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Metzler Matrix Transform Determination using a Nonsmooth

Optimization Technique with an Application to Interval Observers∗

Emmanuel Chambon†,‡ Pierre Apkarian† Laurent Burlion†

Abstract

The paper deals with the design of cooperative systems

which formulates as computing a state coordinate transform

such that the resulting dynamics are both stable and coop-

erative. The design of cooperative systems is a key problem

to determine interval observers. Solutions are provided in

the literature to transform any system into a cooperative

system. A novel approach is proposed which reformulates

into a stabilization problem. A solution is found using non-

smooth optimization techniques.

1 Introduction.

Cooperative systems – that is systems whose Jacobian
matrix is Metzler (see Definition 2.1) – have the inter-
esting property to keep partial ordering between two
trajectories [15, 10]. Such a property makes them key
candidates for use as interval observers where the goal is
to enclose a given variable x(t) between two other time-
dependent variables x(t) ≤ x(t) ≤ x(t) especially when
information on any external disturbance is not available.
Related works include for example [9]. Many systems –
including the considered generic launch vehicle model –
are however not cooperative. A solution to this prob-
lem was proposed in [13] where a time-varying change
of coordinates is used to define interval observers ap-
plied to linear time-invariant non-cooperative systems.
It was indeed shown in [12] that in some cases no time-
invariant change of coordinates can be found to guar-
antee exponential stability of the obtained interval ob-
server. Despite its theoretical interest and the guaran-
tees it offers, this approach may be hard to implement
in practice.

More recent works like [14] and [6] interestingly
propose techniques to find a static state coordinate
transform P and an observer gain L so that M =
P (A − LC)P−1 is Metzler even for a non-Metzler ma-
trix A. Methods based on the numerical resolution of
a Sylvester equation were proposed. In these methods
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a target matrix M must be provided which may reduce
the set of acceptable solutions. A similar approach is
used in [4] with the aim to overcome the mentioned
limitation of time-invariant change of coordinates. A
specific interval observer structure making use of clas-
sical observers is developed with an application to non-
linear systems affine in the unmeasured part of the state
variables. It is however assumed that the static ma-
trix transform is known. In this paper an alternative
technique to these methods is proposed. A Metzler Ma-
trix Transform synthesis method is developed where the
computation of both P and L is performed simultane-
ously which results in M not being fixed a priori.

As far as control theory is concerned, nonsmooth
H∞ synthesis optimization techniques as presented
in [3, 2] offer the possibility to tune a structured con-
troller against multiple control requirements. Recent
advances [1] also make it possible to take multiple mod-
els into account when robustness is at stake. Admissible
requirements include closed-loop poles location or noise
rejection. In this article, this control approach will be
used to specify estimation quality requirements on gain
L which will be used within a Luenberger observer. It
is also shown that the problem of finding a pair (P,L)
such that M = P (A−LC)P−1 is Hurwitz Metzler may
be expressed as a control problem on which these tech-
niques will be used.

Computing a Metzler Matrix Transform is difficult.
After reformulation into a control problem so as to
use nonsmooth H∞ synthesis techniques, a numerical
solution to this mathematical problem is proposed.
Definitions and notations are recalled in §2. The paper
is structured as follows. In §3 (resp. §4) the considered
mathematical (resp. control) problem is exposed. A
solution to these problems is then proposed in §5.
The theory of interval observers and how they can be
used to deterministically bracket an estimation error is
presented in §6. Examples of applications are detailed
in §7. In particular, the algorithm and interval observer
approach are tested on a generic launch vehicle rigid
model in §7.3.



2 Definitions and notations.

The Laplace transform is denoted s. Given two integers
(i, j) symbol δij is defined by

(2.1) ∀(i, j), δij =

{
1 if i = j
0 otherwise

Unless mentioned, i and j are integer variables
satisfying 1 ≤ i, j ≤ n where n refers to a matrix
dimension. I stands for identity matrix with adequate
dimension. For a given matrix A ∈ Rn×m, let denote
A+ = max(A, 0) and A− = A+−A where “max” is the
element-wise operator.

