
HAL Id: hal-01147072
https://hal.science/hal-01147072v1

Submitted on 29 Apr 2015

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Estimer la corrélation à la volée entre flux massifs est
possible avec très peu de mémoire

Emmanuelle Anceaume, Yann Busnel

To cite this version:
Emmanuelle Anceaume, Yann Busnel. Estimer la corrélation à la volée entre flux massifs est possi-
ble avec très peu de mémoire. ALGOTEL 2015 - 17èmes Rencontres Francophones sur les Aspects
Algorithmiques des Télécommunications, Jun 2015, Beaune, France. �hal-01147072�

https://hal.science/hal-01147072v1
https://hal.archives-ouvertes.fr

Estimer la corrélation à la volée entre flux
massifs est possible avec très peu de mémoire

Emmanuelle Anceaume1, - Yann Busnel2
1 IRISA & CNRS, Campus Universitaire de Beaulieu, 35042 Rennes Cedex, France
2 Crest (Ensai) & LINA (Université de Nantes), campus de Ker Lann, rue Blaise Pascal, BP 37203, 35172 Bruz Cedex
This work was partially funded by the French ANR project SocioPlug (ANR-13-INFR-0003), and by the DeSceNt project granted by
the Labex CominLabs excellence laboratory (ANR-10-LABX-07-01).

L’analyse à la volée de flux massifs potentiellement infinis est fondamental dans un grand nombre d’applications de
monitoring pour calculer des statistiques, détecter des tendances ou prédire des comportements déviants. En particulier,
détecter la corrélation entre flux distribués semble être un bon indicateur de la présence d’attaques dans un réseau.
Dans cet article, nous présentons une nouvelle métrique permettant d’évaluer la corrélation entre des flux distribués.
Nous présentons un algorithme étonnamment simple et très peu couteux en espace permettant d’estimer à la volée la
corrélation entre des flux. Nous dérivons des bornes sur la qualité de l’évaluation, et validons notre approche sur des
traces réelles.

Keywords: Flux de données, métrique de corrélation, algorithme distribué d’approximation probabiliste.

1 Introduction
Performance of many complex monitoring applications, including Internet monitoring applications, data

mining, sensors networks, network intrusion/anomalies detection applications, depend on the detection of
correlated events[JY04] . To cope with the complexity and the amount of raw data, current network mana-
gement tools analyze their input streams in isolation. The point is that, in all these monitoring applications,
data streams arrive at nodes in a very high rate and may contain up to several billions of data items per
day. Thus computing statistics with traditional methods is unpractical due to constraints on both available
processing capacity and memory. Two main approaches exist to monitor in real time massive data streams.
The first one consists in regularly sampling the input streams so that only a limited amount of data items is
locally kept. Accuracy of this computation fully depends on the volume of data items that has been sam-
pled and their order in the stream. Furthermore, an adversary may easily take advantage of the sampling
policy to hide its attacks among data items that are not sampled, or in a way that prevents its “malicious”
data items from being correlated. In contrast, the streaming approach consists in scanning each piece of
data of the input stream on the fly, and in locally keeping only compact synopses or sketches that contain
the most important information about these data, deriving some data streams statistics with guaranteed er-
ror bounds without making any assumptions on the order in which data items are received at nodes. On
the other hand, very few works have tackled the distributed streaming model, also called the functional
monitoring problem [CMY08], which combines features of both the streaming model and communication
complexity models, where each node receives an input data stream, performs some local computation, and
communicates only with a coordinator who wishes to continuously compute or estimate a given function of
the union of all the input streams. The challenging issue in this model is for the coordinator to compute the
given function by minimizing the number of communicated bits [CMY08]

In this paper, we go a step further by studying the dispersion matrix of distributed streams. Specifically,
we propose a novel correlation metric, called the sketch codeviation, that allows to quantify in real time how
observed data items, between distributed and massive streams, change together, and in which proportion.
We give upper and lower bounds on the quality of this approximated metric with respect to the codeviation.

Emmanuelle Anceaume, - Yann Busnel

We then provide a distributed algorithm that additively approximates the codeviation among n data streams
σ1, . . . ,σn by using O ((1/ε) log(1/δ)(logN + logm)) bits of space for each of the n nodes, where N is
the domain size from which items values are drawn, and m is the largest size of these data streams. We
guarantee that for any 0 < δ < 1, the maximal error of our estimation is bounded by εm/N, by sending
O (n(1+(1/ε) log(m/2) log(1/δ))) bits among the whole network.

