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1, rue de la Nöe, 44321 - Nantes - France

Pedro-Neiva.Kvieska@irccyn.ec-nantes.fr,
Guy.Lebret@irccyn.ec-nantes.fr

M. Aı̈t-Ahmed
Institut de Recherche en Electrotechnique et Electronique
de Nantes Atlantique - IREENA - Université de Nantes
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Abstract— In this paper the different phases of Gain Schedul-
ing are visited, with special attention to stability results for
LPV systems. Given that the main reviews in the area date
from 2000, more recent results were gathered. Stability is to be
shown mainly with Parameter Dependent Lyapunov Functions,
and a discussion on performance analysis is presented. At the
end, a procedure for the Synthesis and Analysis of a Gain
Scheduled LPV controller is presented based on the different
results presented. This procedure is simpler than the purely
theoretical ones, and still more reliable than pure simulation,
as it is often the case in industrial applications.

I. I NTRODUCTION

A. Preliminaries

Gain Scheduling is one of the most popular approaches
to non-linear and time-varying systems. It is particularly
appreciated in industrial applications, mainly because of
possible intuitive approaches and also for its simplicity
of implementation. However, Gain Scheduling applications
usually lack of stability theoretical results, and most of the
time, for simplicity, simulations are used to prove system’s
stability and performance. This is the main motivation for
this work, and this is why stability results for Gain Scheduled
LPV Systems were gathered together.

Given that after the main review in the area, by Rugh and
Shamma [11], new techniques were proposed we thought
that a new review could be useful, and even though a
thorough review is not our main goal in this present work, we
will visit the different phases of Gain Scheduling for LPV
Systems, giving special attention for what was done after
2000, mainly for stability results. Finally, a methodologyfor
Gain Scheduling is proposed based on the concepts found
in the literature, and it is, in our opinion, more reliable than
simulations, as often used in industrial applications, andstill
simpler than the specific synthesis techniques.

A different approach of Gain Scheduling, with the
velocity-based linearization, is given by [8].

B. Motivation

Our current research is in the control of tension and
frequency of embedded electrical networks. In this partic-
ular type of network, each load that is connected to the
system may have and important influence over tension and
frequency, which is not the case in large power systems,
where these parameters are imposed by the network.

A major problem of these type of networks lies on the fact
that the system dynamic model changes with load variation

(the loads are part of the model). In an embedded electrical
network, the power needed by the loads can vary within a
very large range according to the environment and use of
the system. For example, in a ship, stabilisators will demand
power that varies according to the speed and sea state, lights
will be more used during the night, restaurants work in well-
defined periods, etc.

Given that the major electrical loads that demand power
(electric machines in a ship for example) are non-linear, we
have a tricky system to control: a dynamic evolving non-
linear model. Three approaches are possible:

• A Robust LTI controller, where the variations would be
treated as uncertainties

• A Non-Linear technique
• Gain Scheduling

The first (LTI Robust Controller), depending on the sys-
tem, would have to be so robust that its performances would
be degradated. The second (Non-Linear technique) would
certainly be useful, but it can be complicated and given the
dynamic model time variation, it is not always suitable. The
third one will then be used.

In this review, Gain Schedulingmethodologieswill be
explored, on theirs general form.

II. BASES

A. Gain Scheduling

“Machines that walk, swim, or fly are Gain Scheduled”
[11].

The general idea behind Gain Scheduling is very simple:
a regulator that will evolve to match changes in the environ-
ment is gain scheduled. In a plane for example, speed and
air pressure can be used as scheduling variables, and so the
“optimum” regulator is chosen based in these parameters.

The main advantages of Gains Scheduling are [11]:

• Use of linear design tools for non-linear problems
• Few assumptions on the model (can even be used

without an analytic model)
• Linear intuition can be used for the synthesis (in con-

trast to non-linear techniques that may use variable
changes)

• Computation burden is usually inferior to non-linear
design techniques.

On the other hand, one of the drawbacks is mainly the fact
that there are not always stability and performance proofs
(apart from simulations). Also, there is not a well defined



methodology for Gain Scheduling in its general form, the
solution may depend on the specific problem.

