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Abstract— In this paper the different phases of Gain Schedul- (the loads are part of the model). In an embedded electrical
ing are visited, with special attention to stability results for  network, the power needed by the loads can vary within a
LPV systems. Given that the main reviews in the area date very large range according to the environment and use of

from 2000, more recent results were gathered. Stability is to be th t = le i hi tabilisat ill den
shown mainly with Parameter Dependent Lyapunov Functions, € system. For example, In a ship, stabilisators wi an

and a discussion on performance analysis is presented. At the POwer that varies according to the speed and sea states light

end, a procedure for the Synthesis and Analysis of a Gain will be more used during the night, restaurants work in well-

Scheduled LPV controller is presented based on the different defined periods, etc.

results presented. This procedure is simpler than the purely  Gien that the major electrical loads that demand power

theoretical ones, and still more reliable than pure simulation, - . . . .

as it is often the case in industrial applications. (electric machines in a ship for example) are non-linear, we
have a tricky system to control: a dynamic evolving non-

I. INTRODUCTION linear model. Three approaches are possible:

« A Robust LTI controller, where the variations would be
treated as uncertainties

A. Preliminaries

Gain Scheduling is one of the most popular approaches A Non-Linear technique
to non-linear and time-varying systems. It is particularly | Gain Scheduling
appreciated in industrial applications, mainly because of

possible intuitive approaches and also for its simplicit The fw% E]LTI F§0bbUSt Contt)rolltetrg,td.(tependfmg on the sys-ld
of implementation. However, Gain Scheduling application%em' would have to be so robust that Its performances wou

usually lack of stability theoretical results, and most loé t ertdiengiragated. leheb Stei(tzonc:l EJNon-Ir_T:nﬁarttedchrgllguei:\)/ Yﬁﬁld
time, for simplicity, simulations are used to prove systsaem’Ce ainly be usetul, but It can be complicated and given the

stability and performance. This is the main motivation fordynamIC model time variation, it is not always sitable. The

this work, and this is why stability results for Gain Schestll third one W|Il_then be_ used. . L

LPV Systems were gathered together. In this review, Gain Schedulingnethodologieswill be
Given that after the main review in the area, by Rugh an(axplored, on theirs general form.

Shamma [11], new techniques were proposed we thought Il. BASES

that a new review could be useful, and even though R Gain Scheduling

thorough review is not our main goal in this present work, we ) ) )

will visit the different phases of Gain Scheduling for LPV “Machines that walk, swim, or fly are Gain Scheduled”

Systems, giving special attention for what was done aftdt1]-

2000, mainly for stability results. Finally, a methodolofgy The general idea behind Gain Scheduling is very simple:

Gain Scheduling is proposed based on the concepts foufidegulator that will evolve to match changes in the environ-

in the literature, and it is, in our opinion, more reliabl@th Ment is gain scheduled. In a plane for example, speed and

simulations, as often used in industrial applications, stilti air pressure can be used as scheduling variables, and so the

simpler than the specific synthesis techniques. “optimum” regulator is chosen based in these parameters.
A different approach of Gain Scheduling, with the The main advantages of Gains Scheduling are [11]:
velocity-based linearization, is given by [8]. « Use of linear design tools for non-linear problems
o o Few assumptions on the model (can even be used
B. Motivation without an analytic model)

Our current research is in the control of tension and e Linear intuition can be used for the synthesis (in con-
frequency of embedded electrical networks. In this partic- trast to non-linear techniques that may use variable
ular type of network, each load that is connected to the changes)
system may have and important influence over tension ande Computation burden is usually inferior to non-linear
frequency, which is not the case in large power systems, design techniques.
where these parameters are imposed by the network. On the other hand, one of the drawbacks is mainly the fact

A major problem of these type of networks lies on the facthat there are not always stability and performance proofs
that the system dynamic model changes with load variatidf@part from simulations). Also, there is not a well defined



methodology for Gain Scheduling in its general form, th& priori, any stability. The main results for Gain Scheduled

solution may depend on the specific problem. LPV systems are given by the Lyapunov theory. There are,
A classical approach to Gain Scheduling is based omowever, other results that will also be explored in this

the “divide-and-conquer” strategy. First of all, it corsis section.

