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Abstract

Theoretical models of sexual selection predict that both males and females of many species should benefit by selecting their
mating partners. However, empirical evidence testing and validating this prediction is scarce. In particular, whereas
inbreeding avoidance is expected to induce sexual conflicts, in some cases both partners could benefit by acting in concert
and exerting mutual mate choice for non-assortative pairings. We tested this prediction with the gregarious cockroach
Blattella germanica (L.). We demonstrated that males and females base their mate choice on different criteria and that
choice occurs at different steps during the mating sequence. Males assess their relatedness to females through antennal
contacts before deciding to court preferentially non-siblings. Conversely, females biased their choice towards the most
vigorously courting males that happened to be non-siblings. This study is the first to demonstrate mutual mate choice
leading to close inbreeding avoidance. The fact that outbred pairs were more fertile than inbred pairs strongly supports the
adaptive value of this mating system, which includes no ‘‘best phenotype’’ as the quality of two mating partners is primarily
linked to their relatedness. We discuss the implications of our results in the light of inbreeding conflict models.
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Introduction

A fundamental question raised by the evolution of mating

systems addresses the role of each sex in mate choice. This implies

understanding the keys used to select mating partners and how

and when they are used. For a long time, female mate choice has

been the paradigm and the large majority of studies on sexual

selection still focus on the role of females because of their higher

investment in gamete production and care of offspring [1–6].

However, recent evidence suggests that the importance of male

mate choice has been underestimated [7]. A growing number of

theoretical models predict that members of both sexes should be

selective when they incur similar reproductive costs, resulting in

assortative pairings of mate quality [8–14]. Mutual choosiness is

then expected to evolve in species that fulfil at least three

conditions: i) the quality of potential mates must vary substantially;

ii) reproduction constraints must be low when, for example,

encounter rates with potential mates are high; and iii) individuals

of both sexes must allocate valuable resources to their reproductive

effort so that investing in mating with one partner reduces their

ability to invest in other matings. However, empirical data testing

and validating these predictions remain relatively scarce [15–20].

In many species, individuals base their mate choice on genetic

relatedness [21], [22] to optimize genetic compatibility and avoid

costly inbreeding and/or outbreeding depressions [23–25].

Theoretical models also predict that close inbreeding could be

advantageous when the benefits from inclusive fitness exceed

inbreeding depression effects [26–30]. The advantage for each sex

to accept or to avoid inbreeding would thus depend, on the one

hand, on the strength of inbreeding depression and, on the other

hand, on characteristics of the mating system such as reproductive

investment [26], [29]. Theoretical models predict sexual conflict of

interest when only one sex receives a net benefit from inbreeding

avoidance. Outside this conflictual situation, mutual mate choice

should evolve when inbreeding costs are low and/or reproductive

investment is asymmetric between sexes thus favouring inbreeding;

or when inbreeding costs are high and/or reproductive investment

is symmetric between sexes thus favouring outbreeding [30].

Recently, Thünken et al. [31] clearly provided evidence for

mutual selectivity by males and females leading to adaptive

inbreeding in a cichlid fish with biparental care and no inbreeding

depression, suggesting that this species fits the conditions predicted

for the first no-conflict situation.

Here, we questioned whether mutual selectivity can lead to

adaptive inbreeding avoidance. We estimated independently: i)

selectivity of males; ii) selectivity of females; iii) criteria used by

each sex to choose their mating partners; iv) when during the

mating sequence these criteria were taken into account; and v)

reproductive success of pairings. The gregarious cockroach Blattella

germanica (L.) offers excellent opportunities to investigate these

questions. Its mating strategies remain largely unexplored

although its mating behaviour and its reproduction physiology

have been known for decades [32]. Contrary to Nauphoeta cinerea

[33], [34], i.e. the only cockroach species for which sexual

selection has been consistently studied, neither male nor female B.

germanica establish dominance hierarchies and intrasexual agonistic

interactions do not interfere with their mating success [35]. Our

previous investigations revealed that dispersion of adults between

aggregates is not the rule [36], [37], suggesting that encounter

rates between closely-related potential mating partners are high.
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Kin recognition by B. germanica cockroaches is independent of

familiarity and is mediated through antennal contacts with

cuticular compounds [38]. While most matings occur between

non-siblings [39], the roles of either sex in this mating decision

remain unknown.

