

Laminate Fatigue Damage and Fiber Fracture

G. Eyer¹, C. Hochard^{1,2}, O. Montagnier^{1,3}, J-P. Charles^{1,2}

¹ : Laboratoire de Mécanique et d'Acoustique, Marseille, France

- ² : Université d'Aix-Marseille, Marseille, France
- ³ : Centre de Recherche de l'Armée de l'Air, Salon de Provence, France

Failure prediction of laminated structures

- Traction, shear, compression...
- Static and fatigue loads
- Various materials

Failure prediction of laminated structures

- Traction, shear, compression...
- Static and fatigue loads
- Various materials

1- Material behavior Damage evolution

Fiber failure

2- Structure behavior

Non local criteria

Speech	of C. Ho	chard :	
Matrix	Damage	Under	
Combined	Transver	rse/Shear	
Loads in Static and Fatigue			

1- Material behavior Damage evolution

Fiber failure

2- Structure behavior Non local criteria

 Material behavior Damage evolution
 Fiber failure
 Structure behavior Non local criteria

Gabriel Eyer

Gabriel Eyer

1 / 16

Gabriel Eyer

1- Influence of damage on fiber failure

- \implies Homogeneous case
- Experimental set up
- Experimental results for traction and compression
- Model
- 2- Link with the structure
 - \Longrightarrow Case of a stress concentration
 - Motivation
 - Experimental results

- Measure of the initial stiffness
- Compute the damage
- Effect of damage on tensile strength
- And what about compression?

- Measure of the initial stiffness
- Compute the damage
- Effect of damage on tensile strength
- And what about compression?

Method

- Measure of the initial stiffness
- Compute the damage
- Effect of damage on tensile strength
- And what about compression?

Gabriel Eyer

- Measure of the initial stiffness
- Compute the damage
- Effect of damage on tensile strength
- And what about compression?

- Measure of the initial stiffness
- Compute the damage
- Effect of damage on tensile strength
- And what about compression?

- Measure of the initial stiffness
- Compute the damage
- Effect of damage on tensile strength
- And what about compression?

Experimental set up

Method used to introduce damage

Digital Image Correlation device

- Material : woven carbon/epoxy (0° in the direction of the tube)
- $\blacksquare \ Cyclic \ Load \rightarrow High \ damage$
- Digital Image Correlation device
 - Damage measurement
 - Homogeneous field (strain, damage)
 - Fibers alignment

Experimental set up

Method used to introduce damage

- Material : woven carbon/epoxy (0° in the direction of the tube)
- $\blacksquare \ Cyclic \ Load \rightarrow High \ damage$
- Digital Image Correlation device
 - Damage measurement
 - Homogeneous field (strain, damage)
 - Fibers alignment

Behavior of the material with two different damages

Displacement (mm)

Results

- Linear material
- Stiffness is not affected by the damage
- Strength decreases when damage increases

2

Gabriel Eyer

5 / 16

-			
('a	brio		10.0
_ <u>v</u> ia	une		zer
		_	

6 / 16

- $\blacksquare \ \mathsf{Temperature} \Leftrightarrow \mathsf{Damage}$
- Strength decreases according to the temperature

Gabriel Eyer

Results

-400

-500 -600

Non linear behavior

-1

Stiffness is not affected by the damage

-0.5

Compressive strength is significantly affected by the damage

1 $\sigma_{11} = E_{11} \cdot \varepsilon_{11} \cdot (1 + \alpha \cdot \varepsilon_{11})$

Damage Evolution of the ultimate tensile strain versus the damage

0.6

0.8

0.4

Results

οL

0.2

- Non linear behavior
- Stiffness is not affected by the damage
- Compressive strength is significantly affected by the damage

1- Influence of damage on fiber failure

- \implies Homogeneous case
- Description of the set up
- Experimental results for traction and compression
- Model

2- Link with the structure

- \implies Case of a stress concentration
- \implies Focus on compressive results
- Motivation
- Experimental results

Motivation

Compressive test : plate with a hole

- High local strain
- Local criteria
- \Rightarrow Underestimate the structure
 - Non local criteria
 - "Point stress"
 - "Average stress"
 - $\overline{\epsilon} = \frac{1}{V} \int_{V} \epsilon \qquad \quad V = g(L_c)$
- $\Rightarrow \ \mathsf{New \ parameter} : \ L_c = \mathsf{f}(d) \, ?$

Motivation

Compressive test : plate with a hole

High local strain

Local criteria

- \Rightarrow Underestimate the structure
 - Non local criteria
 - "Point stress"
 - "Average stress"

$$\overline{\epsilon} = \frac{1}{V} \int_{V} \epsilon \qquad \quad V = g(L_c)$$

 $\Rightarrow \text{ New parameter}: L_c = f(d) \, ?$

Non local criteria

Method

Different samples for different strain fields

$$\label{eq:Width} \begin{split} Width &= 20 mm \\ Length &= 80 \longrightarrow 150 mm \\ Thickness &= 6.7 mm \ (52 plies) \ (to avoid buckling) \\ Material : UD \ T700/M21 \end{split}$$

Method

Introduction of the damage (with images...)