Definition 2.1. Let A = (aij) ∈ Rn×n. The matrix A
is said to be Metzler if

(2.2) ∀i 6= j, aij ≥ 0

The matrix A is Hurwitz if all its eigenvalues real parts
are strictly negative.

Definition 2.2. For given matrices A and C, a Metzler
Matrix Transform is a pair (P,L) with P ∈ Rn×n and
L ∈ Rn×m s.t. P (A− LC)P−1 is Metzler.

3 Problem statement.

Let G = (A,B,C,D) a system with n states, m ≤
n measurements. It is supposed (A,C) is observ-
able. The following problem is considered for which an
optimization-based solution is proposed in §5.

Problem 3.1. Find a Metzler Matrix Transform (P,L)
such that M = P (A− LC)P−1 is Hurwitz Metzler.

In this approach L is used to place poles so that
a Hurwitz matrix is obtained. It can be identified
to an observer gain. In resulting new coordinates, G
reformulates into G =

(
M,PB,CP−1, D

)
.

4 Control problem (application specific).

When system G or G expressed in new coordinates
should be observed or stabilized, this becomes a control
problem. Using nonsmooth H∞ control formalism, this
problem can be formulated as follows

Problem 4.1. Let C(s, p) be a collection of LTI sys-
tems depending on tunable parameters p. Let nsoft and
nhard two positive integers and w and z two vectors of
Rnsoft+nhard . For a given integer i ≤ nsoft + nhard, the
transfer functions between input wi and output zi over
the collection C is denoted Twi→zi (C(s, p)). The prob-
lem is to find p satisfying

(4.3) min
p

max
i=1,...,nsoft

{
|| Twi→zi (C(s, p)) ||2/∞

}
subject to || Twj→zj (C(s, p)) ||2/∞≤ 1 with j =
1, ..., nhard.

To solve this control problem optimization-based
techniques can be used like nonsmooth H∞ synthesis
as presented in [1]. These techniques were implemented
into numerical solvers as presented in [8]. More specif-
ically the systune routine from the Matlab c© Robust
Control Toolbox 2012b and higher can be used. An op-
timal solution is found when the algorithm manages
to drive hard constraints below unity while minimiz-
ing soft constraints (also called objectives). In §5 it
will be shown that problem 3.1 reformulates into an
optimization problem which can be solved using these
optimization-based techniques.

5 Proposed solution.

Before going into the details of the method, the reader
should be reminded that the proposed solution is:

• a numerical solution: it is obtained using an opti-
mization algorithm;

• A local optimal solution: because the problem is
non-convex in (P,L) algorithm converges towards
an optimal local solution.

Multiple random restarts of the optimization algo-
rithm can be used to find an optimal solution on a larger
set of solutions. In case some targeted properties of the
solution are not satisfied, it may be necessary to weaken
some of the formulated constraints. It may help the op-
timization algorithm to find a better local solution.

5.1 Note on the existence of a trivial solution.
Since diagonal matrices comply with definition 2.1 there
exists a trivial solution to problem 3.1.

Proof. With (A,C) observable, choose L so that A−LC
eigenvalues are negative real numbers and choose P
as the matrix of associated eigenvectors. Then M =
P (A− LC)P−1 is diagonal Hurwitz hence is a solution
to problem 3.1.

Note this trivial solution may not satisfy control
requirements stated in problem 4.1. Also this may lead
to large gains L when using pole placement methods.

5.2 Note on Sylvester equation approach. To
find Metzler Matrix Transform (P,L) such that M =



P (A − LC)P−1 is Metzler, one can solve the following
Sylvester equation as suggested in [14]

(5.4) PA−MP = QC

where A is known, L has been obtained solving a pole
placement problem and (M,Q = PL) are arbitrarily
chosen such that M and A − LC have the same eigen-
values and M is Hurwitz Metzler. Note however that
this equation has a unique solution if and only if A and
M have distinct eigenvalues. Because the approach pre-
sented in the sequel does not rely on an a priori choice
of M or Q it offers more freedom in the resolution. On
the other hand, the contingency of a local vs. global
optimization technique has to be accepted.