We argue that B. germanica fulfils the three predicted major

requirements for the evolution of mutual mate choice as: i) mate

quality varies with levels of genetic relatedness between partners;

ii) gregariousness facilitates encounters with potential mates and

assessment of mate quality; and iii) males invest in long-lasting

courtships and costly spermatophores and females invest in costly

oothecae. For all these reasons, we hypothesized that both sexes

should benefit by avoiding close inbreeding and selecting non-

related mating partners. Here, we investigated for the first time,

mating preferences of both males and females, by analysing the

key steps of the mating sequence in detail. As within natural

aggregates cockroaches have the choice between more than one

potential mating partner at a time, we evaluated mating

preferences in simultaneous mate choice tests that mimic natural

situations better than sequential protocols. To take into account

behavioural constraints related to each step of the B. germanica

mating sequence (described below), males and females were tested

in different set-ups. Reproductive success of pairings estimated the

adaptive value of this mating system.

Materials and Methods

B. germanica mating sequence
When females reach sexual maturity, they adopt a calling posture

and release a volatile sex pheromone that attracts males [40]. Males

then establish antennal contacts with the females and, quickly,

partners face each other and fence with their antennae [32].

Perception of a non-volatile sex pheromone on the females’ cuticle

induces males to pursue their courting sequence [41]. Then males

turn around in front of the female, raise their wings perpendicularly

above their abdomens thus exposing their abdominal tergal glands

[42]. Females can be courted simultaneously by several males.

Courting males maintain this position until a female licks the tergal

gland secretions of one of them and mounts onto his abdomen [43].

The selected male pushes his abdomen further back under the

female and grasps her genitalia. Transfer of sperm and formation of

spermatophore last for more than 45 min [44]. Spermatophores

with high nitrogen contents provide nutritional resources beneficial

to females and their offspring [45]. Females mate only once in their

lifetime and produce successive oothecae until their death [46]. Each

ootheca contained approximately 35 full-siblings nymphs [39].

The succession of behavioural acts during a mating sequence

can be interrupted at any moment, when the appropriate stimulus

is missing or when the partner does not perform the expected act.

We focused on two key steps when each partner has to decide to

continue or to stop the sequence: i) antennal contacting that

triggers male wing raising and ii) male wing raising that triggers

female mounting.

Experimental animals
All experimental subjects came from our B. germanica laboratory

stock culture descending from approximately 100 wild individuals

collected in Rennes (France) in 1995. Cockroaches were reared in

large cages at 2561uC, under an artificial 12 h light-12 h dark

cycle and were provided water, turkey food pellets and cardboard

shelters ad libitum. Mature oothecae were collected from freely

mated gravid females and placed in individual rearing boxes

(80 mm in diameter 650 mm high) where they hatched. Nymphs

remained in groups of siblings until they became adult. Then, they

were marked with a spot of paint. From imaginal moult to the

beginning of tests, adults from a given ootheca were separated by

sex to preserve their virginity but remained grouped to avoid

delaying sexual maturation [47]. Experimental individuals were

divided into two categories: i) full-siblings from the same ootheca

(r = 0.5) called ‘‘siblings’’ and ii) individuals from different

oothecae (0#r,0.5) called ‘‘non-siblings’’. Familiarity between

individuals reared together has no impact on kin discrimination

abilities based on cues correlated with genetic relatedness [38–39].

Hence, although our experimental design means that related

individuals are also reared together we do not expect this common

environment to affect subsequent mate preferences.

Mate choice by males
Each virgin male was given a simultaneous choice between two

virgin partners that could be either siblings or non-siblings of the

subject. Males were tested in a Y-olfactometer where two calling

lures (described below) placed at the end of the arms constituted

the two potential mating partners (Figure 1). We used calling lures

instead of freely moving calling females to present males a fair

choice between two partners differing only by their relatedness, i.e.

emitting sex pheromone simultaneously and in similar quantities.

