Frank Vega Polylogtime

Nlogtime 2015 Hal

Frank Vega
email: vega.frank@gmail.com

POLYLOGTIME versus NLOGTIME

Keywords: POLYLOGTIME, NLOGTIME, P, NP, random access Turing machine, Maximum 2000 MSC: 68-XX, 68Qxx, 68Q15

teaching and research institutions in France or abroad, or from public or private research centers.

Introduction

The P versus NP problem is a major unsolved problem in computer science. This problem was introduced in 1971 by Stephen Cook [START_REF] Cook | The complexity of Theorem Proving Procedures[END_REF]. It is considered by many to be the most important open problem in the field [START_REF] Fortnow | The Status of the P versus NP Problem[END_REF]. It is one of the seven Millennium Prize Problems selected by the Clay Mathematics Institute to carry a US$1,000,000 prize for the first correct solution.

Informally, the solution of this problem requires to find out whether every problem whose solution can be quickly verified by a computer can also be quickly solved by a computer. The informal term quickly used above means the existence of an algorithm for the task that runs in polynomial time. The general class of questions for which some algorithm can provide an answer in polynomial time is called P [START_REF] Goldreich | Np-Completeness[END_REF]. For some questions, there is no known way to find an answer quickly, but if one is provided with information showing what the answer is, it may be possible to verify the answer quickly. The class of questions for which an answer can be verified in polynomial time is called NP [START_REF] Goldreich | Np-Completeness[END_REF].

The biggest open question in theoretical computer science concerns the relationship between those two classes:

Is P equal to NP?

In a 2002 poll of 100 researchers, 61 believed the answer to be no, 9 believed the answer is yes, and 22 were unsure; 8 believed the question may be independent of the currently accepted axioms and so impossible to prove or disprove [START_REF] Gasarch | The P=?NP poll[END_REF]. We pretend to show in the next few pages the answer of POLY LOGT I ME versus NLOGT I ME which might help us to find the solution of P versus NP.

Theoretical framework

Let's explain a simple notation that we frequently use in the paper. Definition 2.1. For any instance I, the notation |I| is the bit-length of I.

The following subsections will help you to understand better this proof.

The Turing machine model

The argument made by Alan Turing in the twentieth century states that for any algorithm we can create an equivalent Turing machine [START_REF] Turing | On Computable Numbers, with an Application to the Entscheidungsproblem[END_REF].

Definition 2.2. A Turing machine is a quadruple M = (K, Σ, δ, s). K is a finite set of states; s ∈ K is the initial state. Σ is a finite set of symbols (we say Σ is the alphabet of M). We assume K and Σ are disjoint sets. Σ always contains the special symbols and : The blank and first symbol. Finally, δ is a transition function, which maps K × Σ to (K ∪ {h, "yes", "no"}) × Σ × {←, →, -}. We assume that h (the halting state), "yes" (the accepting state), "no" (the rejecting state), and the cursors directions ← for "le f t", → for "right" andfor "stay", are not in K ∪ Σ.

Function δ is also called the "program" of the Turing machine [START_REF] Papadimitriou | Computational complexity[END_REF]. It specifies for each current state q ∈ K and current symbol σ ∈ Σ, a triple δ(q, σ) = (p, ρ, D) [START_REF] Papadimitriou | Computational complexity[END_REF]. p is the next state, ρ is the symbol to be overwritten on σ, and D ∈ {←, →, -} is the direction in which the cursor will move [START_REF] Papadimitriou | Computational complexity[END_REF]. For we require that, if for states q and p we have δ(q,) = (p, ρ, D), then ρ = and D =→ [START_REF] Papadimitriou | Computational complexity[END_REF]. That is, always directs the cursor to the right and it is never erased [START_REF] Papadimitriou | Computational complexity[END_REF].

How is the program start? Initially the state is s [START_REF] Papadimitriou | Computational complexity[END_REF]. The tape is initialized to a , followed by finitely long string x ∈ (Σ -{ }) * [START_REF] Papadimitriou | Computational complexity[END_REF]. We say that x is the input of the Turing machine [START_REF] Papadimitriou | Computational complexity[END_REF]. The cursor is pointing to the first symbol, always a [START_REF] Papadimitriou | Computational complexity[END_REF].