A classical approach to Gain Scheduling is based on
the “divide-and-conquer” strategy. First of all, it consists
in having several local models (for operating points or
linearisations of a non-linear system) and then proceed to
the synthesis of local regulators. With these regulators, one
must create a law that will link them according to the
scheduling variables (Gain/Pole/Zero interpolation or simple
commutation for example). This will create a Gain Scheduled
non-linear regulator.

A more systematic approach can be given if at the begin-
ning there is an LPV model. This will be the topic of our
next paragraphs.

B. Linear Parameter Varying (LPV) Model

The LPV model is an useful representation of non-linear or
time-evolving model systems. Once this model is obtained,
the synthesis of a controller is straightforward (even though
stability proofs are not). An LPV standard model has the
following structure [12]:
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The signals have the usual representation:u is the com-

mand,y the measured output andwp → zp a performance
channel. This represents a family of systems withδ :
[0,∞) → R

l with ∀t ≥ 0. Each one of this systems (for
a fixed value ofδ(t)) is linear, hence the nameLinear
Parameter Varying. The hypothesis is thatδ(t) is not know
à priori but can be measured (or at least evaluated) in real
time. If the parameterδ(t) depends on at least one of the
states variables, it is called aquasi-LPVmodel. This can be
used to “disguise” non-linearities as a parameter to createan
LPV model.

As this is a crucial phase of the procedure, it should not
be neglected (as it sometimes is). This problem is addressed
in [2], where two approaches are proposed to obtain a closer
relation between the non-linear system and the LPV Model.

The first one is theDeviation Approach: it’s logical to
think that all the trajectories of the real system will also be
a trajectory of the LPV model. However, the inverse is not
always true: the LPV model islarger than the original. The
Deviation Approachwill try to minimize this difference.

The second one is theSensibility Approach, which has as
main idea the reduction of the influence of the parameter
δ(t) in the LPV model. The reader is encouraged to refer to
[2] for further details.

III. STABILITY ANALYSIS

In this section the stability problem of closed-loop systems
will be addressed, and all the results will be presented as
LMI problems. This phase can be the most important of the
synthesis procedure, given that it is possible to use linear
techniques over a linearized system, which does not assure,

à priori, any stability. The main results for Gain Scheduled
LPV systems are given by the Lyapunov theory. There are,
however, other results that will also be explored in this
section.

As a motivation for the stability study, the following
example is given [11]:

Example 3.1:Local Stability x Global Stability
When parameters (or uncertainties) vary with time, the

fact that all the locals systems are stable does not imply
global stability. This is not intuitive, but it is sadly true. This
example illustrates this situation, as seen in Fig. (1). The
dynamics are given by the matrix:

ẋ =

(

0 1
−(1 + σ(t)/2) −0.2

)

x (2)

For all σ(t) ∈ [−1, 1] all the eigenvalues of the system
are stable, which implies that all the local systems are
stable. However, forσ(t) = cos 2t through simulation it
is obvious that there is an unstable dynamic for non-zero
initial conditions. A physical explanation is that the stiffness
increases as it is contracting and decreases as it is expanding.
This way, oscillations tend to grow (Fig. (2)).

A. Stability in the Sense of Lyapunov

The principal stability results for LPV systems are in the
sense of Lyapunov. In this paper results will be presented
gradually, having as the starting point the classical Lyapunov
theorems and definitions. First of all, we state Lyapunov’s
Theorem [12]:

Theorem 3.1:(Lyapunov Theorem) For the differential
equationẋ(t) = f(x(t), t), consideringx∗ ∈ X an equilib-
rium point in the interior of the setS:

(a) If there exists a positive-definite, continuously dif-
ferentiable functionV : S × T → R with
V (x∗, t) = 0 andV ′ negative semi-definite, thenx∗

is stable. IfV is decrescent, thenx∗ is Uniformly
Stable.

