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. where the problem has been studied in absence of the jump component. We will use the approximation lemma to prove the LDP. As the reader can expect we obtain the same results as in the case without jump.

Here Y ℓ,i are i.i.d. real random variables having law ν ℓ /λ ℓ , where ν ℓ is the Lévy measure of X ℓ normalized by the total mass λ ℓ = ν ℓ (R -{0}) < +∞, and N ℓ is a poisson process, independent of each Y ℓ,i , and with constant intensity λ ℓ . Such a jump-type stochastic process is recently a standard tool, e.g., for modeling asset values in finance and insurance. The key motivation behind jump-diffusion models is the incorporation of market "stocks", which result in "large" and sudden changes in the price of risky security and which can hardly be modeled by the diffusive component.

In this paper we concentrate on the estimation of

[V] t = t 0 σ 2 1,s ds, t 0 σ 2 2,s ds, t 0 σ 1,s σ 2,s ρ s ds
Over the last decade, several estimation methods for the integrated variance-covariance V t have been proposed. We adopt the threshold estimator which is introduced by Mancini [START_REF] Mancini | Estimation of the characteristics of the jumps of a general Poisson-diffusion model[END_REF] and also by Shimizu and Yoshida [START_REF] Shimizu | Estimation of parameters for diffusion processes with jumps from discrete observations[END_REF], independently.

In this method, only the variations under a given threshold function are taken into account. The specific estimator excludes all terms containing jumps from the realized co-variation while remaining consistent, efficient and robust when synchronous data are considered.

Since the seminal work of Mancini [START_REF] Mancini | Estimation of the characteristics of the jumps of a general Poisson-diffusion model[END_REF], several authors have leveraged or extended the thresholding cencept to deal with complex stochastic models, see Shimizu and Yoshida [START_REF] Shimizu | Estimation of parameters for diffusion processes with jumps from discrete observations[END_REF], or Ogihara and Yoshida [START_REF] Ogihara | Quasi-likelihood analysis for the stochastic differential equation with jumps[END_REF]. The similar idea is also used by various authors in different contexts; see, e.g., Aït-Sahalia et al. [START_REF] Aït-Sahalia | Disentangling diffusion from jumps[END_REF], [START_REF] Aït-Sahalia | Estimating the degree of activity of jumps in high frequency data[END_REF] and [START_REF] Aït-Sahalia | Testing for jumps in a discretely observed process[END_REF], Gobbi and Mancini [START_REF] Gobbi | Estimating the diffusion part of the covariation between two volatility models with jumps of Lévy type[END_REF] , Cont and Mancini [START_REF] Mancini | Identifying the brownian covariation from the co-jumps given discrete observations[END_REF] , among others. So, given the synchronous and evenly-spaced observation of the process X 1,t 0 , X 1,t 1 , • • • , X 1,tn , X 2,t 0 , X 2,t 1 • • • , X 2,tn with t 0 = 0, t n = 1, n ∈ N, we consider the following statistics

  [nt] k=1 (∆ n k X 1 ) 2 , [nt] k=1 (∆ n k X 2 ) 2 , [nt] k=1 ∆ n k X 1 ∆ n k X 2  
where ∆ n k X ℓ := X ℓ,t k -X ℓ,t k-1 . However this estimate can be highly biased when the processes X ℓ contain jumps, in fact, as n → ∞ such a sum approaches the global quadratic variance-covariation

([X 1 ] t , [X 2 ] t , [X 1 , X 2 ] t ) where [X ℓ ] t := t 0 σ 2 ℓ,s ds + s≤t (∆J ℓ,s ) 2 , and [X 1 , X 2 ] t := t 0 σ 1,s σ 2,s ρ s ds + s≤t ∆J 1,s ∆J 2,s .
which also contain the co-jumps, where ∆J ℓ,s = J ℓ,s -J ℓ,s -. If we take a deterministic function r( 

V n t (X) = (Q n 1,t (X), Q n 2,t (X), C n t (X)) where Q n ℓ,t (X) = [nt] k=1 (∆ n k X ℓ ) 2 1 {(∆ n k X ℓ ) 2 ≤r( 1 n )} and C n t (X) = [nt] k=1 ∆ n k X 1 ∆ n k X 2 1 {max 2 ℓ=1 (∆ n k X ℓ ) 2 ≤r( 1 n )}
In the work [START_REF] Figueroa-López | Optimally thresholded realized power variations for Lévy jump diffusion models[END_REF], the authors determine what constitutes a good threshold sequence r n and they propose an objective method for selecting such a sequence.

