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The paper deals with the design of cooperative systems which formulates as computing a state coordinate transform such that the resulting dynamics are both stable and cooperative. The design of cooperative systems is a key problem to determine interval observers. Solutions are provided in the literature to transform any system into a cooperative system. A novel approach is proposed which reformulates into a stabilization problem. A solution is found using nonsmooth optimization techniques.

1 Introduction.

 that in some cases no timeinvariant change of coordinates can be found to guarantee exponential stability of the obtained interval observer. Despite its theoretical interest and the guarantees it offers, this approach may be hard to implement in practice.

More recent works like [14] and [6] interestingly propose techniques to find a static state coordinate transform P and an observer gain L so that M = P (A -LC)P -1 is Metzler even for a non-Metzler matrix A. Methods based on the numerical resolution of a Sylvester equation were proposed. In these methods

a target matrix M must be provided which may reduce the set of acceptable solutions. A similar approach is used in [START_REF] Dinh | Interval observer composed of observers for nonlinear systems[END_REF] with the aim to overcome the mentioned limitation of time-invariant change of coordinates. A specific interval observer structure making use of classical observers is developed with an application to nonlinear systems affine in the unmeasured part of the state variables. It is however assumed that the static matrix transform is known. In this paper an alternative technique to these methods is proposed. A Metzler Matrix Transform synthesis method is developed where the computation of both P and L is performed simultaneously which results in M not being fixed a priori.

As far as control theory is concerned, nonsmooth H ∞ synthesis optimization techniques as presented in [START_REF] Burke | HIFOO -a MATLAB package for fixedorder controller design and H∞ optimization[END_REF][START_REF] Apkarian | Nonsmooth H∞ synthesis[END_REF] offer the possibility to tune a structured controller against multiple control requirements. Recent advances [START_REF] Apkarian | Tuning controllers against multiple design requirements[END_REF] also make it possible to take multiple models into account when robustness is at stake. Admissible requirements include closed-loop poles location or noise rejection. In this article, this control approach will be used to specify estimation quality requirements on gain L which will be used within a Luenberger observer. It is also shown that the problem of finding a pair (P, L) such that M = P (A -LC)P -1 is Hurwitz Metzler may be expressed as a control problem on which these techniques will be used.

Computing a Metzler Matrix Transform is difficult. After reformulation into a control problem so as to use nonsmooth H ∞ synthesis techniques, a numerical solution to this mathematical problem is proposed. Definitions and notations are recalled in §2. The paper is structured as follows. In §3 (resp. §4) the considered mathematical (resp. control) problem is exposed. A solution to these problems is then proposed in §5. The theory of interval observers and how they can be used to deterministically bracket an estimation error is presented in §6. Examples of applications are detailed in §7. In particular, the algorithm and interval observer approach are tested on a generic launch vehicle rigid model in §7.3.

The Laplace transform is denoted s. Given two integers (i, j) symbol δ ij is defined by

(2.1) ∀(i, j), δ ij = 1 if i = j 0 otherwise
Unless mentioned, i and j are integer variables satisfying 1 ≤ i, j ≤ n where n refers to a matrix dimension. I stands for identity matrix with adequate dimension. For a given matrix A ∈ R n×m , let denote A + = max(A, 0) and A -= A + -A where "max" is the element-wise operator.

Definition 2.1. Let A = (a ij ) ∈ R n×n . The matrix A is said to be Metzler if (2.2) ∀i = j, a ij ≥ 0
The matrix A is Hurwitz if all its eigenvalues real parts are strictly negative. such that M = P (A -LC) P -1 is Hurwitz Metzler.

In this approach L is used to place poles so that a Hurwitz matrix is obtained. It can be identified to an observer gain. In resulting new coordinates, G reformulates into G = M, P B, CP -1 , D .

Control problem (application specific).

When system G or G expressed in new coordinates should be observed or stabilized, this becomes a control problem. Using nonsmooth H ∞ control formalism, this problem can be formulated as follows Problem 4.1. Let C(s, p) be a collection of LTI systems depending on tunable parameters p. Let n soft and n hard two positive integers and w and z two vectors of R n soft +n hard . For a given integer i ≤ n soft + n hard , the transfer functions between input w i and output z i over the collection C is denoted T wi→zi (C(s, p)). The problem is to find p satisfying To solve this control problem optimization-based techniques can be used like nonsmooth H ∞ synthesis as presented in [START_REF] Apkarian | Tuning controllers against multiple design requirements[END_REF]. These techniques were implemented into numerical solvers as presented in [START_REF] Gahinet | Frequency-domain tuning of fixed-structure control systems[END_REF]. More specifically the systune routine from the Matlab c Robust Control Toolbox 2012b and higher can be used. An optimal solution is found when the algorithm manages to drive hard constraints below unity while minimizing soft constraints (also called objectives). In §5 it will be shown that problem 3.1 reformulates into an optimization problem which can be solved using these optimization-based techniques.