(b) If there exists a positive-definite decrescent and
continuously differentiable functionV : S×T → R

with V (x∗, t) = 0 andV ′ negative-definite, thenx∗

is Uniformly Asymptotically Stable.
This result is very well known, and it is presented here as

the basis of the following sub-sections.

Fig. 1. Spring-Mass system with a time varying stiffness spring



1) Lyapunov Stability for LTI Systems:
Theorem 3.2:Lyapunov Stability for LTI Systems An

LTI System is stable if and only if, there exists a symmetric
positive definite matrixP (P ∈ S+) such that, for the system
ẋ = Ax:

A′P + PA < 0 (3)

where the functionV (x) = x′Px is the Lyapunov Func-
tion

This condition is necessary and sufficient.
2) Lyapunov Stability for LPV Systems - Fixed Lyapunov

Function: 1

A similar theorem for LPV Systems can be stated, which
is a natural extension of the latter.

Theorem 3.3:Lyapunov Stability for LPV Systems An
LPV System is stable if there exists a symmetric positive
definite matrixP (P ∈ S+) such that, for the systeṁx =
A(δ(t))x:

A(δ(t))′P + PA(δ(t)) < 0 (4)

where the functionV (x) = x′Px is the Lyapunov Func-
tion

This condition is now just sufficient [14], given that this
is no longer the LTI case. No assumptions were made
about the variation rate of the function, that is therefore
unbounded. This is actually the case ofSwitched Systems,
and a discussion on stability results for these systems is given
in [10].

3) Lyapunov Stability for LPV Systems - Parameter-
Dependent Lyapunov Function:If the derivative of the
parameter is not considered for the search of a Lyapunov
function, this search will concern a very large class of sys-
tem, given that, in this case, this derivative can be unbounded.
This conservatism may be responsible for the impossibility
of finding a matrixP that verifies (4).

A less conservative approach is what is called aParameter
Dependent Lyapunov Function2. The idea is to have, rather

1For this work LPV systems are considered, but this proofs holdfor
uncertain systems as well.

2One of the first works in this sense is the PhD dissertation [14].

0 10 20 30 40 50 60 70 80 90 100
−8

−6

−4

−2

0

2

4

6

8

Fig. 2. Mass position as a function of time forσ(t) = cos(2t) and
non-zero initial conditions

than a matrixP , a matrixP (δ(t)). In this case, Lyapunov’s
condition comes to [14]:

A′(δ(t))P (δ(t)) + P (δ(t))A(δ(t)) +
dP

dt
< 0 (5)

which is equivalent to:

A′(δ(t))P (δ(t)) + P (δ(t))A(δ(t)) + δ̇
dP

dδ
< 0 (6)

This condition is once again just sufficient, but it is less
conservative than the last. This is the main stability result for
LPV systems using Lyapunov’s Theory, and can be stated as
follows [12]:

Theorem 3.4:Parameter Dependent Lyapunov Theo-
rem: Assuming that the functionP : ∆ → S

p is con-
tinuously differentiable within a compact set∆ and that it
verifies:

P (δ) ≻ 0 ∀δ ∈ ∆ (7)

∂δP (δ)λ + A(δ)T P (δ) + (8)

+P (δ)A(δ) ≺ 0 ∀δ ∈ ∆ and λ ∈ Λ (9)

Then the origin of the systeṁx = A(δ(t))x(t) is expo-
nentially stable for a variation ofδ : R → R

l that verifies
for the subsets∆ andΛ of R

l:

δ(t) ∈ ∆ et λ ∈ Λ ∀t ∈ R (10)

In this case, the functionV (x, δ) := xT P (δ)x is the
Quadratic Parameter Dependent Lyapunov Functionfor the
system.

In this theorem,λ is the maximum value of the derivative
of the parameter. A problem of this theorem in particular,
is that as the domains are continuous, there is an infinity
of LMIs to evaluate. This is obviously impossible, so there
are two possible solutions: make some structural assumption
(such as polytopic domains, LFT structure, etc) or make a
grid and test the conditions in all the chosen points. For the
latter approach, the more points are used, the more reliable
the result will be, but it is not ananalytical result.

