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The current work deals with the granular media equation, which probabilistic interpretation is the McKean-Vlasov diffusion. It is well-known that the Laplacian provides a regularization of the solution. Indeed, for any t > 0, the solution is absolutely continuous with respect to the Lebesgue measure. It has also been proven that all the moments are bounded for positive t. However, the finiteness of the entropy of the solution is a new result, that we present here.

Introduction

We aim to show that the entropy of the solution of the granular media equation is finite provided that t is positive.

Indeed, several results are proven under the assumption that the initial entropy is finite. For example, in [START_REF] Tugaut | Convergence to the equilibria for self-stabilizing processes in double-well landscape[END_REF][START_REF] Tugaut | Self-stabilizing processes in multi-wells landscape in R d -Convergence[END_REF], we prove the long-time convergence under three assumptions:

• the finiteness of some moment,

• the fact that µ 0 is absolutely continuous with respect to the Lebesgue measure,

• the finiteness of the entropy of µ 0 .

The first hypothesis is necessary to prove the existence of a solution to the selfstabilizing diffusion (which law is the solution of the granular media equation) so that this hypothesis can not be relaxed.

The second hypothesis may be suppressed. Indeed, we know -see [START_REF] Mckean | A class of Markov processes associated with nonlinear parabolic equations[END_REF][START_REF] Mckean | Propagation of chaos for a class of nonlinear parabolic equations[END_REF] -that the law at time t > 0 is absolutely continuous with respect to the Lebesgue measure.

However, to obtain the convergence, we need the initial free-energy to be finite so that the initial entropy has to be finite.

In [START_REF] Bolley | Guillin Uniform convergence to equilibrium for granular media[END_REF], the authors establish a convergence in Wasserstein distance and the rate of convergence. But, they assume the finiteness of entropy of the initial law µ 0 .

The results in [START_REF] Bolley | Guillin Uniform convergence to equilibrium for granular media[END_REF] have been used in [START_REF] Del Moral | Uniform propagation of chaos and creation of chaos for a class of nonlinear diffusions[END_REF] in order to establish a creation of chaos and a uniform propagation of chaos without global convexity properties. However, the authors need to apply the results in [START_REF] Bolley | Guillin Uniform convergence to equilibrium for granular media[END_REF] to µ 0 which are discrete probability measures. Consequently, we had to adapt the results and were not able to apply it directly.

This stresses the importance of the finiteness of the entropy for granular media equations.

Such a result has been obtained in [START_REF] Bobkov | Hypercontractivity of Hamilton-Jacobi equations[END_REF] and claimed in [START_REF] Otto | Comment on: "Hypercontractivity of Hamilton-Jacobi equations[END_REF] in the case of a linear partial differential equation which corresponds to a time reversible diffusion.

Let us note that our result can be adapted to a more general class of nonlinear partial differential equations.

We now present the model. Let us consider µ 0 ∈ P R d a probability measure and X 0 a random variable on R d which law is µ 0 . We look at the diffusion

X t = X 0 + σW t - t 0 ∇V (X s ) ds - t 0 (∇F * L (X s )) (X s ) ds , (1) 
V and F being two potentials on R d , (W t ) t≥0 being a Brownian motion and * being used to denote the convolution. This equation is obtained as the hydrodynamical limit of the mean-field system of particles:

X i t = X i 0 + σW i t - t 0 ∇V X i s ds - t 0 ∇F * η N s X i s ds η N t := 1 N N k=1 δ X k t . (2) 
In (2), η N t denotes the empirical probability measure of the system, (W i t ) t≥0 are independent Brownian motions and are independent from the sequence of i.i.d. random variables (X i 0 ) i≥1 with common law µ 0 . By µ t := L (X t ), we denote the law of the so-called McKean-Vlasov diffusion X, which is the solution of Equation (1). We know from [START_REF] Mckean | Propagation of chaos for a class of nonlinear parabolic equations[END_REF][START_REF] Mckean | A class of Markov processes associated with nonlinear parabolic equations[END_REF] that for any t > 0, µ t (dx) = u(t, x)dx. Moreover the family u(t, x) : t > 0, x ∈ R d satisfies a nonlinear partial differential equation, the granular media one:

∂u ∂t = ∇. σ 2 2 ∇u + u (∇V + ∇F * u) . (3) 
We consider the semi-group (P t ) t≥0 defined by

P t f (x) := E x [f (X t )].
The semi-group is associated to the following generator L t :

L t := σ 2 2 ∆ -(∇V + ∇F * u(t, .)) .∇ . (4) 
This generator does depend on the time so the semi-group may not be timereversible.