In the case that X ℓ have no jumps, this question has been well investigated. The problem of the large deviation of the quadratic estimator of the integrated volatility (without jumps and in the case of synchronous sampling scheme) is obtained in the paper by Djellout et al. [START_REF] Djellout | Large and moderate deviations for estimators of quadratic variational processes of diffusions[END_REF] and recently Djellout and Samoura [START_REF] Djellout | Large and moderate deviations of realized covolatility[END_REF] have studied the large deviation for the covariance estimator. Djellout et al. [START_REF] Djellout | Large deviations of the realized (co-)volatility vector[END_REF] have also investigated the problem of the large deviation for the realized (co-)volatility vector which allows them to provide the large deviation for the standard dependence measures between the two assets returns such as the realized regression coefficients, or the realized correlation.

However, the inclusion of jumps within financial models seems to be more and more necessary for pratical applications. In this case, Mancini [START_REF] Mancini | Identifying the brownian covariation from the co-jumps given discrete observations[END_REF] has shown that V n t is a consistent estimators of V t and has some asymtotic normality respectively. Furthermore, when σ t = σ, she [START_REF] Mancini | Large deviation principle for an estimator of the diffusion coefficient in a jump-diffusion process[END_REF] studied the large deviation for the threshold estimator. Jiang [START_REF] Jiang | Moderate deviations for estimators of quadratic variational process of diffusion with compound poisson[END_REF] obtained moderate deviations and functional moderate deviations for threshold estimator. In our paper and by the method as in Mancini [START_REF] Mancini | Large deviation principle for an estimator of the diffusion coefficient in a jump-diffusion process[END_REF] and Djellout et al [START_REF] Djellout | Large deviations of the realized (co-)volatility vector[END_REF], we consider moderate and functionnal moderate deviation for estimators V n t and large deviation. More precisely we are interested in the estimations of

P √ n v n (V n t (X) -[V] t ) ∈ A
where A is a given domain of deviation, (v n ) n>0 is some sequence denoting the scale of deviation. When v n = 1 this is exactly the estimation of central limit theorem. When v n = √ n, it becomes the large deviation. Furthermore, when v n → ∞ and v n = o( √ n), this is the so called moderate deviations. In other words, the moderate deviations investigate the convergence speed between the large deviations and central limit theorem.

Let us recall some basic defintions in large deviations theory. Let (µ t ) t>0 be a family of probability on a topological space (S, S) where S is a σ-algebra on S and λ t be a nonnegative function on [ Notations. In the whole paper, for any matrix M, M T and M stand for the transpose and the euclidean norm of M, respectively. For any square matrix M, det(M) is the determinant of M. Moreover, we will shorten large deviation principle by LDP and moderate deviation principle by MDP. We denote by •, • the usual scalar product. For any process Z t , ∆ t s Z stands for the increment Z t -Z s . We use

∆ n k Z for ∆ t n k t n k-1
Z. In addition, for a sequence of random variables (Z n ) n on R d×p , we say that (Z n ) n converges (λ n )-superexponentially fast in probability to some random variable Z if, for all δ > 0, lim sup

n→∞ 1 λ n log P Z n -Z > δ = -∞.
This exponential convergence with speed λ n will be shortened as

Z n superexp -→ λn Z.
The article is arranged in two upcoming sections. Section 2 is devoted to our main results on the LDP and MDP for the (co-)volatility vector in the presence of jumps. In section 3, we give the proof of these theorems.

Main results

Let X t = (X 1,t , X 2,t ) be given by (1.1). We introduce the following conditions

(B) for ℓ = 1, 2 b(•, •) ∈ L ∞ (dt ⊗ P) (LDP) Assume that for ℓ = 1, 2 • σ 2 ℓ,t (1 -ρ 2 t ) and σ 1,t σ 2,t (1 -ρ 2 t ) ∈ L ∞ ([0, 1], dt). • the functions t → σ ℓ,t and t → ρ t are continuous. • let r such that r 1 n ---→ n→∞ 0 and nr 1 n ---→ n→∞ ∞. (MDP) Assume that for ℓ = 1, 2 • σ 2 ℓ,t (1 -ρ 2 t ) and σ 1,t σ 2,t (1 -ρ 2 t ) ∈ L 2 ([0, 1], dt). • Let (v n ) n 1 be a sequence of positive numbers such that v n ---→ n→∞ ∞ and v n √ n ---→ n→∞ 0 and √ nv n r 1 n = O(1)
and for ℓ = 1, 2

r 1 n log n v 2 n n max k=1 t k t k-1 σ 2 ℓ,s ds -→ +∞. (2.1)
We introduce the following function, which will play a crucial role in the calculation of the moment generating function: for -1 < c < 1 let for any λ

= (λ 1 , λ 2 , λ 3 ) ∈ R 3 P c (λ) :=            - 1 2 log (1 -2λ 1 (1 -c 2 ))(1 -2λ 2 (1 -c 2 )) -(λ 3 (1 -c 2 ) + c) 2 1 -c 2 if λ ∈ D +∞, otherwise (2.2) 
where

D c = λ ∈ R 3 , max ℓ=1,2 λ ℓ < 1 2(1 -c 2 )
and

2 ℓ=1 1 -2λ ℓ (1 -c 2 ) > λ 3 (1 -c 2 ) + c 2 .
(2.3)

Let us present now the main results.