An interesting approach for analysis and synthesis of LPV
systems with polynomial dependence is given in [16]. It
is based in the Sum of Squares (SOS) decomposition. A
polynomialf(x) is SOSif there exists polynomial functions
f1(x), ..., fn(x) such thatf(x) =

∑n
i=1 f2

i (x). This directly
implies thatf(x) ≥ 0 for all x ∈ Rn. The SOSdecomposi-
tion assures a sufficient condition for non negativity of the
multivariate polynomial and is equivalent to the existence
of a positive semi-definite matrixQ and a properly chosen
monomial vectorZ(x) such thatf(x) = Z ′(x)QZ(x).
This could help to provide a coherent methodology for the
synthesis of a Lyapunov function for non-linear systems.



B. Input/Output Stability: Small Gain Theory

Given that this work is focused on the Lypunov approach,
this theory will not be explored. Nevertheless this is an
interesting approach and specific LPV results are available
in the literature. As it is an Input/Output approach, no
assumptions are made on the model, that can be linear/non-
linear, stationary/non-stationary, etc. The work [1] is a good
starting point for further informations.

C. Multiple Models - Interpolated Systems

The works of Mohammed Chadli ([3], [4]) state stability
results forMultiple Models, which are in fact a general form
of interpolated systems. This is, from our point of view, very
useful, because it can be an analytical proof for systems
without a well-defined model (mainly for systems without
an LPV model). Here the different steps of the procedure
will be visited, and the main result will be stated.

First of all, considering the non-linear system:

ẋ(t) = f(x(t), u(t)) (11)

For n arbitrary points(xi, ui) ∈ R
p×R

m, the system can
be linearized, and with a law that will be described in the
following, a multiple modelis defined as:

ẋ(t) =

n
∑

i=1

µi(z(t))(Aix(t) + Biu(t)) (12)

whereµi(z(t)) are theactivation functionsandz(t) is the
decision variables vector, depending on the measurable state
variables and eventually the commandu(t). The number of
local modelsn depends on the desired accuracy, complexity
of the non-linear system and on the structure of the activation
functions. This is a general form of an interpolated system,
because for each point there is a dependency on all the other
local models, and not only on the ones close to the point.

Two hypothesis are stated:
Hypothesis 3.1:The activation functionsµi(z(t)) are con-

tinuously differentiable.
Hypothesis 3.2:The activation functions have the follow-

ing properties:

µi(z(t)) ≥ 0 (13)
n

∑

i=1

µi(z(t)) = 1 (14)

Stability is shown usingpolyquadraticLyapunov functions
depending only on the system’s states. Consider the function:

V (x(t)) = x(t)T P (x(t))x(t) (15)

with

P (x(t)) =

n
∑

i=1

µi(x(t))Pi, Pi > 0 (16)

The time derivative of the function (15) leads to

V̇ (x(t)) = ẋ(t)T P (x(t))x(t)+

+x(t)T P (x(t))ẋ(t) + x(t)T Ṗ (x(t))x(t)
(17)

There are the two “classical” Lyapunov terms and another
one that depends on the derivative of P. This last one can be
bounded as follows:

x(t)T Ṗ (x(t))x(t) = x(t)T
∑n

i=1

〈

∂µi(x(t))
∂x(t) , ∂x(t)

∂t

〉

Pix(t)

≤ x(t)T
∑n

i=1

∣

∣

∣

(

∂µi(x(t))
∂x(t)

)

ẋ(t)
∣

∣

∣
Pix(t)

(18)
If it is possible to bound the term

∣

∣

∣

(

∂µi(x(t))
∂x(t)

)

ẋ(t)
∣

∣

∣

without any dependence on the state (or its derivative):
Hypothesis 3.3:There exists a scalarυ > 0 such that

∣

∣

∣

(

∂µi(x(t))
∂x(t)

)

ẋ(t)
∣

∣

∣
≤ υ, ∀x(t) ∈ R

p, i ∈ In.
With these results it is finaly possible to state the theorem

concerning stability of multiple models. From our point of
view, even though there are several inequalities to verify,it
is impressive to have an analytical proof for an interpolated
system, and this is why we mention it in this present review.