From this initial configuration the machine takes a step according to δ, changing its state, printing a symbol and moving the cursor; then it takes another step, and another [START_REF] Papadimitriou | Computational complexity[END_REF]. In this process the Turing machine could not continue when it reaches a final state {h, "yes", "no"} [START_REF] Papadimitriou | Computational complexity[END_REF]. If this happens, we say the Turing machine has halted [START_REF] Papadimitriou | Computational complexity[END_REF]. If the state "yes" has been reached, we say the machine accepts its input; if "no" has been reached, then it rejects its input. If a Turing machine M accepts or rejects a string x, then we write M(x) = "yes" or M(x) = "no" respectively. If it reaches the halting state h, then we write M(x) = y, where the string y is considered as the output string, that is, the string remaining in M when this halts [START_REF] Papadimitriou | Computational complexity[END_REF].

We show a random access Turing machine which is a modification of the definition above and it does allow indirect memory addressing. Definition 2.3. A random access Turing machine is a Turing machine that functions as in Definition 2.2 with regards to its output and sequential access work tapes. The input tape and any fixed number of work tapes may be random access tapes rather than sequential access tape. Each random access tape has an associated sequential access index work tape. The tape cursor of a random access tape is moved by a special jump operation that moves its tape cursor to the location specified by its index tape and re-initializes the index tape. The tape cursor position of a random access tape is not altered by the transition function, but the contents of the memory cell are read and written by the transition function.

Complexity classes

The Turing machine has been an useful concept in theory of computing since it was created by Alan Turing in the last century [START_REF] Turing | On Computable Numbers, with an Application to the Entscheidungsproblem[END_REF]. Since then, it has appeared new definitions related with this concept such as the deterministic or nondeterministic Turing machine. A deterministic Turing machine has only one next action for each step defined in its program or transition function [START_REF] Papadimitriou | Computational complexity[END_REF]. A nondeterministic Turing machine can contain more than one action defined for each step of the program, where this program is not a function, but a relation [START_REF] Papadimitriou | Computational complexity[END_REF].

Another huge advance in the last century was the definition of a complexity class. A language L over an alphabet is any set of strings made up of symbols from that alphabet [START_REF] Cormen | Introduction to Algorithms[END_REF]. A complexity class is a set of problems, which are represented as a language, grouped by measures such as the running time, memory, etc [START_REF] Cormen | Introduction to Algorithms[END_REF].

Formally, let Σ be a finite alphabet (that is, a finite nonempty set) with at least two elements, and let Σ * be the set of finite strings over Σ, then a language over Σ is a subset L of Σ * [START_REF] Cormen | Introduction to Algorithms[END_REF]. We are going to assume in this work the alphabet Σ would be the binary {0, 1}.

The language accepted by a Turing machine M is the set L = {x ∈ {0, 1} * : M(x) = "yes"}, that is, the set of strings that the Turing machine accepts. A language L is decided by a Turing machine M if every binary string is either accepted or rejected by M [START_REF] Cormen | Introduction to Algorithms[END_REF]. A language L is accepted in polynomial time by a Turing machine M if for any n bit-length string x ∈ L, M accepts x in time O(n k) for some constant k [START_REF] Cormen | Introduction to Algorithms[END_REF]. A language L is decided in polynomial time by a Turing machine M if for any n bit-length string x ∈ {0, 1} * , M decides x in time O(n k) for some constant k [START_REF] Cormen | Introduction to Algorithms[END_REF].