in having several local models (for operating points or As a motivation for the stability study, the following

linearisations of a non-linear system) and then proceed txample is given [11]:

the synthesis of local regulators. With these regulatong, 0 Example 3.1:Local Stability x Global Stability

must create a law that will link them according to the \yhen parameters (or uncertainties) vary with time, the

scheduling variables (Gain/Pole/Zero interpolation ene  fact that all the locals systems are stable does not imply

commutation for example). This will create a Gain Schedulegjopg) stability. This is not intuitive, but it is sadly trughis

non-linearregulator. o _example illustrates this situation, as seen in Fig. (1). The
A more systematic approach can be given if at the begiyynamics are given by the matrix:

ning there is an LPV model. This will be the topic of our
next paragraphs. 0 1
T = < —( ) T

14+0(t)/2) —0.2 (2)

B. Linear Parameter Varying (LPV) Model

The LPV model is an useful representation of non-linear or .
time-evolving model systems. Once this model is obtained, FOr all o(t) € [~1,1] all the eigenvalues of the system
the synthesis of a controller is straightforward (even gou &€ Stable, which implies that all the local systems are

stability proofs are not). An LPV standard model has thétablej However, fora(.t) = cos2t through s.imulation it
following structure [12]: is obvious that there is an unstable dynamic for non-zero

initial conditions. A physical explanation is that the fstéss
increases as it is contracting and decreases as it is exygandi

z AS(t) | By(a(t)) B(8(1) r This way, oscillations tend to grow (Fig. (2)).
zp | = Cp(0(t)) | Dp(o(t)) E(4(t)) W
y C(a(t) | F(6(1)) 0

1) A. Stability in the Sense of Lyapunov

The signals have the usual representations the com-
mand,y the measured output and, — z, a performance
channel. This represents a family of systems with:
[0,00) — R! with vt > 0. Each one of this systems (for
a fixed value Qfd(t)) is linear, _he_nce the .namleinear Theorem [12]:
Parameter VaryingThe hypothesis is that(¢) is not know Th 3 1L h For the diff ial
a priori but can be measured (or at least evaluated) in real e.ore.m L:(Lyapunov e.orer.n) :)r the di eren_ua
time. If the parametef(¢t) depends on at least one of thegquaﬂor'm(y.f) - f(.x(t).’ ), conS|der|.ngx € & an equilib-
states variables, it is calledquasi-LPVmodel. This can be fium point in the interior of the sef:
used to “disguise” non-linearities as a parameter to craate (a)  If there exists a positive-definite, continuously dif-

The principal stability results for LPV systems are in the
sense of Lyapunov. In this paper results will be presented
gradually, having as the starting point the classical Lyepu
theorems and definitions. First of all, we state Lyapunov’s

LPV model. ferentiable functionV : & x 7 — R with
As this is a crucial phase of the procedure, it should not V(z*,t) = 0 andV’ negative semi-definite, thert
be neglected (as it sometimes is). This problem is addressed is stable. IfV is decrescent, then* is Uniformly
in [2], where two approaches are proposed to obtain a closer Stable.
relation between the non-linear system and the LPV Model. (b)  If there exists a positive-definite decrescent and
The first one is theDeviation Approachit’s logical to continuously differentiable functiol : Sx7 — R
think that all the trajectories of the real system will als® b with V(z*,t) = 0 andV"’ negative-definite, then*
a trajectory of the LPV model. However, the inverse is not is Uniformly Asymptotically Stable.
always true: the LPV model irger than the original. The  This result is very well known, and it is presented here as
Deviation Approachwill try to minimize this difference. the basis of the following sub-sections.

The second one is th&ensibility Approachwhich has as
main idea the reduction of the influence of the parameter
§(t) in the LPV model. The reader is encouraged to refer to k= (1+0(t)/2)
[2] for further detalils.