Theorem 3.5:If there exists positive definite symmetric
matrix Q and Pi, i ∈ In and symmetric matrixU and V
such the following LMIs are verified:

Pi > Pj+r, i ∈ In, j ∈ In−r (19)

AT
i Pi + PiAi ≤ U,∀i ∈ In (20)

AT
i Pj + PjAi + AT

j Pi + PiAj ≤ 2V,

∀(i, j) ∈ I
2
n, i < j

(21)

U − V ≤ 0 (22)

V + r−1(U − V ) + υ

r
∑

i=1

Pi < −Q (23)

with µi(z(t))µj(z(t)) 6= 0, r the maximal number of
local models activated andυ an upward bound for the state
variation (hypothesis (3.3)). Then, the equilibrium pointof
the multiple model (12) is globally exponentially stable.

Further details on stability results for discrete multiple
models and applications are given in [4].

D. Contraction Analysis andδ stabilities

A last approach worth of mention is theContraction
Analysis. A review is given by [9], and several works were
done by J́erôme Jouffroy, the base of this section being
[7]. Here just the main idea of the theory will be stated.
According to the author, it is a more general approach
than Lyapunov’s theory. The stability is shown not with
equilibrium points, butequilibrium trajectories.

The main idea is to consider two neighbors trajectories ini-
tially separated by an infinitesimal distance. If they converge
one toward the other, it is possible to imply the convergence
of two trajectories separated by a finite distance. This is the
base of the contraction analysis, to show the convergence
toward an equilibrium trajectory. Later, with aδ stability
(also calledincremental stability) technique, it is possible to
show the stability of the system.



IV. PERFORMANCEANALYSIS

Once stability is verified, it is natural to search for the per-
formances properties of the LPV system. Here the classical
results based on theH2 andH∞ norms will be explored, as
well as an unified approach for stability and performance.

It is important to keep in mind that local results for per-
formance are simpler, but not always accurate for the global
system (as seen in example (3.1) for stability). However,
local results are indeed a goodindication of the global
performance, and it is intuitive to say that the better are the
local performances, the better will the global be, even though
this is not necessarily true. In the next section the extensions
of these norms for LPV Systems will be explored.

A. H2 and H∞ Norms

An interesting method for performance evaluation is the
norm between the input and output signals. It is possible
to measure performance aspects such as trajectory tracking,
noise rejection, control saturation, etc.

1) H∞ norm extension for LPV systems:Let [11]:

z = T δ(.)
zυ υ (24)

be the input/output relation of a closed-loop for an LPV
system with zero initial conditions. The signalυ is an
exogenous signal andz is the error measure. The induced
norm is then defined as [11]:

‖Tzυ‖i,2 = sup
δ(.)admissible

sup
υ(.)

(∫

∞

0
zT (t)z(t)dt

)
1

2

(∫

∞

0
υT (t)υ(t)dt

)
1

2

(25)

This is related to the “worst case scenario”. It is not the
usual system performance, but an inferior bound for it, as it
is shown by thesup of all admissible trajectories of thesup
of all admissible values (all the trajectories that verify (10)).

2) H2 norm extension for LPV systems:The definition of
the H2 norm here developed [1] is the largest amplification
caused by theimpulse responsefor δ that verifies (10).
Consider them input LPV System:

S :

{

ẋ = A(δ)x + [b1(δ), . . . , bm(δ)]w
z = C(δ)x

(26)

It is possible to decompose this system inm subsystems,
Si where each input will be replaced for a non-zero initial
condition that is equivalent to an impulse input.

Si :

{

ẋi = A(δ)xi, xi(0) = bi(θ0)
zi = C(δ)xi

(27)

The extension of theH2 norm is then:

γH2(S) = sup
δ(t)∈∆

m
∑

i=1

∫

∞

0

zT
i (t)zi(t)dt (28)

As this concerns the output energy, it measures an “usual”
performance of the system, the one that will be presented
most of the time. These two last definitions generalize
to LPV systems the two principal results for performance
evaluation.