In computational complexity theory, the class P consists of all those decision problems (defined as languages) that can be decided on a deterministic Turing machine in an amount of time that is polynomial in the size of the input; the class NP consists of all those decision problems whose positive solutions can be verified in polynomial time given the right information, or equivalently, that can be decided on a nondeterministic Turing machine in polynomial time [START_REF] Papadimitriou | Computational complexity[END_REF]. Moreover, the set of languages decided by nondeterministic Turing machines within time f is denoted NT I ME(f (n)) [START_REF] Papadimitriou | Computational complexity[END_REF]. In case of languages would be decided by deterministic Turing machines within time f is denoted DT I ME(f (n)) [START_REF] Papadimitriou | Computational complexity[END_REF]. Then, the P =? NP question would be equivalent to DT I ME(n k) =? NT I ME(n k) [START_REF] Papadimitriou | Computational complexity[END_REF]. There are another major complexity classes such as the POLY LOGT I ME = DT I ME((log(n)) k) and NLOGT I ME = NT I ME(log(n)) [START_REF] Johnson | Handbook of theoretical computer science[END_REF]. They must be defined on a random access Turing machine, since otherwise the input tape is longer than the range of cells that can be accessed by the machine [START_REF] Johnson | Handbook of theoretical computer science[END_REF].

The Maximum problem

Definition 2.4. Given an array A of n integer numbers and an integer x, Maximum is the problem of deciding whether x is the maximum number in A.

How many comparisons are necessary to determine when some integer is the maximum of an array of n elements? We can easily obtain an upper bound of n comparisons: examine each element of the array in turn and keep track of the largest element seen so far and finally we compare the final result with x [START_REF] Cormen | Introduction to Algorithms[END_REF]. Is this the best we can do? Yes, since we can obtain a lower bound of n -1 comparisons for the problem of determining the maximum in an array of integers and one final comparison to verify whether that maximum is equal to x or not [START_REF] Cormen | Introduction to Algorithms[END_REF]. Hence, n comparisons are necessary to determine whether an element x is the maximum in A and this algorithm for Maximum is optimal with respect to the number of comparisons performed [START_REF] Cormen | Introduction to Algorithms[END_REF].

Given an array A of n positive integer numbers and an integer x where |A| ≤ n 2 , if x is in A, then the instance (A, x) will be in BoundedMaximum if and only if (A, x) is in GreaterOrEqual. In addition, we could verify whether x is in A just in polylogarithmic time by a deterministic random access Turing machine when I sInArray ∈ POLY LOGT I ME. If the Hypothesis 3.10 is true, then I sInArray ∈ POLY LOGT I ME. Therefore, it will exist a polylogarithmic time reduction from BoundedMaximum to GreaterOrEqual when the Hypothesis 3.10 is true. We could take any instance (A, x) and verify whether x is in A in polylogarithmic time. In case of x is in A and we would want to know whether (A, x) is in BoundedMaximum, then we would only need to check whether (A, x) is in GreaterOrEqual.

In addition, if the Hypothesis 3.10 is true, then LessT han ∈ POLY LOGT I ME. But, if we solve LessT han within a polylogarithmic time using a deterministic random access Turing machine, then we could solve GreaterOrEqual in polylogarithmic time by the same Turing machine because of Lemma 3.8. Indeed, when a deterministic random access Turing machine accepts or rejects any instance of LessT han, then it would also be rejecting or accepting the same instance for GreaterOrEqual respectively. As result, if the Hypothesis 3.10 is true, then GreaterOrEqual ∈ POLY LOGT I ME.

If GreaterOrEqual ∈ POLY LOGT I ME, then BoundedMaximum ∈ POLY LOGT I ME: we could use a polylogarithmic time reduction from BoundedMaximum to GreaterOrEqual through I sInArray over the supposition that the Hypothesis 3.10 is true. But, this is not possible, as we proved in Theorem 3.2, and therefore, the Hypothesis 3.10 is false. In conclusion, POLY LOGT I ME NLOGT I ME as a direct consequence of using the Reductio ad absurdum rule [START_REF] Read | Thinking About Logic[END_REF].

Conclusions

This proof could be a forward step in the final solution of the outstanding P versus NP problem. Certainly, we suspect there is a close relation between POLY LOGT I ME =? NLOGT I ME and P =? NP questions. Indeed, we hope this proof might be an useful tool to find the solution of another unsolved problems in computational complexity theory.

Acknowledgement

I thank Marzio de Biasi for his comments about this work.

Results

A bounded version of Maximum problem

Definition 3.1. Given an array A of n positive integer numbers and an integer x where |A| ≤ n 2 , BoundedMaximum is the problem of deciding whether x is the maximum number in A.