5.3 Metzler conditions stabilization problem.
Let M = P (A− LC)P−1 ∈ Rn×n where P and L are
decision variables. For M to be Metzler, the n(n − 1)
following inequalities must be satisfied

(5.5) ∀i 6= j, Mij =
[
P (A− LC)P−1

]
ij

= d>i P (A− LC)P−1dj ≥ 0

where di = (δik)1≤k≤n is a column vector. For a given
pair (i, j), with i 6= j, the corresponding inequality
can be seen as an “anti-stabilization” problem in the
decision variables P and L.

5.4 Control synthesis approach and models. To
find a pair (P,L) satisfying both M = P (A − LC)P−1

and control constraints expressed on G (eventually con-
sidered in-line with other systems), any nonsmooth non-
convex optimization technique can be used. It is pro-
posed to use the approach presented in [1] which can
handle multiple models to synthesize control laws ac-
cording to specified constraints. As far as the condi-
tions in §5.3 are considered, the constraints can be re-
formulated into the proposed control framework. The
following fictitious1 systems are considered

(5.6) ∀i 6= j, Gij
M =

[
−Mij (P,L) ∈ R 01×0

01×n 01×0

]
From a control point of view, ensuring ∀i 6=

j, Mij ≥ 0 is equivalent to stabilizing these systems

Gij
M . The following collections are considered in the

control synthesis

1In the sense they have no input nor output.

(C1) n(n − 1) unidimensional fictitious systems{
Gij

M

}
i,j

on which a requirement on closed-loop

poles location is expressed (minimum decay and
max frequency);

(C2) (optional) n(n− 1) unidimensional fictitious sys-

tems
{
G

ij

M

}
i,j

with state matrixMij(P,L)−Mmax
ij .

This helps to restrict the set of acceptable solutions
when 0 < Mmax

ij < +∞. As such, upon multi-
ple restarts, the optimization algorithm converges
more easily due to limitation of the initialising vari-
ables excursion around a smaller set of potential
local optima;

(C3) Original plant model G = (A,B,C,D) in-line
with additional systems eventually depending on
L and additional variables to enforce system stabi-
lization or estimation criteria;

(C4) (optional) any other model to enforce specific
properties.

6 Application to Interval Observers.

The algorithm was developed towards a specific applica-
tion to interval observers which is presented here. The
theory presented in this section is inspired from the
works in [13] and [14]. Since the proposed algorithm
also synthesizes an observer gain L, it is proposed to
bracket the estimation error using interval observers so
as to frame the plant state x in return.

6.1 Plant model. The following plant model ex-
pressed in the state space is considered. Using Popov-
Belevitch-Hautus Lemma, observability of (A,C) can be
checked to account for possibly unobservable eigenval-
ues.

(6.7) (G)


ẋ = Ax+Bdd+Buu

= Ax+B

(
d
u

)
y = Cx

where x ∈ Rn and y ∈ Rm with m ≤ n. Initial
conditions are given by a vector x0. Input d is an
unknown disturbance but it is supposed there exists
known bounds d and d such that ∀t, d(t) ≤ d(t) ≤ d(t).
It is supposed a dynamic controller K(s) has been
designed ensuring system stability in these conditions.
Stabilizing output-feedback control law u = K(s)y is
then applied to the system.

6.2 Luenberger observer. The following Luen-
berger observer is considered



(6.8) (Gobs)


˙̂x = Ax̂+Buu+ L (y − Cx̂)
ŷ = Cx̂
x̂(0) = x̂0

The objective is to ensure minimal estimation error.

