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1. Introduction

This paper deals with the statics or the dynamics of a discrete or discretized mechanical system Rfree whose any coordi-
nate system is usually noted q ¼ ðq1; . . . ; qnÞ which especially means that Rfree is a n degree of freedom system. In this paper,
it is assumed that, after having started with different possible non linear settings, convenient assumptions and approx-
imations lead to a dynamic evolution governed by the following equation of motion of the free system Rfree:
M€X þ KðpÞX ¼ 0; ð1Þ
where KðpÞ ¼ KsðpÞ þ KaðpÞ with KsðpÞ ¼ 1
2 ðKðpÞ þ KTðpÞÞ and KaðpÞ ¼ 1

2 ðKðpÞ � KTðpÞÞ is generally a non-symmetric matrix
(KaðpÞ– 0), due to the possible non conservativeness of Rfree whereas M is symmetric definite positive. M is the mass matrix
and K ¼ KðpÞ is the stiffness matrix.

We may assume that there is an equilibrium configuration qe and (1) is derived from Lagrange equations by a lineariza-
tion process about qe. Then, X ¼ q� qe 2 Rn and all its derivatives with respect to the time are supposed first order small
quantities. The so-called circulatory elastic systems like Ziegler systems used in the last part for illustrating the results
are relevant examples of such systems. The load parameter p is a possible continuously increasing real parameter. In
Ziegler systems this is the value of the external follower force or an equivalent dimensionless parameter. Obviously, in this
case, M and K depend also on qe.



Nonconservativity of Rfree means in this framework that Rfree is a system whose at least one of the internal or external
actions does not derive from a potential or equivalently such that the total work of these actions between two states depends
on the path between these states or again such that there are closed loops with not nil energy balance. But we specifically
deal with systems whose nonconservative actions (internal and external) are only positional, namely depend only on the
positions of the particles of the system. For us, describing a system obviously involves the external actions acting on the con-
sidered mechanical system. The source of the nonconservativity of positional actions lies in the geometry properties of these
actions. As example, thinking again to the usual 2 degree of freedom Ziegler system with a complete follower force, it is well-
known that this force does not derive from a potential and that there is a mechanical cycle with a not nil energy balance. In a
linear framework as the one used in the paper, the mathematical signature of the nonconservativity of Rfree is the non sym-
metry of the stiffness matrix. From a dynamical point of view, such mechanical systems can exhibit flutter type instabilities.
This point is deeply investigating in the following.

The notion of stability that we refer to in this paper is the most common namely the Lyapunov stability: a small per-
turbation of initial conditions leads to a small (kinematic) response of the system (around the equilibrium configuration).
Throughout this paper, this is always understood in a linear meaning, namely for the dynamical system governed by (1).
On the other hand, the types of stability we investigate are mainly the two types of linear stability: the divergence type
and the flutter one. The third used criterion we will also refer to is the so-called second order work criterion (SOWC).

We now introduce the new concept of kinematical structural stability (ki.s.s.). We say that a (stability) criterion is kine-
matical structurally stable (ki.s.s.) if this criterion is still satisfied for any constrained system Rcons built from Rfree by adding
kinematic constraints. Here kinematic constraints mean holonomic linear kinematic constraints. For example unilateral con-
straints that may be only piecewise linear and then non smooth are not taken into account. Moreover, it is supposed that
additional kinematic constraints do not perturb the validity of the linear setting of (1). Especially, when an equilibrium con-
figuration qe is involved, qe does not change under these additional kinematic constraints. For example, the well-known
counter-example of Tarnai [1] for conservative systems does not fall within the areas of our investigations. The associated
concept is the kinematical structural stability (ki.s.s.) of the corresponding criterion. We also speak about the ki.s.s. of the
corresponding type of stability. Thus we will speak about divergence ki.s.s. and flutter ki.s.s. Mathematically speaking, if
½0; p�free½ is the stability domain of Rfree for the investigated criterion and if ½0; p�cons½ is the corresponding stability domain of
Rcons, the ki.s.s. issue deals with the link between ½0; p�free½ and ½0; p�cons½ for any Rcons. The ki.s.s. holds when ½0; p�free½� 0; p�cons½
or when, p�free 6 p�cons for any Rcons. In such a case, we also speak about universal ki.s.s.

Since Rayleigh’s works, it is well-known that adding kinematic constraints to a stable conservative system improves its
stability and the only mode of instability is divergence instability. Thanks to the Rayleigh quotient and more generally to the
variational formulation of the divergence criterion by using quadratic form language, the kinematical structural stability for
the divergence criterion of conservative elastic systems is ensured: the divergence stability criterion is then kinematically
structurally stable for conservative systems. Another way to sum up the results for conservative systems is to say that diver-
gence ki.s.s. is universal for conservative systems.

For a couple of years, the same ki.s.s. issue of divergence ki.s.s. but for elastic non-conservative systems has been inves-
tigated. Several results have been proved and are now summarized (see for example [2,3] for detailed developments).