Let us now give the assumptions of the paper. We take the same hypotheses than the ones in [START_REF] Tugaut | Self-stabilizing processes in multi-wells landscape in R d -Convergence[END_REF]:

(A-1): The potential V is a smooth function. (A-2): There exists a compact subset K of R d such that ∇ 2 V (x) > 0 for all x / ∈ K. Moreover, lim ||x||→+∞ ∇ 2 V (x) = +∞.
(A-3): The gradient ∇V is slowly increasing: there exist m ∈ N, C > 0 and a function R from R d to R d such that

∇V (x) = C||x|| 2m-2 x + R(x) , for all x ∈ R d . Here, the function R satisfies lim ||x||→+∞ R(x)||x|| -(2m-1) = 0.
(A-4): There exists an even polynomial function

G on R such that F (x) = G (||x||). And, deg (G) =: 2n ≥ 2. (A-5): The function G is convex. Typically, V is a polynomial function, like V (x) = x 4 4 -x 2 2 (in dimension 1) and F (x) = α 2 x 2 .
Let us point out that the convexity of G is not necessary on this work.

We need to assume another hypothesis: (A-6): The moment of order 8q 2 of the law µ 0 is finite:

R d x 8q 2 µ 0 (dx) < ∞ ,
where q := max {m; n}.

Under hypothesis (A-1)-(A-6), we know -from Theorem 2.13 in [HIP08]that there exists a unique strong solution X on R + to Equation (1). Moreover, we have the following uniform boundedness of the moments:

max 1≤j≤8q 2 sup t≥0 E ||X t || j ≤ M 8q 2 < +∞ .
Furthermore, see Proposition A.2 in [START_REF] Tugaut | Convergence to the equilibria for self-stabilizing processes in double-well landscape[END_REF], for any k ∈ N and for any

t 0 > 0, the quantity sup t≥t0 E ||X t || k is finite.
We also know from [START_REF] Mckean | Propagation of chaos for a class of nonlinear parabolic equations[END_REF][START_REF] Mckean | A class of Markov processes associated with nonlinear parabolic equations[END_REF] L (X t ) is absolutely continuous with respect to the Lebesgue measure for any t > 0. Moreover, its density u(t, .) satisfies the granular media equation (3).

According to [START_REF] Tugaut | Self-stabilizing processes in multi-wells landscape in R d -Invariant probabilities[END_REF], there exists an invariant probability µ σ . Let us note that we may not have uniqueness of this invariant probability, see [START_REF] Herrmann | Non-uniqueness of stationary measures for self-stabilizing processes[END_REF][START_REF] Tugaut | Self-stabilizing processes in multi-wells landscape in R d -Invariant probabilities[END_REF][START_REF] Tugaut | Phase transitions of McKean-Vlasov processes in double-wells landscape[END_REF].

We here aim to prove the finiteness of the quantity µ t log(µ t ) , for any t > 0. In [START_REF] Bobkov | Hypercontractivity of Hamilton-Jacobi equations[END_REF], the authors have obtained the finiteness of the relative entropy with respect to the unique invariant probability for a linear diffusion, without assuming any convexity properties.

In [START_REF] Otto | Comment on: "Hypercontractivity of Hamilton-Jacobi equations[END_REF], the authors claim it with HWI-inequality.

In our paper, we proceed like in [START_REF] Bobkov | Hypercontractivity of Hamilton-Jacobi equations[END_REF]. Thus, we obtain a log-Harnack type inequality. Then, the Monge-Kantorovitch duality provides an inequality of the form

R d µ t log(µ t ) < C 0 + ξ(t)W 2 2 (µ 0 ; µ σ ) , (5) 
µ σ being an invariant probability of Diffusion (1) and W 2 being the Wasserstein distance. Here, ξ is a decreasing function such that ξ(0) = +∞.