6.3 Estimation error system Let e = x − x̂ the
estimation error, it is inferred

(6.9) ė = (A− LC)e+Bdd

with e(0) = e0 = x0 − x̂0. The objective is to find
(e, e, e0, e0) s.t. for e0 ∈ [e0, e0] then ∀t, e(t) ≤ e(t) ≤
e(t). The pair (e0, e0) is supposed known from now on.

6.4 Interval observer. To use the results presented
in [14], a Metzler Matrix Transform needs to be found
and the error estimation system expressed into the
corresponding new coordinates. It is supposed synthesis
in §5 has returned (P,L) s.t. M = P (A− LC)P−1 is
Hurwitz Metzler and estimation quality requirements
on system (6.9) are satisfied. Using the change of
coordinates ez = Pe, system (6.9) becomes

(6.10)
ėz = P (A− LC)P−1ez + PBdd

= Mez +B′dd

where B′d = PBd. Using [5, Lemma 1] and notations in
§2, an interval observer for system (6.10) is given by

(6.11)

{
ėz = Mez +B′+d d−B′−d d

ėz = Mez +B′+d d−B′−d d

under initial conditions

(6.12)
ez(0) = P+e0 − P−e0
ez(0) = P+e0 − P−e0

This interval observer is composed of two au-
tonomous systems (no dependency on system output y).
Let T = P−1, the bounds on e are obtained using [5,
Lemma 1]:

(6.13)

{
e = T+ez − T−ez
e = T+ez − T−ez

Then for an initial estimation error e0 ∈ [e0, e0],
a time-varying bracketing of the state x is obtained as
x̂+e ≤ x ≤ x̂+e. The system composed of autonomous
systems (6.11) with output ye = (e, e)

>
is called (Ge).

7 Examples.

The following examples are used to demonstrate the
possibilities of the algorithm detailed here with an
application to interval observers. Note that syntheses
were performed using systune function from the Robust
Control Toolbox 2014b [11] correctly parametrized to
benefit from the Parallel Computing Toolbox. Other
implementations may be used.

7.1 Third-order system with unobservable
mode. This example is inspired from the partial lin-
ear system example presented in [14]. It is given by

(7.14) A =

 2 0 0

1 −4
√

3

−1 −
√

3 −4

 , C =
[
1 0 0

]
The matrix B is not recalled here since no distur-

bance input is considered. The problem reduces to find-
ing a suitable Metzler Matrix Transform with limited
control constraints. Note however that the complex
mode −4± j

√
3 is not observable.

To solve this problem, collections (C1) and (C2)
with n = 3 and ∀ (i, j) , Mmax

ij = 10 are used. Moreover
using (C4), A − LC eigenvalues real part are forced
to stay within

[
−10,−3.10−3

]
. A solution is typically

found in less than 5 iterations and after 3 restarts. The
following results have been computed

(7.15) M =

−2.0764 1.5488 0.0611
0.2614 −2.4897 9.8946
0.6941 0.0094 −3.8150

 ,

P =

1.0991 −0.6915 −0.7497
0.7811 1.7077 0.1462
0.2593 −0.2680 0.2964

 , L =

 2.3811
0.3125
−1.2164


It is readily verified that M = P (A − LC)P−1

is Hurwitz Metzler. According to results in §6 one
can note that the estimation error depends on the
initial error but converges towards zero since no other
disturbance is considered.

7.2 Sixth-order system with two complex
modes. This example is inspired from the one pre-
sented in [13]. It is given by

(7.16)

A =


−1 1 0 0 −1 0
−1 −2 0 −1 0 1
−2 0 −3 −2 0 0
−1 0 −2 −3 0 1
−1 0 2 0 −4 0
−1 −1 0 1 0 −1

 , B =


0 −18
0 −13
0 −5
0 −4
0 −10
0 22

 ,

C =
[
1 0 0 0 0 0

]
, D =

[
1 0

]



The first input corresponds to a disturbance input
on the measurement. Its effect on the estimation quality
needs to be mitigated using an appropriate disturbance
rejection requirement. Note that since y = Cx+ d, the
estimation error system is defined by