1. STABILITY ANALYSIS
In this section the stability problem of closed-loop system /

m=1

@) @)

will be addressed, and all the results will be presented as
LMI problems. This phase can be the most important of the
synthesis procedure, given that it is possible to use linear
techniques over a linearized system, which does not assure, Fig.- 1. Spring-Mass system with a time varying stiffnessrgpri

=~
Il

=

(3]




1) Lyapunov Stability for LTI Systems: than a matrixP, a matrix P(§(¢)). In this case, Lyapunov’s
Theorem 3.2:Lyapunov Stability for LTI Systems An  condition comes to [14]:
LTI System is stable if and only if, there exists a symmetric

positive definite matri® (P € S™) such that, for the system qP

&= Ax: A'(5()P(5(t)) + P(5())A(6(t)) + PTE 0
A'P+PA<O 3) which is equivalent to:
where the functiorV/ (z) = 2/ Pz is the Lyapunov Func-
tion , .dP
This condition is necessary and sufficient. A'(6(t))P(0(t) + P(6(¢)A(6(¢)) + 5% <0 (6)
2) Lyapunov Stability for LPV Systems - Fixed Lyapunov
Function: ! This condition is once again just sufficient, but it is less
A similar theorem for LPV Systems can be stated, whiclgonservative than the last. This is the main stability refsul
is a natural extension of the latter. LPV systems using Lyapunov’s Theory, and can be stated as

Theorem 3.3:Lyapunov Stability for LPV Systems An  follows [12]:
LPV System is stable if there exists a symmetric positive Theorem 3.4:Parameter Dependent Lyapunov Theo-
definite matrixP (P € ST) such that, for the systemr = rem: Assuming that the function® : A — SP is con-
A(6(¢))x: tinuously differentiable within a compact sét and that it

verifies:
A(5(t))'P+ PA(S(t) <0 4)
. P

tio\rlwvhere the functioV/ (z) = 2’ Px is the Lyapunov Func- P(5) = 0 V5 e A 7

This condition is now just sufficient [14], given that this  9sP(6)A + A(6)" P(8) + (8)
is no longer the LTI case. No assumptions were made +P(0)A(0) <0 Ve Aand e A (9)
about the variation rate of the function, that is therefore
unbounded. This is actually the case Sivitched Systems  Then the origin of the system = A(d(¢))z(t) is expo-
and a discussion on stability results for these systemsémngi nentially stable for a variation of : R — R! that verifies
in [10]. for the subset\ and A of R:

3) Lyapunov Stability for LPV Systems - Parameter-
Dependent Lyapunov Functiontf the derivative of the

parameter is not considered for the search of a Lyapunov o(t)eA etAeA ViteR (20)
function, this search will concern a very large class of sys-
tem, given that, in this case, this derivative can be unbednd In this case, the functiof/(z,6) := 2" P(d)z is the
This conservatism may be responsible for the impossibilitRuadratic Parameter Dependent Lyapunov Functionthe
of finding a matrixP that verifies (4). system.

A less conservative approach is what is calldéheameter In this theorem is the maximum value of the derivative

Dependent Lyapunov FunctitinThe idea is to have, rather of the parameter. A problem of this theorem in particular,
is that as the domains are continuous, there is an infinity
1For this work LPV systems are considered, but this proofs Hold ot | MIs to evaluate. This is obviously impossible, so there
uncertain systems as well. . . .
20ne of the first works in this sense is the PhD dissertatiof [14 are two possible solutions: make some structural assumptio
(such as polytopic domains, LFT structure, etc) or make a
grid and test the conditions in all the chosen points. For the
latter approach, the more points are used, the more reliable
the result will be, but it is not aanalytical result.

An interesting approach for analysis and synthesis of LPV
systems with polynomial dependence is given in [16]. It
is based in the Sum of Squares (SOS) decomposition. A
polynomial f (x) is SOSIf there exists polynomial functions
f1(z), ..., fu(z) such thatf(z) = Y_i, f?(x). This directly
implies thatf(z) > 0 for all z € R"™. The SOSdecomposi-
tion assures a sufficient condition for non negativity of the
multivariate polynomial and is equivalent to the existence
of a positive semi-definite matrig) and a properly chosen
monomial vectorZ(z) such thatf(z) = Z'(z)QZ(z).

Fig. 2. Mass position as a function of time fer(t) — cos(2t) and  1his could help to provide a coherent methodology for the
non-zero initial conditions synthesis of a Lyapunov function for non-linear systems.