Different damages for each plate P_i

Method

Introduction of the damage (with images...)

Fibers are aligned in the direction of the sample Tests have to be performed for each plate P_i

Gabriel Eyer

Undamaged samples

Comparison of the different samples

- Local criteria is not efficient
- Introduction of a characteristic length

$$L_c^{d=0}=0.5mm$$
 et $\epsilon_{min}^{d=0}\sim -1.5\%$

• Very sensitive parameter with a *point stress* method !

Undamaged samples

Comparison of the different samples

- Local criteria is not efficient
- Introduction of a characteristic length

$$L_c^{d=0} = 1$$
mm et $\epsilon_{min}^{d=0} \sim -1.5\%$

Less sensitive parameter for the average stress method !

Damaged samples

Comparison of the different samples

Characteristic length is not affected by damage
 L_c^{P-S} ~ 0.5mm et L_c^{A-S} ~ 1mm
 Good agreement with the model identified on tubes

Damaged samples

Comparison of the different samples

1- Influence of damage on fiber failure

- \implies Homogeneous case
- Stiffness is not affected by damage
- Tensile strength decreases with very high damage
- Compressive strength decreases significantly with damage
- 2- Link with the structure
 - \Longrightarrow Case of a stress concentration
 - Introduction of a characteristic length
 - L_c does not evolve according to the damage
 - Validation of the identified model

Thank you.

I'll do my best to answer your questions.

Laminate Fatigue Damage and Fiber Fracture

G. Eyer¹, C. Hochard^{1,2}, O. Montagnier^{1,3}, J-P. Charles^{1,2}

- ¹ : Laboratoire de Mécanique et d'Acoustique, Marseille, France
- ² : Université d'Aix-Marseille, Marseille, France
- ³ : Centre de Recherche de l'Armée de l'Air, Salon de Provence, France

More slides?

Micro-buckling of fibers

 Matrix stiffness is a very sensitive parameter

$$\sigma_{\min} = -\frac{E_2}{1 - \nu_f} = -\frac{E_2^0 \cdot (1 - d_2)}{1 - \nu_f}$$

© Bad agreement with experiments

1 0.50 mm "Kink-Band"		 Improvement of the mode Plasticity Matrix damage Alignment of fibers 	
Budiansky and Fleck Garland et al Jumahat et al	1993 2001 2001		
Feld et al	2001	$\odot \pm$ Predictive model	

 \Rightarrow Damage plays an important role ! Need to be compared to experiments

"Kink-Band"

Budiansky and Fleck	1993
Garland et al	2001
Jumahat et al	2001
Feld et al	2001

Improvement of the model
 Plasticity
 Matrix damage
 Alignment of fibers

· · ·

 $\odot \pm$ Predictive model

 \Rightarrow Damage plays an important role ! Need to be compared to experiments

-			
(-2	hriel	LΕV	101
Gu	Diffe		701

Budiansky and Fleck	1993
Garland et al	2001
Jumahat et al	2001
Feld et al	2001

Improvement of the model
Plasticity
Matrix damage
Alignment of fibers
...

 $\odot \pm$ Predictive model

 \Rightarrow Damage plays an important role ! Need to be compared to experiments

Experiments on tubes

How to avoid of the buckling?

Numerical predictions of the buckling loads are complex !

- Imperfections,
- Non-linear material...
- An experimental method is proposed (based on analytic results)

$$\sigma_{\text{buckle}} = \frac{E}{\sqrt{3(1-\nu^2)}} \frac{t}{R}$$

E : Young Modulus

- t : Thickness
- R : Mean radius
- ${oldsymbol \nu}$: Poisson factor

Theoretical curve $\sigma_{failure} = f(n_{plies})$

Experiments on tubes

How to avoid of the buckling?

Numerical predictions of the buckling loads are complex !

- Imperfections,
- Non-linear material...
- An experimental method is proposed (based on analytic results)

$$\sigma_{\text{buckle}} = \frac{E}{\sqrt{3(1-\nu^2)}} \frac{t}{R}$$

E : Young Modulus

- t : Thickness
- R : Mean radius
- ${oldsymbol \nu}$: Poisson factor

Theoretical curve $\sigma_{failure} = f(n_{plies})$

Samples with stress concentration

Undamaged samples

Method to interpolate the strain

- Measure is complex close to the edge of the sample
- Interpolation is needed
- Determination of the degree of the polynomial with a FE simulation
- Identification of the coefficient with DIC

Samples with stress concentration

Undamaged samples

Method to interpolate the strain

- Measure is complex close to the edge of the sample
- Interpolation is needed
- Determination of the degree of the polynomial with a FE simulation
- Identification of the coefficient with DIC

Manufacturing

Tubes

- Cured in a oven (4 hours)
- Temperature = 180°
- Compaction = Vacuum + Thermo-shrinkable tissue + Thermal dilatation (aluminum)

Side effects

Test on plates $\pm 45^{\circ}$

Measure with DIC

Followed with DIC

Homogeneous field in the middle

Gabriel Eyer

16 / 16