(7.17) ė = (A− LC)e− Ld

rather than by (6.9). To solve this problem, a collection
of synthesis models composed of (C1) to (C4) with
n = 6 and ∀ (i, j) , Mmax

ij = 1.102 is used. Estimation
quality is ensured through minimization of the H2-
norm of the transfer from d to e using model (C3).
Stability of the estimation error subsystem is ensured
through (C4) where A− LC eigenvalues real parts are
forced to stay in the interval

[
−10,−3.10−3

]
. A solution

is typically found in 897 iterations and after 4 restarts,
see (7.18) on Fig. 1. A similar construction to the one
presented in §6 can then be used to frame state x.

7.3 Fifth-order rigid launcher longitudinal
model. The approach in §6 is applied to a generic rigid
launch vehicle longitudinal model with unknown wind
input. No uncertainty is considered in this article. Like
other examples, the method proposed in §5 is used to
compute P and L. Simulations are then run using a
simplified wind profile.

7.3.1 Model. The model (7.19) in Fig. 2 is consid-
ered where the first input corresponds to the unknown
wind input d and D = 0. The second input corresponds
to the thruster orientation input signal to which the
stabilizing control law is applied. Note that n = 5.

7.3.2 Synthesis and results. To solve the problem,
the collections of models (C1) to (C4) are used where
∀ (i, j) , Mmax

ij = 50 and A − LC eigenvalues real

parts are forced to lie in
[
−1.102,−1.10−2

]
. Using

model (C3) a minimization constraint on the weighted
H2 norm from unknown input d ∈ R to estimation
error e ∈ R5 is expressed. The optimization algorithm
generally gives a solution in around 1100 iterations and
6 restarts. Results are shown in (7.20) in Fig. 2.

7.3.3 Simulation. Since the system is unstable, the
simulation is performed after structured H∞ synthesis
of a dynamic stabilizing controller K(s) for this system.
As this is not the main purpose of this work, it is
not detailed here. Fig. 3 illustrates how the different
systems G, Gobs and Ge are related. Note that system
Ge does not interact with the stabilized plant model.
Using wind profile shown in Fig. 4 with +/ − 7 m/s
uncertainty on wind speed, the results shown in Fig. 5

G

K

d

u

z
y

Gobs x̂

Ge

d

d

e

e

Figure 3: Simulation model where (Ge) is a combination
of two autonomous systems.

and 6 are obtained. As expected it is interesting to note
that despite state estimate is used to express boundaries
on the state, it does not necessarily lie in the resulting
interval [x̂+ e, x̂+ e] since e (resp. e) can be positive
(resp. negative).

7.4 Execution summary. Executions were per-
formed running Matlab c© R2014b with Parallel Com-
puting Toolbox version 6.5 on a Windows c© 7 – 64 bits
station with 8 Go RAM and Intel c© Xeon processor E5-
1607 v2 – 3 GHz (quad-core). A summary of these exe-
cutions for each example is shown in Table 1. Note the
number of iterations and time results are only indicative
since they may vary from one run to another but they
are representative of the complexity of the problem.

8 Conclusions.

In this article an application of nonsmooth optimiza-
tion techniques [1] to numerically solve a mathematical
problem combined to a control problem has been pre-

W
in
d
sp

ee
d
(m

/
s)

Simulation time (s)
0 100 200

−60

0

60

Figure 4: Wind speed profile (in blue) and known
bounds d and d used in simulation.