Proposed solution.

Before going into the details of the method, the reader should be reminded that the proposed solution is:

• a numerical solution: it is obtained using an optimization algorithm;

• A local optimal solution: because the problem is non-convex in (P, L) algorithm converges towards an optimal local solution.

Multiple random restarts of the optimization algorithm can be used to find an optimal solution on a larger set of solutions. In case some targeted properties of the solution are not satisfied, it may be necessary to weaken some of the formulated constraints. It may help the optimization algorithm to find a better local solution.

Note on the existence of a trivial solution.

Since diagonal matrices comply with definition 2.1 there exists a trivial solution to problem 3.1.

Proof. With (A, C) observable, choose L so that A-LC eigenvalues are negative real numbers and choose P as the matrix of associated eigenvectors. Then M = P (A -LC) P -1 is diagonal Hurwitz hence is a solution to problem 3.1.

Note this trivial solution may not satisfy control requirements stated in problem 4.1. Also this may lead to large gains L when using pole placement methods.

Note on Sylvester equation approach.

To find Metzler Matrix Transform (P, L) such that M = P (A -LC)P -1 is Metzler, one can solve the following Sylvester equation as suggested in [START_REF] Raïssi | Interval state estimation for a class of nonlinear systems[END_REF] (5.4)

P A -M P = QC where A is known, L has been obtained solving a pole placement problem and (M, Q = P L) are arbitrarily chosen such that M and A -LC have the same eigenvalues and M is Hurwitz Metzler. Note however that this equation has a unique solution if and only if A and M have distinct eigenvalues. Because the approach presented in the sequel does not rely on an a priori choice of M or Q it offers more freedom in the resolution. On the other hand, the contingency of a local vs. global optimization technique has to be accepted.

Metzler conditions stabilization problem.

Let M = P (A -LC) P -1 ∈ R n×n where P and L are decision variables. For M to be Metzler, the n(n -1) following inequalities must be satisfied

(5.5) ∀i = j, M ij = P (A -LC) P -1 ij = d i P (A -LC) P -1 d j ≥ 0
where d i = (δ ik ) 1≤k≤n is a column vector. For a given pair (i, j), with i = j, the corresponding inequality can be seen as an "anti-stabilization" problem in the decision variables P and L.

5.4 Control synthesis approach and models. To find a pair (P, L) satisfying both M = P (A -LC)P -1 and control constraints expressed on G (eventually considered in-line with other systems), any nonsmooth nonconvex optimization technique can be used. It is proposed to use the approach presented in [START_REF] Apkarian | Tuning controllers against multiple design requirements[END_REF] which can handle multiple models to synthesize control laws according to specified constraints. As far as the conditions in §5.3 are considered, the constraints can be reformulated into the proposed control framework. The following fictitious 1 systems are considered

(5.6) ∀i = j, G ij M = -M ij (P, L) ∈ R 0 1×0 0 1×n 0 1×0
From a control point of view, ensuring ∀i = j, M ij ≥ 0 is equivalent to stabilizing these systems G ij M . The following collections are considered in the control synthesis 1 In the sense they have no input nor output.

(C1) n(n -1) unidimensional fictitious systems

G ij M i,j
on which a requirement on closed-loop poles location is expressed (minimum decay and max frequency);

(C2) (optional ) n(n -1) unidimensional fictitious sys- tems G ij M i,j
with state matrix M ij (P, L)-M max ij . This helps to restrict the set of acceptable solutions when 0 < M max ij < +∞. As such, upon multiple restarts, the optimization algorithm converges more easily due to limitation of the initialising variables excursion around a smaller set of potential local optima;

(C3) Original plant model G = (A, B, C, D) in-line
with additional systems eventually depending on L and additional variables to enforce system stabilization or estimation criteria;

(C4) (optional ) any other model to enforce specific properties.