Olfactometer design. The glass Y-olfactometer was

composed of a starting stem (1 cm internal diameter, 10 cm long)

and two arms (1 cm internal diameter, 10 cm long) (Figure 1). A

glass stopper connected a cylindrical vial (2 cm internal diameter,

8 cm long) to each arm. Each vial was connected, with Teflon tubes,

via a T-connection, to a large glass container (300 ml). At the

extremity of the set-up, a pump (New-air, France) pushed charcoal-

purified humidified air at a constant flow rate (180 ml/min)

controlled by a flow meter (Brooks, USA) through the large glass

container and, equally, through the two arms of the olfactometer.

Calling lures. Calling lures had to fulfil three conditions: i)

both lures had to emit sex pheromone simultaneously to attract

males; ii) the sex pheromone had to come equally, i.e. in similar

quantities, from two different directions to give males a fair choice

between two distinct partners; iii) lures had to be able to perform

antennal contacts with test males to induce wing raising. To provide

identical sex pheromonal flows through each of the olfactometer

arms, 100 potentially calling virgin females were placed in a large

glass container to ensure sex pheromone emission during a test

(Figure 1). The sex pheromone flow was pushed equally from this

large glass container through the two olfactometer arms so that it

attracted males to the cylindrical vials at their extremity. To give

males a choice between two distinct partners, a cockroach was

placed in retention in a small plastic tube (1 cm long, 3 mm in

diameter) in each cylindrical vial (Figure 1). One end of the tube was

left open so that the head and antennae of the cockroach emerged.

Cockroaches in retention were either non-receptive females or

males, which meant that none of them emitted female sex

pheromone. These cockroaches in retention with free-moving

antennae, placed at the end of the olfactometer arms in the sex

pheromone flow, constituted calling lures. Lures were either females

or males. Relatedness between test males and calling lures was the

only independent variable used to test mate choice by males.

Behavioural tests. Males were tested in the olfactometer

seven days after their imaginal moult. Direct observations

recorded the activity of each male for 5 min. A male’s choice

was estimated by time spent in each arm, time spent antennal

contacting each lure and time spent courting (wing raising) in front

of each lure. First arm visited and latency of first courting in front

of each lure were also recorded.

Four experiments evaluated mate preference by males in relation

to their relatedness to the lures. Males were given a choice between:

Mutual Mate Choice
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exp. 1a) two sibling female lures (60 replicates); exp. 1b) two non-

sibling female lures (60 replicates); exp. 1c) a sibling female lure and

a non-sibling female lure (80 replicates); exp. 1d) a sibling male lure

and a non-sibling male lure (80 replicates).

Mate choice by females
Each virgin female was given a simultaneous choice between

two virgin males that could be either siblings or non-siblings of the

subject. The Y-olfactometer could not be used to test female

choice because receptive females adopt a stationary calling posture

to attract males. Therefore, each female was tested in experimen-

tal boxes (80 mm in diameter 650 mm high) where the three

individuals could move freely and where both males had the

possibility to simultaneously court the female. In this set-up,

females have the opportunity to exert a choice by actively

mounting onto the abdomen of one of the stationary courting

males. Although male-male interactions were possible, they were

not considered as a potential confounding variable of female

choice as there is no evidence that they influence mating success of

males [35]. Consequently, the only independant variable used to

test mate choice by females was the relatedness between test

females and males.

Tests started on the seventh day after female imaginal moult.

Scan samples were recorded by direct observation at 30 min

intervals, night and day, until mating occurred (range 7–11 days

after the imaginal moult). This interval between scans was chosen

because mating lasts more than 45 min. Scan data recorded the

total numbers of courting attempts by each male until mating

occurred and the identity of the male that mated.

Three experiments investigated mate preference of females in

relation to their relatedness to males. Females were given a choice

between: exp. 2a) two sibling males (45 replicates); exp. 2b) two

non-sibling males (170 replicates); exp. 2c) a sibling male and a

non-sibling male (79 replicates).

Reproductive success of pairs
Two hundred and seventy-five females that mated in experi-

ments 2 (exp. 2a: 41; exp. 2b: 160; exp. 2c: 74) were maintained in

isolation until their death (range: 61–337 days). To estimate their

fecundity, the numbers of viable nymphs hatching from each

ootheca were counted. As a female mated with only one male, the

total number of nymphs they produced estimated the reproductive

success of both mates.