B. Stability and Performance Tests

Usually stability and performance are treated in different
analysis. This is indeed an interesting approach, given that it
is possible to make a rigorous stability analysis and a quicker
local analysis for performance, for example. However, it is
of course possible to evaluate both in a single inequality.
This is done in several of our references, and an interesting
approach is given to the problem of regulators interpolation
that conserve theH∞ performance in [17].

Consider a closed-loop LPV system:
{

ẋ(t) = A(δ(t))x(t) + B(δ(t))w(t)
z(t) = C(δ(t))x(t)

(29)

A sufficient condition for this closed-loop to have aH∞

performance ofγ and to be stable in the sense of Lyapunov
is given by [17]:

Definition 4.1: For the closed-loop system (29), withδ ∈
∆ ⊂ R

l, if there exists a symmetric positive semi-definite
continuous matrix functionP (δ) that verifies:

AT (δ)P (δ) + P (δ)A(δ) +
d

dt
P (δ)+

+γ−2CT (δ)C(δ) + P (δ)B(δ)BT (δ)P (δ) < 0
(30)

then the closed looped system (29) has theH∞ perfor-
manceγ.

In our opinion, this is a very “reassuring” condition: it
assures stability and a minimum performance level. If this
condition is verified, it is possible to simulate the system to
justify its performance in particular situations, becausethere
is the certainty that even in unexpected situations, the worst
performance possible is proved to beγ.

V. SYNTHESIS

There are several possible strategies for the synthesis of
a Gain Scheduled LPV controller, and here three different
approaches are presented, one in detail. There is no “better”
or “worse” between the two, it all depends on the type of
problem being treated, the system regulation requirements
and computational tools available.

A. LFT Representation

This is a very useful model for LPV Systems, with
structured and efficient algorithms for synthesis, where the
complexity is comparable to the synthesis of a LTI controller
[11]. However, one should be careful with this method, seen
that it can be restrictive in several practical applications. An
interesting recent approach for LFT systems is given by [15]
where Parameter-Dependent Lyapunov functions are used for
the synthesis.

B. LPV specific Synthesis Technique

LPV specific techniques can be found in several works,
even though the approach is often different from one to
another. The most appropriated from our point of view is the
one in [12]. There are drawbacks as a possible dependence



on the derivative of the parameter, which can be a problem
for several applications.

The development of this technique is long and as this
is not the goal of this present work, it will not be done
here. But to make the synthesis of a LPV regulator, there
are severalfunctionnal inequalitiesto verify (in the general
case, polytopic domains reduce these to a finite set), and
assumptions must be made to avoid the dependence on the
derivative.

The advantage of this method is obviously the fact that
there are no iterations, and performance and stability spec-
ifications are considered from the start. The inconvenient is
that is is more complex and computationally heavier than the
Ad Hoc techniques.

C. Ad Hoc Techniques

The Ad Hoc techniques are those for which the perfor-
mance and stability specifications are not consideredà priori,
but should be verified after the synthesis procedure. As it is
intuitive to see, there is not an exact procedure for doing this,
and it may vary with the experience of the engineer. From
our point of view, this type of method shows the interest of
Gain Scheduling: with very simple methods it is possible to
make the synthesis of very good non-linear regulators.

Even if there are no models, it is possible to make some
regulators with data tables issued from the plant behavior,but
in this way there will not be analytical proofs of stability or
performance. For this reason, in this section it is assumed in
this section that the LPV Model was already obtained.

The difference between the procedure here described and
the specific one resides mainly in a simpler synthesis phase.
In addition, there is a greater choice of techniques for local
regulator synthesis, where experience for particular applica-
tions can be used. Surprisingly, the procedure here described
is not the “natural” procedure found in the literature, where
usually one of the two cases arises: applications are justified
with simulations or a specific LPV technique is used.