6 Application to Interval Observers.

The algorithm was developed towards a specific application to interval observers which is presented here. The theory presented in this section is inspired from the works in [START_REF]Interval observers for linear time-invariant systems with disturbances[END_REF] and [START_REF] Raïssi | Interval state estimation for a class of nonlinear systems[END_REF]. Since the proposed algorithm also synthesizes an observer gain L, it is proposed to bracket the estimation error using interval observers so as to frame the plant state x in return.

6.1 Plant model. The following plant model expressed in the state space is considered. Using Popov-Belevitch-Hautus Lemma, observability of (A, C) can be checked to account for possibly unobservable eigenvalues.

(6.7) (G)        ẋ = Ax + B d d + B u u = Ax + B d u y = Cx
where x ∈ R n and y ∈ R m with m ≤ n. Initial conditions are given by a vector x 0 . Input d is an unknown disturbance but it is supposed there exists known bounds d and d such that ∀t,

d(t) ≤ d(t) ≤ d(t).
It is supposed a dynamic controller K(s) has been designed ensuring system stability in these conditions. Stabilizing output-feedback control law u = K(s)y is then applied to the system. 6.2 Luenberger observer. The following Luenberger observer is considered

(6.8) (G obs )    ˙ x = A x + B u u + L (y -C x) y = C x x(0) = x 0
The objective is to ensure minimal estimation error. The pair (e 0 , e 0 ) is supposed known from now on.

Interval observer.

To use the results presented in [START_REF] Raïssi | Interval state estimation for a class of nonlinear systems[END_REF], a Metzler Matrix Transform needs to be found and the error estimation system expressed into the corresponding new coordinates. It is supposed synthesis in §5 has returned (P, L) s.t. M = P (A -LC) P -1 is Hurwitz Metzler and estimation quality requirements on system (6.9) are satisfied. Using the change of coordinates e z = P e, system (6.9) becomes The following examples are used to demonstrate the possibilities of the algorithm detailed here with an application to interval observers. Note that syntheses were performed using systune function from the Robust Control Toolbox 2014b [START_REF] Matlab | Robust Control Toolbox version 5.2[END_REF] correctly parametrized to benefit from the Parallel Computing Toolbox. Other implementations may be used.

7.1 Third-order system with unobservable mode. This example is inspired from the partial linear system example presented in [START_REF] Raïssi | Interval state estimation for a class of nonlinear systems[END_REF]. It is given by

(7.14) A =   2 0 0 1 -4 √ 3 -1 - √ 3 -4   , C = 1 0 0
The matrix B is not recalled here since no disturbance input is considered. The problem reduces to finding a suitable Metzler Matrix Transform with limited control constraints. Note however that the complex mode -4 ± j √ 3 is not observable. To solve this problem, collections (C1) and (C2) with n = 3 and ∀ (i, j) , M max ij = 10 are used. Moreover using (C4), A -LC eigenvalues real part are forced to stay within -10, -3.10 -3 . A solution is typically found in less than 5 iterations and after 3 restarts. The following results have been computed It is readily verified that M = P (A -LC)P -1 is Hurwitz Metzler. According to results in §6 one can note that the estimation error depends on the initial error but converges towards zero since no other disturbance is considered.

7.2 Sixth-order system with two complex modes. This example is inspired from the one presented in [START_REF]Interval observers for linear time-invariant systems with disturbances[END_REF]. It is given by (7.16)

A =         -1 1 0 0 -1 0 -1 -2 0 -1 0 1 -2 0 -3 -2 0 0 -1 0 -2 -3 0 1 -1 0 2 0 -4 0 -1 -1 0 1 0 -1         , B =         0 -18 0 -13 0 -5 0 -4 0 -10 0 22         , C = 1 0 0 0 0 0 , D = 1 0
The first input corresponds to a disturbance input on the measurement. Its effect on the estimation quality needs to be mitigated using an appropriate disturbance rejection requirement. Note that since y = Cx + d, the estimation error system is defined by (7.17) ė = (A -LC)e -Ld rather than by (6.9). To solve this problem, a collection of synthesis models composed of (C1) to (C4) with n = 6 and ∀ (i, j) , M max ij = 1.10 2 is used. Estimation quality is ensured through minimization of the H 2norm of the transfer from d to e using model (C3). Stability of the estimation error subsystem is ensured through (C4) where A -LC eigenvalues real parts are forced to stay in the interval -10, -3.10 -3 . A solution is typically found in 897 iterations and after 4 restarts, see (7.18) on Fig. 1. A similar construction to the one presented in §6 can then be used to frame state x.