Moderate deviation.

Let us now consider the intermediate scale between the central limit theorem and the law of large numbers.

Theorem 2.1. For t=1 fixed. Under the conditions (MDP) and (B), the sequence

√ n v n (V n 1 (X) -[V] 1 )
satisfies the LDP on R 3 with speed v 2 n and with rate function given by

I mdp (x) = sup λ∈R 3 λ, x - 1 2 λ, Σ 1 • λ = 1 2 x, Σ -1 1 • x (2.4)
with

Σ 1 =       1 0 σ 4 1,t dt 1 0 σ 2 1,t σ 2 2,t ρ 2 t dt 1 0 σ 3 1,t σ 2,t ρ t dt 1 0 σ 2 1,t σ 2 2,t ρ 2 t dt 1 0 σ 4 2,t dt 1 0 σ 1,t σ 3 2,t ρ t dt 1 0 σ 3 1,t σ 2,t ρ t dt 1 0 σ 1,t σ 3 2,t ρ t dt 1 0 1 2 σ 2 1,t σ 2 2,t (1 + ρ 2 t )dt       . Remark 2.1. Under the condition b ℓ = 0, we can prove that for all θ ∈ R 3 lim n→∞ 1 v 2 n log E e √ nvn θ,V n 1 (X)-[V] 1 = 1 2 < θ, Σ 1 • θ > .
This gives an alternative proof of the moderate deviation using Gärtner-Ellis theorem.

Remark 2.2. If for some p > 2, σ 2 1,t , σ 2 2,t and σ 1,t σ 2,t (1-ρ 2 t ) ∈ L p ([0, 1]) and v n = O(n 1 2 -1 p ), the condition (2.1) in (MDP) is verified.
Let H be the banach space of R 3 -valued right-continuous-left-limit non decreasing functions γ on [0, 1] with γ(0) = 0, equipped with the uniform norm and the σ-field B s generated by the coordinate {γ(t), 0 t 1}. Theorem 2.2. Under the conditions (MDP) and (B), the sequence

√ n v n (V n . (X) -[V] . )
satisfies the LDP on H with speed v 2 n and with rate function given by

J mdp (φ) =        1 0 1 2 φ(t), Σ -1 t • φ(t) dt if φ ∈ AC 0 ([0, 1]) +∞, otherwise, (2.5) 
where

Σ t =      σ 4 1,t σ 2 1,t σ 2 2,t ρ 2 t σ 3 1,t σ 2,t ρ t σ 2 1,t σ 2 2,t ρ 2 t σ 4 2,t σ 1,t σ 3 2,t ρ t σ 3 1,t σ 2,t ρ t σ 1,t σ 3 2,t ρ t 1 2 σ 2 1,t σ 2 2,t (1 + ρ 2 t )      is invertible and Σ -1 t his inverse such that Σ -1 t = 1 det(Σ t )        1 2 σ 2 1,t σ 6 2,t (1 -ρ 2 t ) 1 2 σ 4 1,t σ 4 2,t ρ 2 t (1 -ρ 2 t ) -σ 3 1,t σ 5 2,t ρ t (1 -ρ 2 t ) 1 2 σ 4 1,t σ 4 2,t ρ 2 t (1 -ρ 2 t ) 1 2 σ 6 1,t σ 2 2,t (1 -ρ 2 t ) -σ 5 1,t σ 3 2,t ρ t (1 -ρ 2 t ) -σ 3 1,t σ 5 2,t ρ t (1 -ρ 2 t ) -σ 5 1,t σ 3 2,t ρ t (1 -ρ 2 t ) σ 4 1,t σ 4 2,t (1 -ρ 4 t )        , with det(Σ t ) = 1 2 σ 6 1,t σ 6 2,t (1 -ρ 2 t ) 3 ,
and AC 0 = {φ : [0, 1] → R 3 is absolutely continuous with φ(0) = 0} .

Remark 2.3. A similar result for the moderate deviations is obtained by Jiang [START_REF] Jiang | Moderate deviations for estimators of quadratic variational process of diffusion with compound poisson[END_REF] in the jump case for

√ n vn Q n ℓ,t - t 0 σ 2 ℓ,s ds n≥1 .
2.2. Large deviation. Our second result is about the large deviation of V n 1 (X), i.e. at fixed time.

