ANR project is a joint collaboration between French universities (the University of
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partners (AKKA Technologies, Airbus, and Softeam) on the collaborative development of complex

systems using the model-driven engineering approach.
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