B. Input/Output Stability: Small Gain Theory

Given that this work is focused on the Lypunov approach, V(x(t) = @(t)" P(a(t)z(t)+
this theory will not be explored. Nevertheless this is an +2(t)T P(x(t)z(t) + z(t)T P(x(t))=(t)
interesting approach and specific LPV results are available
in the I|fcerature. As it is an Input/Output approgch, N%ne that depends on the derivative of P. This last one can be
assumptions are made on the model, that can be Imear/n(%)rg)—unded as follows:
linear, stationary/non-stationary, etc. The work [1] isag '

starting point for further informations.

7

There are the two “classical” Lyapunov terms and another

2O P(a(0)(t) = 2(t)T iy {200, 2500

ot
n i (x .
(O Tiy | (b ace

If it is possible to bound the ter (a“i(m(t))):k(t)

C. Multiple Models - Interpolated Systems

The works of Mohammed Chadli ([3], [4]) state stability
results forMultiple Models which are in fact a general form

i ic i i i Dz (t)
of interpolated systems. This is, from our point of view,wer without any dependence on the state (of its derivative):

u;eful, because 't. can be an anglyucal proof for s_ystems Hypothesis 3.3:There exists a scalas > 0 such that
without a well-defined model (mainly for systems W|th0ut£(au,(z(t))

an LPV model). Here the different steps of the procedurg\  oz() )j“(t) < v, Va(t) R i € L.

IN

>Pi:c(t)
)| Pa(t)
(18

will be visited. and the main result will be stated. With these results it is finaly possible to state the theorem
First of all, considering the non-linear system: concerning stability of multiple models. From our point of
view, even though there are several inequalities to veitify,
#(t) = f(2(t), u(t)) (11) is impressive to have an analytical proof for an interpalate

system, and this is why we mention it in this present review.

For n arbitrary points(z;, u;) € R? x R™, the system can ~ Theorem 3.5:If there exists positive definite symmetric
be linearized, and with a law that will be described in thénatrix @ and P;,i < I, and symmetric matrix/ and V/

following, a multiple modelis defined as: such the following LMIs are verified:
B(t) =Y pi(2(t)(Aix(t) + Bau(t))  (12) Pi> Pigryi €1n,J € Iy (19)
i=1 ATP, 4+ PA; <UNi e, (20)
wherey; (2(t)) are theactivation functionsand z(¢) is the AT Py + PjA; + AT P, + PiA; <2V, 21)
decision variables vector, depending on the measuralile sta Y(i,j) €12,i < j
variables and eventually the comman(t). The number of U—-V<0 (22)
local modelsn depends on the desired accuracy, complexity r
of the non-linear system and on the structure of the actimati V4+r Y U-V)+wv Z P, <-Q (23)
functions. This is a general form of an interpolated system, i=1

because for each point there is a dependency on all the othewith y;(2(¢))p;(2(t)) # 0, r the maximal number of
local models, and not only on the ones close to the point.local models activated and an upward bound for the state

Two hypothesis are stated: variation (hypothesis (3.3)). Then, the equilibrium podft
Hypothesis 3.1:The activation functiong;(z(t)) are con- the multiple model (12) is globally exponentially stable.
tinuously differentiable. Further details on stability results for discrete multiple

Hypothesis 3.2:The activation functions have the follow- models and applications are given in [4].

Ing properties: D. Contraction Analysis and stabilities

pi(2(t)) >0 (13) A last approach worth of mention is th€ontraction
n Analysis A review is given by [9], and several works were
Zm(z(t)) =1 (14) done by &mme Jouffroy, the base of this section being
i=1 [7]. Here just the main idea of the theory will be stated.

Stability is shown usingolyquadraticLyapunov functions According to the author, it is a more general approach

depending only on the system’s states. Consider the functidhan Lyapunov's theory. The stability is shown not with
equilibrium points, buequilibrium trajectories

_ T The main idea is to consider two neighbors trajectories ini-
Viw(t) = 2(t)" Ple(®)z(®) (15) tially separated by an infinitesimal distance. If they caogee
with one toward the other, it is possible to imply the convergence
of two trajectories separated by a finite distance. Thisés th
i base of the contraction analysis, to show the convergence
P(z(t)) = Z“i(x(t))P“Pi >0 (16)  toward an equilibrium trajectory. Later, with & stability
=1 (also calledincremental stability technique, it is possible to
The time derivative of the function (15) leads to show the stability of the system.