Theorem 2.3. Let t = 1 be fixed. Under the conditions (LDP) and (B) , the sequence V n 1 (X) satisfies the LDP on R 3 with speed n and with good rate function given by the legendre transformation of Λ, that is

I ldp (x) = sup λ∈R 3 ( λ, x -Λ(λ)) , (2.6) 
where Λ(λ) =

1 0 P ρt (λ 1 σ 2 1,t , λ 2 σ 2 2,t , λ 3 σ 1,t σ 2,t )dt.
Remark 2.4. Under the condition b ℓ = 0, we can calculate the moment generating function of V n 1 (X). We obtain that for all θ = (θ

1 , θ 2 , θ 3 ) T ∈ D ρt lim n→∞ 1 n E e n θ,V n 1 (X) = 1 0 P ρs θ 1 σ 2 1,s , θ 2 σ 2 2,s , θ 3 σ 1,s σ 2,s ds.
But the study of the steepness is more difficult.

Let us consider the case where diffusion and correlation coefficients are constant, the rate function being easier to read. Before that let us introduce the function P * c which is the Legendre transformation of P c given in (2.2), for all x = (x 1 , x 2 , x 3 )

P * c (x) :=              log √ 1 -c 2 x 1 x 2 -x 2 3 -1 + x 1 + x 2 -2cx 3 2(1 -c 2 ) if x 1 > 0, x 2 > 0, x 1 x 2 > x 2 3
+∞, otherwise.

(2.7)

Corollary 2.4. We assume that for ℓ = 1, 2 σ ℓ and ρ are constants. Under the condition (B), we obtain that V n 1 (X) satisfies the LDP on R 3 with speed n and with good rate function I V ldp given by

I V ldp (x 1 , x 2 , x 3 ) = P * ρ x 1 σ 2 1 , x 2 σ 2 2 , x 3 σ 1 σ 2 , (2.8) 
where P * c is given in (2.7). Remark 2.5. In the case σ ℓ is constant, a similar result for the large deviations is obtained by Mancini [19] in the jump case for Q n ℓ,1 n≥1

Now, we shall extend Theorem 2.3 to the process-level large deviations, i.e. for trajectories (V n t (X), t ∈ [0, 1]) which is interesting from the viewpoint of non-parametric statistics. Let BV ([0, 1], R 3 ) (shorted in BV ) be the space of functions of bounded variation on [0, 1]. We identify BV with M 3 ([0, 1]), the set of vector measures with value in R 3 . This is done in the usual manner: to f ∈ BV , there corresponds µ f by µ f ([0, t]) = f (t). Up to this identification, C 3 ([0, 1]) the set of R 3 -valued continuous bounded functions on [0, 1], is the topology dual of BV . We endow BV with the weak-* convergence topology σ (BV, C 3 ([0, 1])) and with the associated Borel-σ-field B ω . Let f ∈ BV and µ f the associated measure in M 3 ([0, 1]). Consider the Lebesgue decomposition of µ f , µ f = µ f a + µ f s where µ f a denotes the absolutely continuous part of µ f with respect to dx and µ f s its singular part. We denote by f a (t) = µ f a ([0, t]) and by f s (t) = µ f s ([0, t]). Theorem 2.5. Under the conditions (LDP) and (B), the sequence V n . (X) satisfies the LDP on BV with speed n and rate function J ldp given for any f = (f 1 , f 2 , f 3 ) ∈ BV by

J ldp (f ) = 1 0 P * ρt f ′ 1,a (t) σ 2 1,t , f ′ 2,a (t) σ 2 2,t , f ′ 3,a (t) σ 1,t σ 2,t
(2.9)

+ 1 0 σ 2 2,t f ′ 1,s (t) + σ 2 1,t f ′ 2,s (t) -2ρ t σ 1,t σ 2,t f ′ 3,s (t) 2σ 2 1,t σ 2 2,t (1 -ρ 2 t ) 1 [t:f ′ 1,s >0,f ′ 2,s >0,(f ′ 3,s ) 2 <f ′ 1,s f ′ 2,s ] dθ(t),
where P * c is given in (2.7) and θ is any real-valued nonnegative measure with respect to which µ f s is absolutely continuous and

f ′ s = dµ f s /dθ = (f ′ 1,s , f ′ 2,s , f ′ 3,s ).

Proofs

For the convenience of the reader, we recall the following lemma which is the key of the proofs.

Lemma 3.1. (Approximation Lemma) Theorem 4.2.13 in [START_REF] Dembo | Large deviations techniques and applications[END_REF] Let (Y n , X n , n ∈ N) be a family of random varibales valued in a Polish space S with metric d(•, •), defined on a probability space (Ω, F , P). Assume

• P(Y n ∈ •) satisfies the large deviation principle with speed ǫ n (ǫ n → ∞) and the good rate function I.