The first difficulty of the proof is the following equality

P t f g = f P t g ,
for any functions f and g. This corresponds to the time-reversibility. However, Diffusion (1) is not reversible. To obtain the equality, we assume that X 0 follows the law µ σ , where µ σ is an invariant probability. Indeed, if µ 0 = µ σ , Diffusion (1) is a Kolmogorov diffusion so it is reversible. The second difficulty is the inequality

|∇P s (log P 2t-s f )| ≤ e Kt P t |∇P 2t-s f | |P 2t-s f | ,
K being a constant related to the lower-bound of ∇ 2 V . This inequality is well-known, see Lemma 1.3 in [L01], for the linear case. To obtain it in the nonlinear case, we could adapt the proof of Lemma 1.3 in [L01]. Indeed, the only quantities which intervene are Γ and Γ 2 (well-known from specialists of functional inequalities). However, despite the fact that Γ 2 does depend on the time, the proof is absolutely similar.

Instead of proceeding like so, we apply Lemma 3.7 in [START_REF] Collet | Logarithmic Sobolev Inequalities for Inhomogeneous Semigroups[END_REF]. First, we give the main result -Theorem α -that is to say the finiteness of the entropy for t positive. Then, we provide two immediate corollaries: one about the simple convergence (Corollary γ which comes from [START_REF] Tugaut | Convergence to the equilibria for self-stabilizing processes in double-well landscape[END_REF]) and one the convergence in Wasserstein distance (Corollary δ which comes from [START_REF] Bolley | Guillin Uniform convergence to equilibrium for granular media[END_REF]).

In a last section, we prove Theorem α.

Main results

We first give the main result of the current work.

Theorem α: Under assumptions (A-1)-(A-6), for any t > 0, we have the finiteness of the entropy of the law µ t = L (X t ). In other words, for any t > 0, L (X t ) is absolutely continuous with respect to the Lebesgue measure and its density u t satisfies the inequality

R d u t (x) log[u t (x)]dx < +∞ .
Remark β: The convexity of the function G is not necessary. In fact, the result still holds for any inhomogeneous diffusion which diffusion coefficient is constant and which drift has the form ∇V + ∇ x F(x, µ t ). Thanks to Theorem A in [START_REF] Tugaut | Self-stabilizing processes in multi-wells landscape in R d -Convergence[END_REF], we deduce the following result. Corollary γ: Under the hypotheses of the article, if moreover the set of invariant probabilities is discrete (see [START_REF] Herrmann | Non-uniqueness of stationary measures for self-stabilizing processes[END_REF][START_REF] Herrmann | Stationary measures for self-stabilizing processes: asymptotic analysis in the small noise limit[END_REF][START_REF] Herrmann | Self-stabilizing processes: uniqueness problem for stationary measures and convergence rate in the small noise limit[END_REF] for assumptions such that there are exactly three invariant probabilities), we have the simple convergence in long-time of µ t toward an invariant probability µ σ .

Thanks to the results in [START_REF] Bolley | Guillin Uniform convergence to equilibrium for granular media[END_REF], Theorem α implies the following statement. Corollary δ: Under the assumptions of the article, if moreover V is strictly convex (but not necessarily uniformly strictly convex), µ t converges, for the Wasserstein distance, toward the unique invariant probability. Moreover, the rate of convergence is exponential.

Proof of Theorem α

First of all, provided that t > 0, µ t is absolutely continuous with respect to the Lebesgue measure so that there exists f t such that

• f t ≥ 0, • R d f t (x)dx = 1, • and µ t (dx) = f t (x)dx.
For the moment, nothing ensures us that

R d f t (x) log (f t (x)) dx < +∞ .
Let g 0 be a nonnegative with integral equal to one. We put g t := P t g where the semi-group (P t ) t≥0 is generated by

L t = σ 2 2 ∆ -(∇V + ∇F * µ t ) .∇ . (6) 
It is sufficient to show that g t log(g t ) < +∞ for any t > 0.