Statistical analyses
Statistical analyses were performed using R 2.2.1. [48]. Wilcoxon

tests compared means of the recorded parameters (time spent in

olfactometer arms; antennal contact duration; courting latency;

courting duration; number of courting attempts; number of viable

nymphs). Binomial tests analysed binary data (arm choice; mate

choice). A generalized linear model (GLM procedure; [49]) with

binomial errors structure and logit link function analysed the effect of

relatedness between males and females on the tendency of males to

display courtship (courting attempts). GLMs with Poisson errors and

a one-way analysis of variance (ANOVA) investigated the effect of the

sex of calling lures on behavioural responses of males (time spent in

olfactometer arms; antennal contact duration; courting latency;

courting duration). An analysis of covariance (ANCOVA) also

evaluated the effects of variables affecting the reproductive success of

pairs (female lifespan; relatedness between mates).

Results

Mate choice by males
Male mating preference was evaluated by giving males a

simultaneous choice in a Y-olfactometer between two calling lures

that were either siblings or non-siblings of the test males.

When given a choice between two sibling female lures (exp. 1a,

Figure 2) or two non-sibling female lures (exp. 1b, Figure 2), none

Figure 1. Mate choice by males: glass Y-olfactometer. A male was given a simultaneous choice between two cockroaches in retention, one in
each small vial placed at the extremities of the olfactometer. A pump drew clean controlled air through a large vial containing calling females
(emitting volatile sex pheromone) and through the olfactometer arms. Cockroaches in retention with free antennae and placed in the flow of sex
pheromone constituted calling lures. They could be either males or females.
doi:10.1371/journal.pone.0003365.g001
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Figure 2. Mate choice by males. Four experiments evaluated mate preferences by males in relation to their relatedness to calling lures. Males
were given a choice between: exp. 1a) two sibling female lures; exp. 1b) two non-sibling female lures; exp. 1c) a sibling female lure and a non-sibling
female lure; exp. 1d) a sibling male lure and a non-sibling male lure. Test male behaviour was evaluated with: A) time spent with each calling lure in a
Y-olfactometer arm; B) antennal contact durations with each calling lure; C) courting latency for each calling lure; D) courting durations in front of
each calling lure. Open bars: sibling lures; grey bars: non-sibling lures. Means, in s, 6SE are shown. P = Wilcoxon test.
doi:10.1371/journal.pone.0003365.g002
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of the recorded parameters of the males’ courting investment (time

spent near a lure, antennal contact durations, courting latencies

and courting durations) were biased towards either of the lures.

Therefore, when the two female lures did not differ in their

relatedness to each other, males courted them equally. Conversely,

when given a choice between a sibling female lure and a non-

sibling female lure (exp. 1c, Figure 2), males biased all the

parameters of their courting investment towards non-sibling

female lures. To disentangle the role of males from any influence

of females in this decision, test males were given a choice between

a sibling male lure and a non-sibling male lure (exp. 1d, Figure 2).

In this situation, they spent significantly more time in the

olfactometer arm and antennal contacting with the non-sibling

male lure than with the sibling male lure (courting latencies and

courting durations did not differ significantly). Thus, in the

presence of two male lures that differed in their relatedness to each

other, test males persistently biased their courting investment

toward the non-sibling. Data from these four experiments (exp.

1a–d) revealed that males modified their courting investment in

relation to their relatedness to the calling lures, be they females or

males. Males always showed a strong preference for non-sibling

lures that always induced more vigorous courting displays. As

patterns of first visits did not differ significantly between

olfactometer arms, even when the relatedness between the two

lures differed (binomial test; exp. 1 a: P = 0.25, exp. 1b: P = 0.52,

exp. 1c: P = 0.58, exp. 1d: P = 0.43), males did not assess their

relatedness to the lure from a distance in the starting stem via an

airborne chemical message. This result consequently supports the

implication of antennal contacts in kin recognition and suggests

that they are a key step in the male’s decision to pursue courtship.

Although males biased their courting effort toward non-sibling

lures, be they females or males, comparisons between exp. 1c and

exp. 1d data revealed that sex of lures influenced the behavioural

responses of test males. As expected under our experimental

conditions, the calling pheromone flow attracted males from a

distance to the end of the olfactometer arms whatever the sex of

the lures. Although time spent in an olfactometer arm was not

influenced by the sex of calling lures (one-way ANOVA, F1,

318 = 0.24, P = 0.63), test males spent longer antennal contacting

male lures than female lures (GLM, x2 = 164.8, z = 12.59,

P,0.01), courting latency was longer when lures were males than

when they were females (GLM, x2 = 12.9, z = 3.6, P,0.01), and

males spent less time courting male lures than female lures (GLM,

x2 = 1398.4, z = 235.9, P,0.01) (Figure 2). These data indicate

that, in addition to relatedness, test males use antennal contact to

assess the sex of the encountered lure.