(7.18) M =


−1.4775 3.5893 0.0000 0.0370 0.0004 0.0000
0.0000 −1.6656 0.0007 0.1813 1.6544 0.0000
0.0000 0.0000 −1.1612 0.0000 0.0000 0.0098
0.0005 1.1030 13.2953 −3.6760 0.0000 0.0051
0.0000 0.0901 66.1095 1.5568 −5.0972 0.0059
0.6778 0.0038 0.0000 0.0010 0.0000 −0.7338

 ,

P =


1.5912 −2.8808 1.3653 0.4935 −0.2402 1.2581
−0.0423 0.5119 −0.9888 0.1747 −0.2775 −0.4942
0.0347 0.0182 0.0082 −0.0141 −0.0152 0.0325
0.4123 0.0218 0.0775 0.8050 0.2839 −0.3491
1.0087 0.1672 0.2424 0.3581 0.3860 0.2544
−2.6784 −1.3252 −1.7823 2.4288 0.8701 0.9504

 , L =


−0.1887
−0.0540
−0.1686
−0.0736
−0.3645
−0.1125



Figure 1: A solution obtained on example (7.16).

(7.19) A =


0 1 0 0 0

−893.1828 −40.1197 0 878.6575 0
0 0 0 1 0
0 0 1.4821 0 0.0026
0 0 −42.8326 0 −0.0294

 , B =


0 0
0 0
0 0

−0.0024 −3.6490
0.0296 −22.3667

 , C =

0 0 0 0 1
0 0 1 0 0
1 0 0 0 0



(7.20) M =


−22.4368 0.4289 0.0045 0.0156 0.6777

0.0147 −14.0849 0.0075 0.0041 0.0551
16.4291 49.9966 −30.1315 7.9257 21.0740
2.7674 2.5858 0.0401 −25.4104 0.0992
2.1787 18.5450 0.0935 13.6873 −28.7126

 ,

P =


46.2716 2.6470 11.3937 −103.5197 −8.1488
−14.4955 −0.5588 −3.7667 34.9205 2.8661
63.4497 4.6807 462.9193 −164.6066 −119.5850
27.7039 1.4743 −1.7876 −58.8815 −3.4144
10.3172 −0.5000 −10.8160 1.7723 0.8932

 , L =


−0.7252 3.8941 23.5926
−71.0519 87.4368 −543.8054

0.3297 24.8749 0.9810
−2.8577 7.6596 9.1507
32.1596 −68.2297 5.3586



Figure 2: Rigid launch vehicle longitudinal model with detectors dynamics (top, see §7.3) and obtained Metzler
Matrix Transform (bottom).

Ex. Res. Dim. (n) # Models Restarts Iter. Time (s) Ref.
(7.14) (7.15) 3 13 3 1 16 [14]
(7.16) (7.18) 6 61 4 897 513 [13]
(7.19) (7.20) 5 41 6 1161 115

Table 1: Metzler Matrix Transform synthesis typical execution summary.

sented. To determine a Metzler Matrix Transform the
corresponding mathematical problem 3.1 was reformu-
lated into a control problem 4.1. Combined with control
requirements, a local optimal solution to this problem
can be found. This approach has been successfully ap-
plied to various examples including a rigid launch ve-
hicle model. In comparison with other methods, this
approach allows for simultaneous tuning of P and L
and does not make assumption on the targeted M ma-
trix structure. Moreover, by benefiting from observer
structures as proposed in [14] and [4] implementing the

resulting interval observer is straightforward in practise.
Further improvements will be dedicated to reduce

complexity since non-negligible computing resources are
needed with multiple algorithm restarts before converg-
ing towards an acceptable solution especially in the
case of higher-dimensional problems. Other problems
could also be considered like finding static P such that
P [A(y)− L(y)C]P−1 is Metzler where y ∈ Rm is the
known system output signal. The interest would be to
benefit from the interval observer structure proposed
in [4]. In this work knowing such P is considered an hy-
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Figure 5: Simulation results on example (7.19): estima-
tion error e = x− x̂ is represented in blue. The bounds
obtained using interval observer expression as in (6.11)
are represented in red and green.
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Figure 6: Simulation results on example (7.19) using
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(red, resp. green) are represented. Zoom is performed
on otherwise indistinguishable curves.

pothesis, which might be limiting. Also note that other
systems like positive continuous-time linear systems [7]
also have a Metzler state-space matrix which gives hints
on a wider scope for this article.
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