7.3 Fifth-order rigid launcher longitudinal model. The approach in §6 is applied to a generic rigid launch vehicle longitudinal model with unknown wind input. No uncertainty is considered in this article. Like other examples, the method proposed in §5 is used to compute P and L. Simulations are then run using a simplified wind profile.

7.

3.1 Model. The model (7.19) in Fig. 2 is considered where the first input corresponds to the unknown wind input d and D = 0. The second input corresponds to the thruster orientation input signal to which the stabilizing control law is applied. Note that n = 5.

Synthesis and results.

To solve the problem, the collections of models (C1) to (C4) are used where ∀ (i, j) , M max ij = 50 and A -LC eigenvalues real parts are forced to lie in -1.10 2 , -1.10 -2 . Using model (C3) a minimization constraint on the weighted H 2 norm from unknown input d ∈ R to estimation error e ∈ R 5 is expressed. The optimization algorithm generally gives a solution in around 1100 iterations and 6 restarts. Results are shown in (7.20) in Fig. 2. 7.3.3 Simulation. Since the system is unstable, the simulation is performed after structured H ∞ synthesis of a dynamic stabilizing controller K(s) for this system. As this is not the main purpose of this work, it is not detailed here. Fig. 3 illustrates how the different systems G, G obs and G e are related. Note that system G e does not interact with the stabilized plant model. Using wind profile shown in Fig. 4 with +/ -7 m/s uncertainty on wind speed, the results shown in Fig. 5 approach allows for simultaneous tuning of P and L and does not make assumption on the targeted M matrix structure. Moreover, by benefiting from observer structures as proposed in [START_REF] Raïssi | Interval state estimation for a class of nonlinear systems[END_REF] and [START_REF] Dinh | Interval observer composed of observers for nonlinear systems[END_REF] implementing the resulting interval observer is straightforward in practise. Further improvements will be dedicated to reduce complexity since non-negligible computing resources are needed with multiple algorithm restarts before converging towards an acceptable solution especially in the case of higher-dimensional problems. Other problems could also be considered like finding static P such that P [A(y) -L(y)C] P -1 is Metzler where y ∈ R m is the known system output signal. The interest would be to benefit from the interval observer structure proposed in [START_REF] Dinh | Interval observer composed of observers for nonlinear systems[END_REF]. In this work knowing such P is considered an hy- pothesis, which might be limiting. Also note that other systems like positive continuous-time linear systems [START_REF] Farina | Positive Linear Systems: Theory and Applications[END_REF] also have a Metzler state-space matrix which gives hints on a wider scope for this article.

     , B =      0 0 0 0 0 0 -0.0024 -3.6490 0.0296 -22.3667      , C =   0 0 0 0 1 0 0 1 0 0 1 0 0 0 0   (7.20) M =      -22

  ..,n soft || T wi→zi (C(s, p)) || 2/∞ subject to || T wj →zj (C(s, p)) || 2/∞ ≤ 1 with j = 1, ..., n hard .

6. 3

 3 Estimation error system Let e = x -x the estimation error, it is inferred (6.9) ė = (A -LC)e + B d d with e(0) = e 0 = x 0 -x 0 . The objective is to find (e, e, e 0 , e 0 ) s.t. for e 0 ∈ [e 0 , e 0 ] then ∀t, e(t) ≤ e(t) ≤ e(t).

( 6 .

 6 10) ėz = P (A -LC) P -1 e z + P B d d = M e z + B d d where B d = P B d . Using [5, Lemma 1] and notations in §2, an interval observer for system (6.10) is given by (6.11) ėz = M e z + B + d d -B - d d ėz = M e z + B + d d -B - d d under initial conditions (6.12) e z (0) = P + e 0 -P -e 0 e z (0) = P + e 0 -P -e 0 This interval observer is composed of two autonomous systems (no dependency on system output y). Let T = P -1 , the bounds on e are obtained using [5, Lemma 1]: (6.13) e = T + e z -T -e z e = T + e z -T -e z Then for an initial estimation error e 0 ∈ [e 0 , e 0 ], a time-varying bracketing of the state x is obtained as x+e ≤ x ≤ x+e. The system composed of autonomous systems (6.11) with output y e = (e, e) is called (G e ).