Mate choice by females
Female mating preference was evaluated by giving them a

simultaneous choice between two freely moving males in an

experimental box, until mating occurred. Males were either

siblings or non-siblings of test females.

When given a choice between two sibling males (exp. 2a, Figure 3)

or two non-sibling males (exp. 2b), females mated with the male that

displayed the most courting attempts. Similarly, in the presence of a

sibling and a non-sibling male (exp. 2c, Figure 3), females persistently

mated with the male that courted them the most vigorously. As non-

sibling males performed more courting attempts than sibling males

(non-siblings: 2.0060.28, siblings: 1.1660.18, W = 2580, P = 0.04),

females mated more often with non-siblings (70.89% mating) than

with siblings (siblings: 23, non-siblings: 56, binomial test, P,0.01).

These data support the fact that females are selective and that they

bias their choice towards males performing the most vigorous

courtships, these males more often happened to be their non-siblings.

Reproductive success of pairs
To estimate the reproductive success of pairs, successfully mated

females (exp. 2a–c) were maintained isolated in their experimental

boxes until their death. The total number of viable nymphs

produced by females was significantly influenced by their lifespan

and by their relatedness to males (ANCOVA, lifespan: F1, 275

= 38.02, P,0.01; relatedness: F1, 275 = 11.69, P,0.01). Inbred pairs

produced less offspring than outbred pairs (Figure 4). Numbers of

first ootheca offspring differed significantly between inbred and

outbred females. This difference remained significant for the

following oothecae and reached 13.54% at the females’ death

(Figure 4). The interaction between the two independent variables

was not significant (lifespan6relatedness: F1, 275: 1.16, P = 0.28).

Discussion

Our two complementary experiments (exp. 1–2) demonstrated

that both male and female B. germanica exert some degree of mate

choice. Although they use different mate selection criteria at

different steps during the mating sequence, resulting pairings

reveal selection for close inbreeding avoidance. Our reproductive

success data support the adaptive value of this mating system.

Mate choice by males
Males in large B. germanica aggregates have opportunities to

choose among simultaneously calling females with regard to their

relatedness. In our experiments, males clearly biased their courting

investment towards non-siblings female lures, suggesting male

mating preference based on their relatedness to females. As they

persistently preferred to court non-sibling partners, even when

they were male lures, we can discard the hypothesis of cryptic

information transfer (either chemical or mechanical) from females

to males that would influence male decision. Consequently, this

validates the hypothesis of precopulatory mate choice by males

and B. germanica can be added to the growing list of species for

which male mate selectivity has been reported [15–20], [31], [50–

52]. Contrary to many systems where males show a preference for

a given female phenotype, a system based on relatedness, like the

one we evidence here, includes no ‘‘best females’’, as the quality of

each female is primarily linked to her genetic relatedness to the

encountered males.

Our results also yield information about the role of antennal

contacts that occur at the beginning of the mating sequence. When

males encountered female lures, a few antennal contacts were

enough to trigger courting, whereas in the presence of male lures

antennal contacts increased and courting decreased. These

behavioural differences indicate that males assessed the sex of

the potential partner through perception of the contact sex

pheromone during the antennal contact phase. In addition,

although our experiment did not allow us to examine possible

roles of airborne pheromones, the fact that the first olfactometer

arm visited was chosen randomly, even when the two lures differed

in their relatedness, indicates that they did not select their mates

via an airborne message. This result confirms our previous results

in B. germanica [38] and is in agreement with reports on many other

insect species [53–56] where kin recognition cues are carried by

cuticular hydrocarbons and perceived through antennal contacts.

At the beginning of the mating sequence, antennal contacts allow

males to assess key information (sex and relatedness) concerning

the quality of the encountered partner and this helps them to

decide whether to invest or not in vigorous courting displays.

Antennal contacts may thus constitute a phase of chemical

assessment of female quality rather than courtship phase sensu

stricto.