Theorem 3.2. BoundedMaximum POLY LOGT I ME.

Proof. If the pair (A, x) belongs to BoundedMaximum, then the maximum bit-length of x should be less than or equal to |A| because x will be in A, where |A| is the bit-length of A. As we see in Definition 2.4, we should use n comparisons to know whether x is the maximum in array of n integers and this number of comparisons will be optimal [START_REF] Cormen | Introduction to Algorithms[END_REF]. This would mean we cannot always accept any instance (A, x) of BoundedMaximum in time (log(|A|)) k , because we must use at least n comparisons in many cases and it will not exist a constant number k such that (log(|A|)) k > n for every value of n. The reason is |A| ≤ n 2 , and thus, log(|A|) ≤ log(n 2) = 2 × log(n), but n will be exponentially greater than 2 × log(n). Proof. Given an array A of n positive integer numbers and an integer x where |A| ≤ n 2 , we are going to create an algorithm which decides whether x is in A by a nondeterministic random access Turing machine in time O(log(|A|)). For that purpose, we create a nondeterministic Turing machine N such that for the empty string as input (denotes the empty string), N will output a positive integer i in a nondeterministic way where 0 ≤ i ≤ (2 (log 2 (n) +1) -1). The program δ of N is built as follows:

(i) we create k = (log 2 (n) + 1) different states p j in N where 1 ≤ j ≤ k and; (ii) for each p j and p j+1 states, we create the following actions in N:

(iii) the halting state in N will be related to the k-th state p k with the following actions:

(iv) and finally, the initial state in N will be into a single action:

After that, an algorithm for I sInArray will be very simple:

(1) first, we take the positive integer i as output of the running of N with the empty string where 0 ≤ i ≤ (2 (log 2 (n) +1) -1); (2) next, if i > n or i = 0, then we reject; 4

(3) else, we obtain the positive integer y = A[i] using the array indexing;

(4) finally, we accept when x is equal to y otherwise we reject.

The running time of the first until the second step would be O(log 2 (n)), because the running of N with the empty string does not exceed the (log 2 (n) +2) steps. The third step can be done by a random access Turing machine in time O(1). The fourth step will use a single comparison with an element in A. In addition, if (A, x) belongs to I sInArray, then |x| ≤ |A|. Hence, we could always accept any instance (A, x) ∈ I sInArray in time O(log(|A|)) using this algorithm because n ≤ |A|. Moreover, we could also decide any instance (A, x) in I sInArray using O(log(|A|)), because we can always accept (A, x) when (A, x) ∈ I sInArray in that time [START_REF] Cormen | Introduction to Algorithms[END_REF]. Hence, for this algorithm we could create an equivalent nondeterministic random access Turing machine, due to the use of the N nondeterministic Turing machine. Consequently, I sInArray ∈ NLOGT I ME. Definition 3.5. Given an array A of n positive integer numbers and an integer x where |A| ≤ n 2 , LessT han is the problem of deciding whether x complies with x < y for some y in A.

Theorem 3.6. LessT han ∈ NLOGT I ME.

Proof. The LessT han and I sInArray share the same kind of instance: an array A of n positive integer numbers and an integer x where |A| ≤ n 2 . Indeed, we could use the same idea of algorithm in Theorem 3.4 for the proof of LessT han ∈ NLOGT I ME in the following way:

(1) first, we take the positive integer i as output of the running of N with the empty string where 0 ≤ i ≤ (2 (log 2 (n) +1) -1); (2) next, if i > n or i = 0, then we reject;

(3) else, we obtain the positive integer y = A[i] using the array indexing; (4) finally, we accept when x < y otherwise we reject.

We only changed the fourth step in relation to the algorithm in Theorem 3.4. Indeed, we changed the comparison of equal to by less than. To sum up, LessT han ∈ NLOGT I ME because I sInArray ∈ NLOGT I ME. Proof. Indeed, the acceptance of some instance (A, x) for LessT han will imply the rejection of (A, x) for GreaterOrEqual and viceversa. This will happen because of the contraposition of " < " and " ≥ " operators.