• for every δ > 0 lim sup n→∞ 1 ǫ n log P(d(Y n , X n ) > δ) = -∞.
Then P(X n ∈ •) satisfies the large deviation principle with speed ǫ n and the good rate function I.

Before starting the proof, we need to introduce some technical tools. In the case without jumps, we introduce the following diffusion for ℓ = 1, 2

D ℓ,t = t 0 σ ℓ,s dW ℓ,s ,
where W ℓ,s and σ ℓ,s are defined as before. We introduce the correspondent estimator

V n t = (Q n 1,t , Q n 2,t , C n t ) where for ℓ = 1, 2 Q n ℓ,t = [nt] k=1 (∆ n k D ℓ ) 2 and C n t = [nt] k=1 ∆ n k D 1 ∆ n k D 2 .
We recall the following results from Djellout et al. [START_REF] Djellout | Large deviations of the realized (co-)volatility vector[END_REF] Proposition 3.2. Under the conditions (B) and (MDP), (1) the sequence

√ n v n (V n 1 -[V] 1 )
satisfies the LDP on R 3 with speed v 2 n and with rate function given by (2.1). ( 2) the sequence

√ n v n (V n • -[V] • )
satisfies the LDP on H with speed v 2 n and with rate function given by (2.2). Proposition 3.3. Under the conditions (B) and (LDP),

(1) the sequence V n 1 satisfies the LDP on R 3 with speed n and with good rate function given in (2.6).

(2) the sequence V n . satisfies the LDP on BV with speed n and rate function J ldp given by (2.9).

Proof of Theorem 2.1.

We will do the proof in two steps.

Part 1 We start with the case b ℓ = 0. In this case, V n t (X) = V n t (X 0 ) with X 0 ℓ,t = X ℓ,t -t 0 b ℓ (s, ω)ds and

Q n ℓ,1 (X 0 ) = n k=1 (∆ n k X 0 ℓ ) 2 1 {(∆ n k X 0 ℓ ) 2 ≤r( 1 n )} , ℓ = 1, 2 and 
C n 1 (X 0 ) = n k=1 ∆ n k X 0 1 ∆ n k X 0 2 1 {max 2 ℓ=1 (∆ n k X 0 ℓ ) 2 ≤r( 1 n )} . We will prove that √ n v n V n 1 (X 0 ) -V n 1 superexp -→ v 2 n 0.
For that, we will prove that for ℓ = 1, 2

√ n v n Q n ℓ,1 (X 0 ) -Q n ℓ,1 superexp -→ v 2 n 0, (3.1) and √ n v n C n 1 (X 0 ) -C n 1 superexp -→ v 2 n 0. (3.2)
We start by the proof of (3.1). Since the processes X 0 ℓ and D ℓ have independent increment, by Chebyshev inequality we obtain for all θ > 0

P √ n v n Q n ℓ,1 (X 0 ) -Q n ℓ,1 > δ ≤ e -θδv 2 n n k=1 E e θ √ nvn (∆ n k X 0 ℓ ) 2 1 {(∆ n k X ℓ ) 2 ≤r( 1 
n )} -(∆ n k D ℓ ) 2
.

We have to control each term appearing in the product

E e θ √ nvn (∆ n k X 0 ℓ ) 2 1 {(∆ n k X 0 ℓ ) 2 ≤r( 1 
n )} -(∆ n k D ℓ ) 2 ≤ ℜ 1 (k, n) + ℜ 2 (k, n), (3.3) 
where

ℜ 1 (k, n) := E e θ √ nvn[(∆ n k X 0 ℓ ) 2 -(∆ n k D ℓ ) 2 ] 1 {(∆ n k X 0 ℓ ) 2 ≤r( 1 n )} and ℜ 2 (k, n) := P (∆ n k X 0 ℓ ) 2 > r( 1 n ) .
For the first term, we write

ℜ 1 (k, n) = E e θ √ nvn[(∆ n k X 0 ℓ ) 2 -(∆ n k D ℓ ) 2 ] 1 {(∆ n k X 0 ℓ ) 2 ≤r( 1 n )} |∆ n k N ℓ = 0 P(∆ n k N ℓ = 0) +E e θ √ nvn[(∆ n k X 0 ℓ ) 2 -(∆ n k D ℓ ) 2 ] 1 {(∆ n k X 0 ℓ ) 2 ≤r( 1 n ),∆ n k N ℓ =0} . (3.4)
Since N ℓ is independent of W ℓ , we obtain that