Let us remind Proposition 2.1 in [START_REF] Tugaut | Self-stabilizing processes in multi-wells landscape in R d -Invariant probabilities[END_REF]:

Lemma 3.1. For any σ > 0, there exists an invariant probability µ σ to Diffusion (1).

We can also find a proof of this statement in [START_REF] Bolley | Guillin Uniform convergence to equilibrium for granular media[END_REF].

We will consider the relative entropy with respect to µ σ :

H (ν | µ σ ) = f µ σ log f µ σ µ σ (dx) , (7) 
where ν(dx) := f (x)dx. Indeed, we will have the time reversibility by starting from µ σ . Let us remind the reader that the probability measure µ σ -see [START_REF] Herrmann | Non-uniqueness of stationary measures for self-stabilizing processes[END_REF][START_REF] Tugaut | Self-stabilizing processes in multi-wells landscape in R d -Invariant probabilities[END_REF] -is like so:

µ σ (dx) = exp -2 σ 2 (V (x) + F * µ σ (x)) R d exp -2 σ 2 (V (y) + F * µ σ (y)) dy dx . (8) 
Consequently, we get

H (ν | µ σ ) = R d f (x) log(f (x))dx + 2 σ 2 R d (V (x) + F * µ σ (x)) f (x)dx . (9)
However, according to Theorem 2.13 in [HIP08], we have the uniform boundedness of the moments from 1 to 8q 2 , 2q being defined roughly speaking as the maximum of the degrees of V and F . We thus obtain that the quantity

R d (V (x) + F * µ σ (x)) g t (x)dx is bounded by a constant C 0 .
We deduce that it is sufficient to prove the finiteness of H (P t g | µ σ ).

Lemma 3.2. Let X 0 be a random variable which follows the law µ σ . Then, for any t ≥ 0, for any functions f and g, we have

E [f (X t )g(X 0 )] = E [f (X 0 )g(X t )] . (10) 
Proof. By definition, we have

X t = X 0 + σW t - t 0 (∇V + ∇F * µ s ) (X s ) ds .
since µ 0 = µ σ , we deduce that µ s = µ σ for any s ≥ 0. Then:

X t = X 0 + σW t - t 0 (∇V + ∇F * µ σ ) (X s ) ds .
Consequently, X is a Kolomogorov diffusion and we thus have the time reversibility (10).

We put f 0 := g0 µ σ . We will work with f 0 and (f t ) t≥0 . We proceed like in [START_REF] Bobkov | Hypercontractivity of Hamilton-Jacobi equations[END_REF]. We have

H (ν t | µ σ ) = R d P t f log(P t f )µ σ , (11) 
where ν t (dx) = f t (x)µ σ (dx). We apply Equality (10) and we obtain:

H (ν t | µ σ ) = R d f P t log(P t f )µ σ . (12) 
We will now bound P t log(P t f ) by log(P 2t f ).

Let x and y be in R d . We set x(s) := y + s t (x -y) for any s ∈ [0; t]. We also consider a function h from [0; t] to [0; t] which is C 1 -continuous such that h(0) = 0 and h(t) = t.

We consider the trajectory γ(s) := x (h(s)). We remark that γ(0) = y and γ(t) = x. This function γ plays the role of a geodesic between x and y with respect to the curvature of the diffusion.

We now introduce ξ(s) := (P s log (P 2t-s f )) (γ(s)) .

Lemma 3.3. We have the following derivative:

dξ ds = -P t |∇P 2t-s f | 2 (P 2t-s f ) 2 (γ(s)) + h ′ (s) t ∇P s log (P 2t-s f ) (γ(s)) ; x -y .
Proof. We put g := P 2t-s f . Thus, we have:

ξ ′ (s) =P s (L s log g) (γ(s)) -P s L s g g (γ(s)) + ∇P s (log g)(γ(s)) ; γ ′ (s) .
Thanks to the diffusion property, we have

L s log g = 1 g L s g - 1 g 2 Γ (g, g) .
Here, Γ (f, g) is equal to ∇f ; ∇g . Consequently, we obtain ξ ′ (s) = -P Γ(g, g) g 2 (γ(s)) + γ ′ (s); ∇P s (log g)(γ(s))

= -P s |P 2t-s f | 2 (P 2t-s f ) 2 (γ(s)) + h ′ (s) t ∇P s log (P 2t-s f ) (γ(s)) ; x -y .
We have the immediate upper-bound:

ξ ′ (s) ≤ -P s |P 2t-s f | 2 (P 2t-s f ) 2 (γ(s)) + |h ′ (s)| t |x -y| |∇P s log (P 2t-s f ) (γ(s))| . ( 14 
)
We now give a crucial result.