Let psw be the smaller positive root of detðKsðpÞÞ ¼ 0. As long as 0 6 p < psw then detðKðpÞÞ > 0 and we then say that the
second order work criterion (SOWC) holds. For p ¼ psw the SOWC then fails. This criterion involving only the stiffness matrix
KðpÞ and especially its symmetric parts KsðpÞ has first been proposed by Hill [4] for the investigation of uniqueness issues for
incremental formulation for non associative plasticity and has been studied extensively since Hill’s work (see for example
[5–7]) in the framework of continuous media.

This criterion has also been recently reinvestigated independently for discrete systems [8] especially for elastic systems
subjected to non-conservative follower forces namely the so-called nonconservative systems in this paper. Although these
kinds of systems had been considered as unrealistic for many years [9], they have been rehabilitated in a recent paper and its
experimental associated device [10] (see also [11]).

As mentioned above, surprisingly, the SOWC more recently reappeared in a completely different way in the framework of
the divergence ki.s.s. for nonconservative systems.

Roughly speaking, the method presented in [2,3] for investigating the stability of a system subjected to m additional con-
straints is the following:

� First, the size of the dynamic system is extended by introducing Lagrange’s multiplier K, the n� n stiffness matrix KðpÞ in
(1) becoming an ðnþmÞ � ðnþmÞ matrix Kðp;KÞ.
� Secondly, the stability is characterized by an algebraic condition on detðKðp;KÞÞ.
� Thirdly, the trick of Schur’s complement formula on detðKðp;KÞÞ is used.
� Finally, the nature of KsðpÞ ‘‘naturally’’ emerges after these transformations and the constrained system remains diver-

gence stable if det KsðpÞ– 0. Continuity arguments lead more precisely to det KsðpÞ > 0: this is the SOWC for the initial
free system Rfree.

Thus, the natural emergence of the SOWC by considerations about constrained systems leads us here to investigate the
issue of the stability behavior of any constrained system Rcons by referring to the stability behavior of the free system Rfree. As
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mentioned above, the unconditional stability of the constrained systems Rcons is called the universal divergence ki.s.s. Even
though the concept of ki.s.s. has never been defined until now – to the best of our knowledge –, the already known results
about the ki.s.s. may then be summarized as follows:

� For a conservative system Rfree, no additional kinematic constraint may destabilize a (divergence) stable system for any
load parameter One will then talk about universal ki.s.s. for the divergence of conservative systems.
� For a non-conservative system, as far as the second order work criterion is satisfied (p < psw), no additional kinematic con-

straint may destabilize a (divergence) stable system by divergence. When (p ¼ psw), the non-conservative system may be
destabilized (for the divergence criterion) by adding one or several kinematic constraints and this (or these) constraint(s)
may be chosen on the image by K�1ðpswÞ of the isotropic cone of the quadratic form associated with KsðpÞ. One will then
talk about conditional ki.s.s. for the divergence of elastic non conservative systems (see again [2,3]).
� The second order work criterion itself is always kinematically structurally stable and coincides with the divergence cri-

terion for conservative systems. Therefore, the second order work criterion is universally ki.s.s.

In this paper, we systematically tackle the divergence ki.s.s. issue for non conservative systems through a completely dif-
ferent approach from the one used in our previous papers [2,3]: a variational formulation will be used to handle the problem.
There are at least three underlying reasons to do so:

1. The first one is historical. Indeed, the first results about the ki.s.s. issue date back to the XIXth century (see Rayleigh’s

work, see [12] for example). They come from considerations about Rayleigh’s quotient RðXÞ ¼ XT KX
XT MX

for conservative sys-
tems which is nothing else than a variational formulation allowing to evaluate especially the lower eigenfrequency
x2

1 ¼minX2Rn RðXÞ. The strict positivity of x2
1 may be, as is well-known, linked to the divergence stability. It can be

noticed that, in this case, the (divergence) ki.s.s. seems to be an obvious consequence of this formulation because the
minimum of R on a subspace cannot be lower than the one on the whole space. The fact that the elimination of
Lagrange’s multiplier does not affect Rayleigh’s quotient is rarely highlighted although it is absolutely necessary to vali-
date the reasoning. This fact will be highlighted hereafter.

2. The second one is geometrical. Indeed, as mentioned in the previous reasoning, adding constraints is clearly associated
with the geometric operation of a projection. In fact, it is apparently more than a simple projection as it consists more
precisely of a double projection (namely which is called a compression in mathematics) that appears clearly through a
variational formulation of the criteria. This provides a complete coordinate free formulation of the ki.s.s. according to
any kind of criterion.

3. The third one is epistemological: a double and complementary (more than opposite) way to tackle an issue may shed light
on the matter.

We first start by recalling the usual forms of the criteria involved and by building a variational formulation for the diver-
gence stability especially for non conservative systems with non symmetric stiffness matrices. The second part deals with
the issue of additional kinematic constraints, the systematic elimination of Lagrange’s multiplier and finally the general rule
to study any ki.s.s. We then take the opportunity of this rule to derive a coordinate free geometric formulation. The third
section focuses on the application of this rule to divergence ki.s.s. As previously claimed, this original formulation allows
one to find again, but in a completely independent way, the main results recently obtained in [2,3] for example. In the last
section, general considerations on the flutter stability criterion conclude this paper, this difficult issue being dealt with in a
forthcoming paper. Let us specify what means a variational form at once. It simply means that the criterion is formulated
with a variable (noted X in the text because it is often a usual vector X of Rn in the applications) so that this variable is
any in a set and so that the formulation always begins by ‘‘8X 2 . . .’’. For us, it does not necessary imply calculus of variations
(for example the variable does not necessary allow differential calculation and could belong to a discrete set).