ℜ 1 (k, n) ≤ P (∆ n k D ℓ ) 2 ≤ r( 1 n ) e -λ ℓ /n + e √ nvnθr( 1 n ) (1 -e -λ ℓ /n ) ≤ 1 + e √ nvnθr( 1 n ) (1 -e -λ ℓ /n ). (3.5)
Now we have to control ℜ 2 (k, n), by the same argument as before we have

ℜ 2 (k, n) = P (∆ n k X 0 ℓ ) 2 > r( 1 n )|∆ n k N ℓ = 0 P(∆ n k N ℓ = 0) +P ∆ n k X 0 ℓ ) 2 > r( 1 n ), ∆ n k N ℓ = 0 ≤ P (∆ n k D ℓ ) 2 > r( 1 n ) e -λ ℓ /n + (1 -e -λ ℓ /n ).
From exponential inequality for martingales, it follows that for ℓ = 1, 2,

P (∆ n k D ℓ ) 2 > r 1 n ≤ exp - r( 1 n ) 2 t k t k-1 σ 2 ℓ,s ds , (3.6) 
which implies that

ℜ 2 (k, n) ≤ exp - r( 1 n ) 2 t k t k-1 σ 2 ℓ,s ds + (1 -e -λ ℓ /n ). (3.7)
From (3.3), (3.5) and (3.7), we obtain that

E e θ √ nvn (∆ n k X 0 ℓ ) 2 1 {(∆ n k X 0 ℓ ) 2 ≤r( 1 
n )} -(∆ n k D ℓ ) 2 ≤ 1 + (1 + e √ nvnθr( 1 n ) )(1 -e -λ ℓ /n ) + exp - r( 1 n ) 2 t k t k-1 σ 2 ℓ,s ds .
Using the hypotheses (MDP), we have lim sup

n→∞ n v 2 n n max k=1 log E e θ √ nvn (∆ n k X 0 ℓ ) 2 1 {(∆ n k X 0 ℓ ) 2 ≤r( 1 
n )} -(∆ n k D ℓ ) 2 = 0. (3.8) So lim sup n→∞ 1 v 2 n log P √ n v n Q n ℓ,1 (X 0 ) -Q n ℓ,1 > δ ≤ -λδ.
Letting λ goes to infinity, we obtain that the right hand of the last inequality goes to -∞. Proceeding in the same way for -(Q n ℓ,t (X 0 ) -Q n ℓ,t ) we obtain (3.1). Now we have to prove (3.2). For that we have the following decompostion

C n 1 (X 0 ) -C n 1 = 1 2 Q n 3,1 (X 0 ) -Q n 3,1 - 1 2 2 ℓ=1 Q n ℓ,1 (X 0 ) -Q n ℓ,1 , (3.9) 
where

Q n 3,1 = n k=1 (∆ n k D 1 + ∆ n k D 2 ) 2 ,
and for ℓ = 1, 2

Q n ℓ,t (X 0 ) = n k=1 (∆ n k X 0 ℓ ) 2 1 {max 2 ℓ=1 (∆ n k X 0 ℓ ) 2 ≤r( 1 n )} and Q n 3,1 (X 0 ) = n k=1 (∆ n k X 0 1 + ∆ n k X 0 2 ) 2 1 {max 2 ℓ=1 (∆ n k X 0 ℓ ) 2 ≤r( 1 n )} . Remark that Q n ℓ,t (X 0 ) is a slight modification of Q n ℓ,t (X 0 ). We know that ∆ n k D 1 + ∆ n k D 2 ∼ N (0, β 2 (k, n)) with β 2 (k, n) = t k t k-1 σ 2 1,s ds + t k t k-1 σ 2 2,s ds + 2 t k t k-1 σ 1,s σ 2,s ρ s ds.
For all δ > 0, we have

P √ n v n C n 1 (X 0 ) -C n 1 > δ ≤ 3 3 max ℓ=1 P √ n v n Q n ℓ,1 (X 0 ) -Q n ℓ,1 > 2δ 3 .
So we obtain (3.2).

Part 2

We have to prove that

√ n v n V n 1 (X) -V n 1 (X 0 ) superexp -→ v 2 n 0.
We have that

Q n ℓ,1 (X) -Q n ℓ,1 (X 0 ) ≤ ε(n)Q n ℓ,1 (X 0 ) + 1 + 1 ε(n) Z n ℓ (3.10) 
and

C n 1 (X) -C n 1 (X 0 ) ≤ ε(n) 2 max ℓ=1 Q n ℓ,1 (X 0 ) + 1 + 1 ε(n) 2 max ℓ=1 Z n ℓ , (3.11) 
where

Z n ℓ = n k=1 t k t k-1 b ℓ (s, ω)ds 2 .
By the condition (B), we have that

Z n ℓ ≤ 1 n . We choose ε(n) such that √ n v n ε(n) → 0, v n √ nε(n) → ∞,
so by the MDP of Q n ℓ,1 (X 0 ), we obtain the result.