Lemma 3.4. For any s ≥ 0, we have the upper-bound:

|∇P s (log P 2t-s f )| ≤ e Ks P s |∇P 2t-s f | P 2t-s f , with K := -inf R d ∇ 2 V > 0.
We do not provide the proof. It is sufficient to adapt Lemma 1.3 in [L01]. Moreover, it is a particular case of Lemma 3.7 in [START_REF] Collet | Logarithmic Sobolev Inequalities for Inhomogeneous Semigroups[END_REF]. This lemma, together with (14) yields:

ξ ′ (s) ≤ -P s |P 2t-s f | 2 (P 2t-s f ) 2 (γ(s)) + |h ′ (s)| t |x -y|e Ks P s |∇P 2t-s f | P 2t-s f (γ(s)) . (15) 
By putting X := |∇P2t-sf | P2t-sf (γ(s)) and Y := |h ′ (s)| 2t |x -y|e Ks , we have

ξ ′ (s) ≤ -P s (X 2 + 2XY ) ≤ P s Y 2 = |h ′ (s)| 2 4t 2 |x -y| 2 e 2Ks .
Consequently, we have the inequality

ξ(t) -ξ(0) ≤ t 0 |h ′ (s)| 2 4t 2 |x -y| 2 e 2Ks ds . (16) 
However, ξ(t) = P t log P t f (x) and ξ(0) = log P 2t f (y). Thus, we have the log-Harnack inequality

P t log P t f (x) ≤ log P 2t f (y) + |x -y| 2 4t 2 t 0 |h ′ (s)| 2 e 2Ks ds . (17) 
From Inequality (17), we have the finiteness of the relative entropy with respect to the probability measure µ σ . However, we will give a better result by linking the entropy to the Wasserstein distance between ν 0 and µ σ . obtain the best inequality, we take h(s) := t e -2Ks -1 e -2Kt -1 . We thus obtain P t log P t f (x) ≤ log P 2t f (y) + |x -y| 2 2S(t) ,

with 1 S(t)

= K 1 - 1 1 -e 2Kt . ( 19 
)
We take the infimum for y running over R d and we obtain (21) We take the supremum for ϕ bounded and measurable then we take the integration over x ∈ R d . We obtain We refer the reader to the page 678 in [START_REF] Bobkov | Hypercontractivity of Hamilton-Jacobi equations[END_REF]. Together with (22), Lemma 3.5 yields

P
H (ν t | µ σ ) ≤ 1 S(t) sup ϕ R d
H (ν t | µ σ ) ≤ 1 S(t) W 2 2 (ν 0 ; µ σ ) , (23) 
which achieves the proof. Let us observe that 1 S(t) goes to infinity as t goes to 0.

  2 ν 0 (dx) -R d ϕ(y)µ σ (dy) . (22)We now give the Monge-Kantorovitch duality: Lemma 3.5. For any measure ν, we haveW 2 2 (ν; µ σ ) = sup 2 ν(dx) -R dϕ(y)µ σ (dy) .

  t log P t f (x) ≤ := log P 2t f (y). However, by Jensen inequality, we have the following:

				1 S(t)	min y∈R d	S(t)ϕ(y) +	1 2	|x -y| 2 ,	(20)
	with ϕ(y) R d ϕ(y)µ σ (dy) =					
	Consequently, Inequality (20) becomes	
	P t log P t f (x) ≤	1 S(t)	min y∈R d	S(t)ϕ(y) +	1 2	|x -y| 2 -

R d log(P 2t f )(y)µ σ (dy) ≤ log R d P 2t f µ σ = log R ν 2t (dy) = 0 . R d S(t)ϕ(y)µ σ (dy) .
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