2 Model and Metrics
Model We consider a set of n nodes S1, . . . ,Sn such that each node Si receives a large sequence σi of data
items or symbols. We assume that streams σ1, . . . ,σn do not necessarily have the same size and support
(which are unknown). Items arrive regularly and quickly, and due to memory constraints, need to be pro-
cessed sequentially and in an online manner. Each data item j is drawn from the universe Ω = {1,2, . . . ,N},
where N is very large. Nodes cannot communicate among each other. On the other hand, there exists a
specific node, called the coordinator in the following, with which each node may communicate. We assume
that communication is instantaneous. A natural approach to study a data stream σi of length mi is to model
it as a fingerprint vector (or item frequency vector) over the universe Ω, given by Xi = (x1,x2, . . . ,xN) where
x j represents the number of occurrences of data item j in σi. Note that 0≤ x j ≤ mi.

Codeviation We propose a metric over fingerprint vectors of items, which is inspired from the classical
covariance metric in statistics. Such a metric allows us to qualify the dependance or correlation between
two quantities by comparing their variations. As will be shown in Section 4, this metric captures shifts in the
network-wide traffic behavior when a DDoS attack is active. The codeviation between any two fingerprint
vectors X = (x1,x2, . . . ,xN), and Y = (y1,y2, . . . ,yN) is the real number denoted cod(X ,Y) defined by

cod(X ,Y) =
1
N ∑

i∈Ω

(xi− x)(yi− y) =
1
N ∑

i∈Ω

xiyi− xy where x =
1
N ∑

i∈Ω

xi and y =
1
N ∑

i∈Ω

yi. (1)

3 Distributed Codeviation Approximation Algorithm
We propose a statistic tool, named the sketch codeviation, which allows to approximate the codeviation

between any two data streams using compact synopses or sketches. This paper presents the main results of
our study. For space limitation reasons, proofs are presented in the companion paper [AB14].

Définition 3.1 (Sketch codeviation) Let X and Y be any two fingerprint vectors of items, such that X =
(x1, . . . ,xN) and Y = (y1, . . . ,yN). Given a precision parameter k, we define the sketch codeviation between
X and Y as

ĉodk(X ,Y) = min
ρ∈Pk(Ω)

cod
(

X̂ρ,Ŷρ

)
= min

ρ∈Pk(Ω)

(
1
N ∑

a∈ρ

X̂ρ(a)Ŷρ(a) −

(
1
N ∑

a∈ρ

X̂ρ(a)

)(
1
N ∑

a∈ρ

Ŷρ(a)

))
where ∀a ∈ ρ, X̂ρ(a) = ∑

i∈a
xi, and Pk(Ω) is a k-cell partition of Ω, i.e., the set of all the partitions of the set

Ω into exactly k nonempty and mutually disjoint sets (or cells).

Proposition 3.2 Let X = (x1, . . . ,xN), and Y = (y1, . . . ,yN) be any two fingerprint vectors. The sketch co-
deviation is a function of the codeviation. We have ĉodN(X ,Y) = cod(X ,Y) and

ĉodk(X ,Y) = cod(X ,Y)+Ek(X ,Y) where Ek(X ,Y) = min
ρ∈Pk(Ω)

1
N ∑

a∈ρ

∑
i∈a

∑
j∈ar{i}

xiy j.

We have shown in Theorem 4 of the companion paper [AB14] that the sketch codeviation matches exactly
the codeviation if k ≥| supp(X)∩ supp(Y) | +1supp(X)rsupp(Y)+ 1supp(Y)rsupp(X), where supp(X), respecti-
vely supp(Y), represents the support of distribution X , respectively Y (i.e., the set of items in Ω that have a
non null frequency xi 6= 0, respectively yi 6= 0, for 1≤ i≤N), and notation 1A denotes the indicator function,
which is equal to 1 if the set A is not empty and 0 otherwise. We have also characterized the upper bound
of the overestimation factor, i.e., the error made with respect to the codeviation, when k is strictly less than
this bound.