Proof of Theorem 2.2.

Since the sequence

√ n vn (V n • -[V]
• ) satisfies the LDP on H with speed v 2 n and rate function J mdp , by Lemma 3.1, it is sufficient to show that:

√ n v n sup t∈[0,1] V n t (X 0 ) -V n t superexp -→ v 2 n 0.
(3.12) Lemma 3.4. Under the condition (MDP), we have

lim n→∞ √ n v n sup t∈[0,1] EV n t (X 0 ) -[V] t = 0.
Proof We will prove that for ℓ = 1, 2

lim n→∞ √ n v n sup t∈[0,1]
EQ n ℓ,t (X 0 ) - In fact, (3.13) can be done in the same way as in Jiang [START_REF] Jiang | Moderate deviations for estimators of quadratic variational process of diffusion with compound poisson[END_REF]. It remains to show (3.14). Using (3.9), we obtain that 

EC n t (X 0 ) - t 0 σ 1,s σ 1,s ρ s ds ≤ 1 2 EQ n 3,t (X 0 ) -β t + 2 max ℓ=1 EQ n ℓ,t (X 0 ) - t 0 σ 2 ℓ,
EQ n 3,t (X 0 ) -β t = 0,
which is an adaptation of the proof in Jiang [START_REF] Jiang | Moderate deviations for estimators of quadratic variational process of diffusion with compound poisson[END_REF].

Proof of Theorem 2.2

For (3.12), we will prove that for ℓ = 1, 2

√ n v n sup t∈[0,1] Q n ℓ,t (X 0 ) -Q n ℓ,t superexp -→ v 2 n 0 and √ n v n sup t∈[0,1] C n t (X 0 ) -C n t superexp -→ v 2 n 0.
From Lemma 3.4, it follows that as

n → ∞ √ n v n sup t∈[0,1] E(Q n ℓ,t (X 0 ) -Q n ℓ,t ) ∨ E(C n t (X 0 ) -C n t ) → 0. (3.15)
Then, we only need to prove that

√ n v n sup t∈[0,1] Q n ℓ,t (X 0 ) -Q n ℓ,t -E(Q n ℓ,t (X 0 ) -Q n ℓ,t ) superexp -→ v 2 n 0 (3.16) and √ n v n sup t∈[0,1] C n t (X 0 ) -C n t -E(C n t (X 0 ) -C n t ) superexp -→ v 2 n 0. (3.17)
We start by the proof of (3.16). Remark that

Q n ℓ,t (X 0 ) -Q n ℓ,t -E(Q n ℓ,t (X 0 ) -Q n ℓ,t ) is a F [nt]/n -martingale. Then exp λ Q n ℓ,t (X 0 ) -Q n ℓ,t -E(Q n ℓ,t (X 0 ) -Q n ℓ,t
) is a submartigale. By the maximal inequality, we have for any η, λ > 0

P √ n v n sup t∈[0,1] Q n ℓ,t (X 0 ) -Q n ℓ,t -E(Q n ℓ,t (X 0 ) -Q n ℓ,t ) > η ≤ e -λv 2 n η E exp λ √ nv n Q n ℓ,1 (X 0 ) -Q n ℓ,1 -E(Q n ℓ,1 (X 0 ) -Q n ℓ,1 )
and

P √ n v n inf t∈[0,1] Q n ℓ,t (X 0 ) -Q n ℓ,t -E(Q n ℓ,t (X 0 ) -Q n ℓ,t ) < -η ≤ e -λv 2 n η E exp -λ √ nv n Q n ℓ,1 (X 0 ) -Q n ℓ,1 -E(Q n ℓ,1 (X 0 ) -Q n ℓ,1
) . Together with (3.8) and (3.15), we have lim sup We will do the proof in two steps.

n→∞ 1 v 2 n log P √ n v n sup t∈[0,1] Q n ℓ,t (X 0 ) -Q n ℓ,t -E(Q n ℓ,t (X 0 ) -Q n ℓ,t ) > η ≤ -λη. ( 3 
Step 1 We will prove that

V n 1 (X 0 ) -V n 1 superexp -→ n 0.
For that, we will prove that for ℓ = 1, 2

Q n ℓ,1 (X 0 ) -Q n ℓ,1 superexp -→ n 0, (3.18) 
and

C n 1 (X 0 ) -C n 1 superexp -→ n 0. (3.19) 
We start by the proof of (3.18). Since the processes X ℓ and D ℓ have independent increment, by Chebyshev inequality we obtain for all θ > 0