Once the LPV model is defined (1), a controller with the
following structure is to be searched:

K(δ(t)) :

{

˙xK(t) = AK(δ(t))xK(t) + BK(δ(t))y(t)
u(t) = CK(δ(t))xK(t)

(31)
So any non structured or non specific method that results

in this representation, is anAd Hoc technique. This choice
is obviously vital for the global system, so, what is propose
in this paper is the following technique. First, the synthesis
phase:

• Depart from an open-loop LPV model
• Grid the scheduling variable domain forn local models

(this should not be confused with griding a non-linear
plant for the LPV modeling). The more points are used,
the more the global performance will be close to the
local evaluations, seen that the system will be closer to
the synthesis points

• Perform the synthesis ofn local regulators using a linear
technique. The same topology shall be imposed to all

the local regulators for the next step. For example, use a
pole-placement technique for each chosen local model
with the same number of poles/zeros.

• Proceed to the actual Gain Scheduling, the Scheduling
law. As the same topology for each local model is
imposed, a simple Gain/Pole/Zero interpolation results
in an appropriated non-linear controller of the form
(31). With this assumption there is no commutation, the
function is continuous.

• Calculate the closed-loop.

This is a very light computational burden. But so far there
is no proof of any kind. Simulations could be used for non-
critical applications, but this is not the goal here. So, there
is the analysis phase:

• Stability can be verified with a Parameter Dependent
Lyapunov Function (Theorem (3.4)), seen that there is
a closed-loop LPV model. In polytopic domains, the
number of LMI is finite, and this is often the case. For
example, as seen in [13], in a ship the domains of a
two-dimensional Scheduling variable based on speed
and angle between the ship and the current form a
rectangle, which is a polytopic domain. This particular
paper is an example of application without theoretical
proof, where this particular procedure could had been
used. Several other examples can be found for real
applications, showing that this method of verification
is suited.

• Performance is second to stability, given that stability is
primordial. Three strategies are possible, and from our
point of view the third one is the most appropriated:

– Verify only local stability and simulate the global
system. Global stability depends on local models,
but this can be misleading, so for critical appli-
cations this is not the best choice, there can be an
unexpected input that throws system’s performance
away from expected values.

– Use the norms extensions given by (25) and (28).
This is the ideal test, but can anyway be compli-
cated to evaluate.

– Use equation (30), in the first step, given that this
test is based on a Parameter Dependent Lyapunov
Function. With this test there is a minimum perfor-
mance assurance. If the conditions are met for this
test, it is possible to proceed to the simulation of
the global system for the expected inputs, verifying
if the outputs are reasonable.

If the analysis fails an iteration with another synthesis is
necessary. Most of the time, global results will depend on
the local models, so it is possible to know the direction to
go during the local synthesis.

The obvious advantage of this method is the fact that
with simple techniques, it is possible to build an analyt-
ically proved Gain Scheduled controller. An also obvious
inconvenient is that it may take several iterations, and in the
worst case scenario, one may never achieve the synthesis of
the expected regulator. In this case, if possible, relaxingthe



system requirements may be a solution.
Anyway, as described in the preceding subsections, this

technique is simpler than the specific one for LPV Systems.
And in addition, it is better than what is currently used in
industrial applications, where often simulations are the only
proofs.

VI. GAIN SCHEDULING INDUSTRIAL APPLICATIONS

Several applications of Gain Scheduling can be found
through literature, in different domains. A robotic direct-
drive manipulator is explored in [17], a ship control problem
in [15], the rotating stall and surge control problem in [6]
and an aerospace launch vehicle control problem in [5], to
cite a few. From these few examples several domains are
cited: robotics, naval and aerospatial industries and fluids
mechanics.

It shows why it is important to find theoretical results for
this approach of non-linear control.

VII. C ONCLUSION AND FUTURE WORKS

In this work we were able to explore the different aspects
of the Gain Scheduling methodology, from modeling to
synthesis and analysis. Modeling is a crucial phase that we
did not detail, but should not be neglected.

The procedure we proposed is something in between of
the theoretical tools and simulations, and from our point of
view it is useful. For our research in the control of Electrical
Networks, which is a very particular type of system, we find
this technique suitable.

Finally, we see that our efforts are justified throughout the
large number of industrial applications of this concept.
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