Estimer la corrélation à la volée entre flux massifs est possible avec très peu de mémoire

Theorème 3.3 (Upper bound of Ek(X ,Y)) Let k≥ 1 be the precision parameter of the sketch codeviation.
For any two fingerprint vectors X ∈ X and Y ∈ Y , let Ek be the maximum value of the overestimation factor
Ek(X ,Y). Then, the following relation holds.

Ek = max
X∈X ,Y∈Y

Ek(X ,Y) =

mX mY

N if k = 1,

mX mY
N

(1
k −

1
N

)
if k > 1.

Distributed approximation algorithm We compute the codeviation between a set of n distributed data
streams, so that the number of bits communicated between the n sites and the coordinator is minimized.
This amounts for the coordinator to compute an approximation of the codeviation matrix Σ, which is the
dispersion matrix of the n data streams. Specifically, let X= {X1,X2, . . . ,Xn} be the set of fingerprint vectors
X1, . . . ,Xn describing respectively the streams σ1, . . . ,σn. We have

Σ̂ =
[
ĉod(Xi,X j)

]
1≤i≤n,1≤ j≤n

.

We propose a one-pass algorithm that computes the sketch codeviation between any two large input
streams. By definition of the Sketch codeviation metric, we need to generate all the possible k-cell partitions.
The number of these partitions follows the Stirling numbers of the second kind, which is equal to S(N,k) =
1
k! ∑

k
j=0(−1)k− j

(k
j

)
jN . Therefore, S(N,k) grows exponentially with N, which is unreasonable in term of

space complexity as N is supposed to be very large. Actually generating t = dlog(1/δ)e random k-cell
partitions, where δ is the probability of error of our randomized algorithm, is sufficient to guarantee good
overall performance of the sketch codeviation metric [AB14]. Our approximation algorithm uses an elegant
data structured inspired by [CM05] to generate those t partitions on the fly. The algorithm proceeds in rounds
until all the data streams have been read in their entirety. In the following, we denote by σ

(r)
i the substream

of σi received by Si during the round r, and by dr the number of data items in this substream. During each
round, each site Si computes a single sketch Cσi of the received data stream σi, until receiving dr items
(See [AB14] for details on the data structure Cσi). Then node Si sends C

σ
(r)
i

to the coordinator, keeps a copy

of C
σ
(r)
i

, and starts a new round r+ 1. Upon receipt of C
σ
(r)
i

from any Si, the coordinator asks all the n− 1

other nodes S j to send their own sketch C
σ
(r)
j

. Once the coordinator has received all C
σ
(r)
i

, the coordinator

locally updates the n sketches such as Cσi ← Cσi +C
σ
(r)
i

and updates the sketch codeviation matrix Σ̂ =[
ĉod(Xi,X j)

]
1≤i≤n,1≤ j≤n

on every couple of sketches, such that the element in position i, j represents the

sketch codeviation between streams σi and σ j. As the codeviation is symmetric, the codeviation matrix is a
symmetric matrix, and thus only the upper-triangle and the diagonal need to be computed. In order to make
this algorithm self-adaptive to the unknown lengths of the streams, dr is more or less doubled at each round.
Note that during round r, Si regularly computes cod

(
σ
(r−1)
i ,σ

(r)
i

)
to detect whether significant variations in

the stream have occurred before having received dr items. This allows to inform the coordinator as quickly
as possible that some attack might be undergoing, by sending its current sketch C

σ
(r)
i

earlier than scheduled.

Theorème 3.4 The approximated codeviation matrix Σ̂ returned by the distributed sketch codeviation al-
gorithm satisfies Σ̂≥ Σ and

P
{∣∣∣Σ̂−Σ

∣∣∣≥ ε

N
max
i, j∈[n]

(‖Xi‖1‖X j‖1−‖XiX j‖1)

}
≤ δ.

using O ((1/ε) log(1/δ)(logN + logm)) bits of space for each n nodes, and O (n logm(1/ε log(1/δ)+n))
bits of space for the coordinator, where m is the maximum size among all the streams, i.e., m=maxi∈[n] ‖Xi‖1.
Moreover, the distributed sketch codeviation algorithm gives an approximation of matrix Σ by sending
O (rn(1+(1/ε) log(m/2) log(1/δ))) bits, where r is the number of the last round.