Mutual Mate Choice
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Mate choice by females
After having attracted males in situ, calling B. germanica females

are simultaneously courted by several potential partners and thus

have the opportunity to exert actively a selection. In our

experiments, females mated with the male that courted them the

most vigorously. The absence of precopulatory intersexual

agonistic interactions in B. germanica [32], [35] indicates that

matings are not the result of potential male sexual coercion. Our

data reveal a precopulatory female choice for males displaying the

most vigorous courtships. As courtship vigour is strongly linked to

male relatedness to females, females mated more frequently with

non-sibling males than with sibling males. They thus seem to assess

male quality by using, in part, courtship vigour as a phenotypic

indicator. Nevertheless we cannot exclude that, as males, females

use genetic relatedness assessment during antennal contacts with

encountered partners to bias their choice towards non-siblings.

This preference for partners displaying the most intensive

courtship signals has been observed in many other species where

courtship vigour is used as a phenotypic indicator of fecundity [5].

Females that mated with siblings produced up to 13.54% less

viable nymphs than females that mated with non-siblings. By

choosing males displaying the most vigorous courtships, females

enhance their probability to mate with non-siblings and thus to

avoid reproductive success impairments. As B. germanica females

mate only once [46], this stresses the importance of being selective.

Conclusions
Our data revealed that B. germanica males and females express

mating preferences. Both sexes base their mate choice on different

criteria and select their partners at different steps of the mating

sequence. After responding to the calling sex pheromone, males

initiate antennal contacts with potential partners that give them

the necessary information to assess their sex, their relatedness and

to decide to invest or not in courtship. Males indicate their

motivation to mate with less closely related females by displaying

intense courtship sequences. As females primarily assess male

quality through courtship intensity, they consequently choose the

less closely related males. The resulting pairings are a consequence

of mutual mate choice that favours close inbreeding avoidance.

The impact on the reproductive success of pairs indicates the

importance of inbreeding costs in this species and the adaptive

value of this mating system. Our results suggest that this common

inbreeding avoidance strategy of males and females could be a key

for the preservation of genetic diversity in cockroach meta-

populations.

For the first time, we present empirical evidence of mutual mate

choice based on relatedness and leading to inbreeding avoidance.

This suggests that B. germanica males and females do not fall into

the sexual conflict zone initially predicted by Parker’s inbreeding

conflict model [26], [30] and recently revised by Kokko and Ots

[29]. Cockroaches may thus fulfil the requirements for which it

should pay both sexes to avoid inbreeding. Models predict that

species that incur high inbreeding costs and/or that present

symmetric reproductive investments by both sexes, should exert

mutual selectivity. Although inbreeding costs have been estimated

at 13.54% for B. germanica, our data did not allow us to quantify

clearly other parameters linked to the reproductive investment of

each sex (e.g. male courtship cost, spermatophore production cost,

oothecae production cost) that are necessary to draw further

conclusions. The emergence of mutual mate choice theory,

coupled with the growing amount of empirical evidence, indicates

Figure 3. Mate choice by females. Three experiments investigated mate preference of females in relation to their relatedness to males. Females
were given a choice between: exp. 2a) two siblings; exp. 2b) two non-siblings males; exp. 2c) a sibling and a non-sibling. Female mate choice was
evaluated in relation to the number of courting attempts by males. Open bars: mated males; grey bars: non-mated males. Means6SE are shown.
P = Wilcoxon test.
doi:10.1371/journal.pone.0003365.g003

Figure 4. Reproductive success of inbred and outbred pairs.
Cumulative mean number of viable nymphs produced per female (exp.
2a-c) in relation to ootheca production rank, until death of female.
Comparisons of total numbers of offspring between inbred (63
replicates) and outbred pairs (212 replicates) were significant for each
ootheca rank (Wilcoxon test, P,0.05). Solid line: inbred pairs; dotted
line: outbred pairs. Means6SE are shown.
doi:10.1371/journal.pone.0003365.g004
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the need to consider male selectivity as a confounding variable in

studies of female mate choice. Our study stresses that detailed

behavioural analyses of mating sequences are a good method to

revisit mating systems. These investigations would be of primordial

interest to test theoretical models and to improve the way we

understand sex roles.
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