P Q n ℓ,1 (X 0 ) -Q n ℓ,1 > δ ≤ e -θnδ n k=1 E e θn (∆ n k X 0 ℓ ) 2 1 {(∆ n k X 0 ℓ ) 2 ≤r( 1 
n )} -(∆ n k D ℓ ) 2 . Similar to (3.3), E e θn (∆ n k X 0 ℓ ) 2 1 {(∆ n k X 0 ℓ ) 2 ≤r( 1 
n )} -(∆ n k D ℓ ) 2 ≤ I 1 (k, n) + I 2 (k, n),
where

I 1 (k, n) := E e θn[(∆ n k X 0 ℓ ) 2 -(∆ n k D ℓ ) 2 ] 1 {(∆ n k X 0 ℓ ) 2 ≤r( 1 n )} and I 2 (k, n) := P (∆ n k X 0 ℓ ) 2 > r( 1 n ) 
From (3.4), (3.5) and (3.7), it follows that

I 2 (k, n) ≤ exp - r( 1 n ) 2 t k t k-1 σ 2 ℓ,s ds + (1 -e -λ ℓ /n ).
and

I 1 (k, n) ≤ 1 + E e θn[(∆ n k X 0 ℓ ) 2 -(∆ n k D ℓ ) 2 ] 1 {(∆ n k X 0 ℓ ) 2 ≤r( 1 n ),∆ n k N ℓ =0} .
Let (α n ) be a sequence of real numbers such that α n → 0, which will be chosen latter. We have

E e θn(∆ n k X 0 ℓ ) 2 1 {(∆ n k X 0 ℓ ) 2 ≤r( 1 n ),∆ n k N ℓ =0} = F 1 (k, n) + F 2 (k, n), where F 1 (k, n) := E e θn(∆ n k X 0 ℓ ) 2 1 {(∆ n k X 0 ℓ ) 2 ≤r( 1 n ),∆ n k N ℓ =0,|∆ n k J ℓ |≤αn} and F 2 (k, n) := E e θn(∆ n k X 0 ℓ ) 2 1 {(∆ n k X 0 ℓ ) 2 ≤r( 1 n ),∆ n k N ℓ =0,|∆ n k J ℓ |>αn} . We have to prove that for ℓ = 1, 2 lim n→∞ max n k=1 F ℓ (k, n) → 0. We start with F 2 (k, n). From condition (LDP), it follows that n max n k=1 t k t k-1 σ 2
ℓ,s ds < +∞. So for all θ > 0, we choose

α n = 2 θn n max k=1 t k t k-1 σ 2 ℓ,s ds + 1 r(1/n).
Then it is easy to see that

F 2 (k, n) ≤ e θnr( 1 n ) P    |Z| ≥ 2 θn max n k=1 t k t k-1 σ 2 ℓ,s ds r( 1 n ) t k t k-1 σ 2 ℓ,s ds    ,
where Z is a standard Gaussian random variable. As a consequence of the well-known inequality

+∞ y e -z 2 2 dz ≤ (1/y)e -y 2 2 , for all y > 0, we obtain < ∞.

So that max n k=1 F 1 (k, n) ≤ C(1e -λ ℓ /n ) -→ 0 as n → ∞. Therefore,

lim n→∞ 1 n log n k=1 E e θn (∆ n k X 0 ℓ ) 2 1 {(∆ n k X 0 ℓ ) 2 ≤r( 1 
n )} -(∆ n k D ℓ ) 2
= 0, which implies that for any θ > 1 lim n→∞ 1 n log P Q n ℓ,1 (X 0 ) -Q n ℓ,1 > δ ≤ -θδ. Letting θ goes to infinity, we obtain that the left term in the last inequality goes to -∞. And similarly, by doing the same calculation with P Q n ℓ,1 (X 0 ) -Q n ℓ,1 < -δ , we can get (3.18).

To prove (3.19), we use the decomposition (3.9) and an adaptation of the proof of (3.18).

Step 2 We will prove that

V n 1 (X) -V n 1 (X 0 ) superexp -→ n 0.
For that we use (3.10) and (3.11) and we choose ε(n) such that nε(n) → 0 to obtain the result. To do that we use the same argument as in the proof of Theorem 2.2 and the fact that sup t∈[0,1] E(Q n ℓ,t (X 0 ) -Q n ℓ,t )) -→ 0.

σ 1 ,

 1 s σ 1,s ρ s ds = 0.(3.14) 

F 2 (F 2

 22 k, n) ≤ e θnr( So for n large enough and θ > 1, we have n max k=1 (k, n) ≤ e -θnr(

3. 4 .

 4 Proof of Theorem 2.5. We will prove that for ℓ = 1
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