Emmanuelle Anceaume, - Yann Busnel

4 Performance Evaluation
We have implemented the distributed sketch codeviation algorithm and have conducted a series of ex-

periments on different types of streams and for different parameters settings. We have fed our algorithm
with both real-world data sets and synthetic traces. Due to space constraints, we only describe one of these
experiments, which is mainly representative of our algorithm’s accuracy. The interested reader is invited to
consult [AB14] for a complete overview of our evaluation, which clearly shows that our distributed algo-
rithm is capable of efficiently and accurately quantifying how observed data streams change together and
in which proportion whatever the shape of the input streams.

 10

 100

 1000

 10000

 100000

 1e+06

 1e+07

 1e+08

 0 20 40 60 80 100

D
is

ta
n

c
e
 b

e
tw

e
e
n

 C
o

d
e
v

ia
n

c
e
 M

a
tr

ix
 a

n
d

 M
e
a
n

 M
a
tr

ix

Time (rounds)

Exact codeviation
Sketch codeviation with k = 50
Sketch codeviation with k = 10
Sketch codeviation with k = 5

FIGURE 1: Distance between the codeviation matrix and
the mean of the past ones when all the 10 synthetic traces
follow different distributions as a function of the rounds of
the protocol, with δ = 10−5.

Figure 1 shows how efficiently our approxima-
tion distributed algorithm detects different scenarii
of attacks in real time. Specifically, we compute at
each round of the distributed protocol, the distance
between the codeviance matrix Σ constructed from
the streams under investigation and the mean of co-
variance matrices E(ΣN). This distance has been
proposed in [JY04]. Specifically, given two square
matrices M and M′ of size n, consider the distance
‖M −M′‖ =

√
∑

n
i=1 ∑

n
j=1(Mi, j−M′i, j)2. We eva-

luate at each round r, the variable dr defined by
dr = ‖Σr−E(ΣN)‖.

Based on this distance, we have fed our distri-
buted algorithm with different patterns of traffic. In
Figure 1, distance is depicted, as a function of time,
when the codeviance is exactly computed and when
it is estimated with our distributed algorithm with
different values of k. What can be seen is that, albeit
there are up to two orders of magnitude between the
exact codeviance matrix and the estimated one, the
shape of the codeviance variations are for most of them similar. Different attack scenarii are simulated. From
round 0 to 10, all the 10 synthetic traces follow the same nominal distribution (e.g., a Poisson distribution).
Then from round 10 to 20 a targeted attack is launched by flooding a single node (i.e., one among the ten
traces follows a Zipfian distribution with α = 4). This gives rise to a drastic and abrupt increase of the dis-
tance. As can be shown, the estimated covariance exactly follows the exact one, which is a very good result.
Then after coming back to a “normal” traffic, half of the traces are replaced by Zipfian ones (from round 30
to 40), representing a flooding attack toward a group of nodes. As for the previous attack, the covariance
matrices are highly impacted by this attack. From round 50 to 60, traces follow a Zipfian distribution with
α = 1 which represents unbalanced network traffic but should not be completely representative of attacks.
On the other hand, in the fourth and fifth attack periods, all the traces follow a Zipfian distribution with
different values of α≥ 2, which clearly shows a flooding attack toward a group of targeted nodes. The main
lesson drawn from these results is the good performance of our distributed algorithm whatever the pattern
of the attack.

Références
[AB14] Emmanuelle Anceaume and Yann Busnel. Deviation estimation between distributed data streams. In Proc.

of the 10th European Dependable Computing Conference (EDCC), 2014.
[CM05] G. Cormode and S. Muthukrishnan. An improved data stream summary : the count-min sketch and its

applications. Journal of Algorithms, 55(1) :58–75, 2005.
[CMY08] G. Cormode, S. Muthukrishnan, and K. Yi. Algorithms for distributed functional monitoring. In Proc. of

the 19th Annual ACM-SIAM Symposium On Discrete Algorithms (SODA), 2008.
[JY04] Shuyuan Jin and D.S. Yeung. A covariance analysis model for ddos attack detection. In 4th IEEE Interna-

tional Conference on Communications (ICC ’04), volume 4, pages 1882–1886, 2004.

	Introduction
	Model and Metrics
	Distributed Codeviation Approximation Algorithm
	Performance Evaluation