Figure 3 :

 3 Figure 3: Simulation model where (G e ) is a combination of two autonomous systems.

Figure 5 :

 5 Figure 5: Simulation results on example(7.19): estimation error e = x -x is represented in blue. The bounds obtained using interval observer expression as in(6.11) are represented in red and green.

Figure 6 :

 6 Figure 6: Simulation results on example (7.19) using wind profile in Fig.4: the state (blue), the state estimate (magenta) and the upper (resp. lower) bound (red, resp. green) are represented. Zoom is performed on otherwise indistinguishable curves.

  and 6 are obtained. As expected it is interesting to note that despite state estimate is used to express boundaries on the state, it does not necessarily lie in the resulting interval [ x + e, x + e] since e (resp. e) can be positive (resp. negative).7.4 Execution summary. Executions were performed running Matlab c R2014b with Parallel Computing Toolbox version 6.5 on a Windows c 7 -64 bits station with 8 Go RAM and Intel c Xeon processor E5-1607 v2 -3 GHz (quad-core). A summary of these executions for each example is shown in Table1. Note the number of iterations and time results are only indicative since they may vary from one run to another but they are representative of the complexity of the problem.

				-1.4775	3.5893	0.0000	0.0370	0.0004	0.0000 
	(7.18) M =	     		0.0000 -1.6656 0.0000 0.0000 -1.1612 0.0007 0.0005 1.1030 13.2953 -3.6760 0.1813 0.0000 0.0000 0.0901 66.1095 1.5568 -5.0972 1.6544 0.0000 0.0000	0.0000 0.0098 0.0051 0.0059      	,
					0.6778	0.0038	0.0000	0.0010	0.0000 -0.7338
									1.5912 -2.8808	1.3653	0.4935 -0.2402	1.2581 		-0.1887 
								P =	     	-0.0423 0.0347 0.4123 1.0087	0.5119 -0.9888 0.0182 0.0082 -0.0141 -0.0152 0.1747 -0.2775 -0.4942 0.0325 0.0218 0.0775 0.8050 0.2839 -0.3491 0.1672 0.2424 0.3581 0.3860 0.2544      	, L =	     	-0.0540 -0.1686 -0.0736 -0.3645      
								-2.6784 -1.3252 -1.7823	2.4288	0.8701	0.9504	-0.1125
								Figure 1: A solution obtained on example (7.16).
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								8 Conclusions.
								In this article an application of nonsmooth optimiza-
								tion techniques [1] to numerically solve a mathematical
								problem combined to a control problem has been pre-
								60
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								Simulation time (s)
								Figure 4: Wind speed profile (in blue) and known
								bounds d and d used in simulation.

Table 1 :

 1 Metzler Matrix Transform synthesis typical execution summary.

	.4368		0.4289	0.0045	0.0156	0.6777 		
	0.0147 -14.0849 16.4291 49.9966 -30.1315 0.0075 2.7674 2.5858 0.0401 -25.4104 0.0041 7.9257	0.0551 21.0740 0.0992    	,	
	2.1787	18.5450	0.0935	13.6873 -28.7126		
				46.2716	2.6470	11.3937 -103.5197	-8.1488 		-0.7252	3.8941	23.5926 
		P =	   	-14.4955 -0.5588 63.4497 4.6807 27.7039 1.4743	-3.7667 462.9193 -164.6066 -119.5850 34.9205 2.8661 -1.7876 -58.8815 -3.4144    	, L =	    -71.0519 0.3297 -2.8577	87.4368 -543.8054 24.8749 0.9810 7.6596 9.1507    
				10.3172 -0.5000 -10.8160	1.7723	0.8932	32.1596 -68.2297	5.3586
	Figure 2: Rigid launch vehicle longitudinal model with detectors dynamics (top, see §7.3) and obtained Metzler
	Matrix Transform (bottom).					
	Ex.		Res. Dim. (n) # Models Restarts Iter. Time (s) Ref.
	(7.14) (7.15)	3	13		3		1	16 [14]
	(7.16) (7.18)	6	61		4	897	513 [13]
	(7.19) (7.20)	5	41		6	1161	115
	sented. To determine a Metzler Matrix Transform the		
	corresponding mathematical problem 3.1 was reformu-		
	lated into a control problem 4.1. Combined with control		
	requirements, a local optimal solution to this problem		
	can be found. This approach has been successfully ap-		
	plied to various examples including a rigid launch ve-		
	hicle model. In comparison with other methods, this