IV. PERFORMANCEANALYSIS B. Stability and Performance Tests

Once stability is verified, it is natural to search for the-per Usually stability and performance are treated in different
formances properties of the LPV system. Here the classicahalysis. This is indeed an interesting approach, givenitha
results based on thH, and H,, norms will be explored, as is possible to make a rigorous stability analysis and a @uick
well as an unified approach for stability and performance. local analysis for performance, for example. However, it is

It is important to keep in mind that local results for per-of course possible to evaluate both in a single inequality.
formance are simpler, but not always accurate for the globghis is done in several of our references, and an interesting
system (as seen in example (3.1) for stability). Howeveapproach is given to the problem of regulators interpofatio
local results are indeed a godddication of the global that conserve théZ., performance in [17].
performance, and it is intuitive to say that the better aee th Consider a closed-loop LPV system:
local performances, the better will the global be, even giou
this is not necessarily true. In the next section the exoerssi z(t) = A(6()x(t) + B(6(¢))w(t)
of these norms for LPV Systems will be explored. z(t) = C(6(t))x(t)

A. Hy, and H,, Norms A sulfficient condition for this closed-loop to havera,,

An interesting method for performance evaluation is th@erformance ofy and to be stable in the sense of Lyapunov
norm between the input and output signals. It is possibié given by [17]: _
to measure performance aspects such as trajectory trackingDefinition 4.1: For the closed-loop system (29), withe

(29)

noise rejection, control saturation, etc. A C R!, if there exists a symmetric positive semi-definite
1) H.. norm extension for LPV systemket [11]: continuous matrix functiorP(§) that verifies:
2=T25v (24) . d
. . AT (0)P(d) + P(0)A(S) + —P(0)+
be the input/output relation of a closed-loop for an LPV - . dt (30)
system with zero initial conditions. The signal is an +y77C7(6)C(8) + P(6)B(0)B™ (6)P(6) <0

exogenous signal and is the error measure. The induced

then the closed looped system (29) has erfor-
norm is then defined as [11]: ped sy (29) has the p

mancey.
. In our opinion, this is a very “reassuring” condition: it

(J55 2T (t)=(t)dt)? assures stability and a minimum performance level. If this
ITeolli o = sup st I (25)  condition is verified, it is possible to simulate the system t

. . oo
d(Jadmissitle v() ( [= T (t)v(t)dt) justify its performance in particular situations, becatrszre
This is related to the “worst case scenario”. It is not thés the certainty that even in unexpected situations, thestvor
usual system performance, but an inferior bound for it, as gerformance possible is proved to be
is shown by thesup of all admissible trajectories of theup
of all admissible values (all the trajectories that verify)). V. SYNTHESIS

2) H> norm extension for LPV systemishe definition of  There are several possible strategies for the synthesis of
the H, norm here developed [1] is the largest amplificationy Gain Scheduled LPV controller, and here three different
caused by thempulse responséor ¢ that verifies (10). approaches are presented, one in detail. There is no “better

Consider them input LPV System: or “worse” between the two, it all depends on the type of
= A)z + [b1(8), .. ., b (8)]w problem bemg treated, the ;ystem regulation requirements
Sty L C(8)x (26) and computational tools available.

It is possible to decompose this systemminsubsystems, A. LFT Representation
S; where each input will be replaced for a non-zero initial

" . ) ) X This is a very useful model for LPV Systems, with
condition that is equivalent to an impulse input.

structured and efficient algorithms for synthesis, where th

i = A(0)as, 2:(0) = bi(6o) complexity is comparable to the synthesis of a LTI controlle
S; { 2 = O(0)a; (27)  [11]. However, one should be careful with this method, seen
’ that it can be restrictive in several practical applicadiofAn
interesting recent approach for LFT systems is given by [15]

m o where Parameter-Dependent Lyapunov functions are used for
vHy(S) = sup Z/ 2L ()2 (t)dt (28) the synthesis.
s(t)ea; =1 /o

The extension of thél; norm is then:

As this concerns the output energy, it measures an “usudp: LPV specific Synthesis Technique

performance of the system, the one that will be presented LPV specific techniques can be found in several works,
most of the time. These two last definitions generalizeven though the approach is often different from one to
to LPV systems the two principal results for performanceanother. The most appropriated from our point of view is the
evaluation. one in [12]. There are drawbacks as a possible dependence



on the derivative of the parameter, which can be a problem the local regulators for the next step. For example, use a
for several applications. pole-placement technique for each chosen local model
The development of this technique is long and as this  with the same number of poles/zeros.
is not the goal of this present work, it will not be done « Proceed to the actual Gain Scheduling, the Scheduling
here. But to make the synthesis of a LPV regulator, there law. As the same topology for each local model is
are severafunctionnal inequalitiedo verify (in the general imposed, a simple Gain/Pole/Zero interpolation results
case, polytopic domains reduce these to a finite set), and in an appropriated non-linear controller of the form
assumptions must be made to avoid the dependence on the (31). With this assumption there is no commutation, the
derivative. function is continuous.
The advantage of this method is obviously the fact that « Calculate the closed-loop.
there are no iterations, and performance and stability-spec This is a very light computational burden. But so far there
ifications are considered from the start. The inconvenignt jg o proof of any kind. Simulations could be used for non-
that is is more complex and computationally heavier than thgiical applications, but this is not the goal here. Soyéhe
Ad Hoctechniques. is the analysis phase:

C. Ad Hoc Techniques « Stability can be verified with a Parameter Dependent

The Ad Hoc techniques are those for which the perfor-  Lyapunov Function (Theorem (3.4)), seen that there is
mance and stability specifications are not considérpdori, a closed-loop LPV model. In polytopic domains, the
but should be verified after the synthesis procedure. As it is humber of LMl is finite, and this is often the case. For
intuitive to see, there is not an exact procedure for doifgy th example, as seen in [13], in a ship the domains of a

and it may vary with the experience of the engineer. From  two-dimensional Scheduling variable based on speed
our point of view, this type of method shows the interest of ~ and angle between the ship and the current form a
Gain Scheduling: with very simple methods it is possible to  rectangle, which is a polytopic domain. This particular

make the synthesis of very good non-linear regulators. paper is an example of application without theoretical
Even if there are no models, it is possible to make some Proof, where this particular procedure could had been

regulators with data tables issued from the plant behabir, used. Several other examples can be found for real

in this way there will not be analytical proofs of stability o applications, showing that this method of verification

performance. For this reason, in this section it is assumed i IS suited.

this section that the LPV Model was already obtained. « Performance is second to stability, given that stability is

The difference between the procedure here described and Primordial. Three strategies are possible, and from our
the specific one resides mainly in a simpler synthesis phase. Point of view the third one is the most appropriated:

In addition, there is a greater choice of techniques forlloca — Verify only local stability and simulate the global
regulator synthesis, where experience for particularieapl system. Global stability depends on local models,
tions can be used. Surprisingly, the procedure here destrib but this can be misleading, so for critical appli-
is not the “natural” procedure found in the literature, waher cations this is not the best choice, there can be an
usually one of the two cases arises: applications are pobtifi unexpected input that throws system’s performance
with simulations or a specific LPV technique is used. away from expected values.
Once the LPV model is defined (1), a controller with the — Use the norms extensions given by (25) and (28).
following structure is to be searched: This is the ideal test, but can anyway be compli-
cated to evaluate.
1) — — Use equation (30), in the first step, given that this
K(5(t)) : { zé)(t): Cﬁggg?}fé)@ T Bx(0®)y(t) test is based on a Parameter Dependent Lyapunov
(31) Function. With this test there is a minimum perfor-
So any non structured or non specific method that results mance assurance. If the conditions are met for this
in this representation, is aAd Hoctechnique. This choice test, it is possible to proceed to the simulation of
is obviously vital for the global system, so, what is propose the global system for the expected inputs, verifying
in this paper is the following technique. First, the synthes if the outputs are reasonable.
phase: If the analysis fails an iteration with another synthesis is
« Depart from an open-loop LPV model necessary. Most of the time, global results will depend on

« Grid the scheduling variable domain farlocal models the local models, so it is possible to know the direction to
(this should not be confused with griding a non-lineago during the local synthesis.
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