2. General considerations about stability criteria of elastic systems

2.1. Usual approaches

Let us remember that we assume that for p ¼ 0 the corresponding system is a conservative stable system with a symmet-
ric positive definite stiffness matrix Kð0Þ. The load parameter p is continuously increasing. We shall distinguish three criteria
in investigating of stability of the dynamics governed by (1).The first one, called instability by divergence, also corresponds to
the loss of uniqueness of the solutions of
KðpÞX ¼ 0; ð2Þ
where the inertial terms (here the mass matrix M) are not involved. pd is then the corresponding critical load of (in) stability
and may be defined as the minimal positive value of the p solution of
detðKðpÞÞ ¼ 0: ð3Þ
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Because of the assumption on the loading path, the usual criterion of divergence stability reads:
detðKðpÞÞ > 0: ð4Þ
The second criterion of stability is not, strictly speaking, a stability criterion because there is no direct relationship
between this criterion and the Lyapunov stability of (1). As previously mentioned in the introduction, it was first formulated
by Hill in the years 1958–1959 in an incrementally non linear framework for associated and/or non associated plasticity
[13,4] and independently proposed in 2004 by Absi and Lerbet [8] in the framework of structural stability. It is however
directly linked with the divergence stability criterion because as long as it holds, the divergence stability of the system is
ensured. The so-called second order work criterion consists in assuming that the quadratic form X # XT KðpÞX is definite
positive. That criterion only involves the symmetric part KsðpÞ of KðpÞ and the critical load psw for the second order work
criterion can be viewed as the minimal positive value such that there is X – 0 2 Rn with X # XT KðpswÞX ¼ 0. It may be also
algebraically defined by the equation detðKsðpÞÞ ¼ 0 and psw is then the minimal positive value of the p solution of
detðKsðpÞÞ ¼ 0. It is worth noting that the second order work criterion is first defined by the variational formulation.
XT KðpÞX > 0 8X – 0: ð5Þ
The algebraic equation
detðKsðpÞÞ ¼ 0 ð6Þ
characterizing the failing of the second order work criterion is deduced as a consequence and by use of continuity of the
increasing loading, (5) is equivalent to
detðKsðpÞÞ > 0: ð7Þ
The characteristic equation or the eigenvalues equation of RfreeðpÞ reads
Pðp; sÞ ¼ detðKðpÞ þ sMÞ ¼ 0:
Taking advantage of definite positivity of M allows us to consider a square root S of M and putting ~KðpÞ ¼ S�1KðpÞS�1 leads to
the equivalent characteristic equation:
detð~KðpÞ þ sIÞ ¼ 0: ð8Þ
Investigating flutter is often presented as evaluating a critical value pf of the loading parameter p such that Pðpf ; sÞ has a mul-

tiple root s�. The flutter critical load must preferably be thought as a value pf of p when ~Kðpf Þ fails to be diagonalizable in R.
However, we first follow the usual way involving the vanishing of the discriminant of Pðp; sÞ assuming that the eigenvalues
are simple for p ¼ 0.

It is well-known since Galois’ work that, for polynomials of degree P 5, there is no formula allowing one to calculate the
roots of s # Pðp; sÞ as functions of coefficients akðpÞ of Pðp; :Þ defined by:
Pðp;XÞ ¼
Xn

k¼0

an�kðpÞXk ¼ a0ðpÞXn þ . . .þ anðpÞ: ð9Þ
Nevertheless, the concept of discriminant remains valid for investigating the existence of multiple roots of a polynomial (see
for example [14]). It is formally possible to calculate the discriminant DðpÞ of Pðp;XÞ but the mathematical expression is cum-
bersome. It is, roughly speaking, the resultant of Pðp;XÞ and of its derivative P0ðp;XÞ; this is a determinant built from coeffi-
cients of Pðp;XÞ and P0ðp;XÞ. The algebraic criterion for calculating the flutter critical load pf then reads: pf is the minimal
positive root of
DðpÞ ¼ 0: ð10Þ
Thus, as mentioned above, supposing that the eigenfrequencies are all simple for p ¼ 0, by continuity of the determinant and
of the loading path the flutter stability criterion reads
DðpÞ > 0 ð11Þ
without forgetting that (10) is only a necessary condition of flutter instability whereas (11) is only a sufficient condition of
flutter stability.

We then have three criteria in hand. For one of these, meaning the second order work criterion, (5) and (7) are respec-
tively the algebraic and variational formulations. For the other two criteria, the divergence and flutter (in) stabilities criteria,
(4) and (11) are respectively their algebraic formulation. We will now focus on the divergence criterion.

2.2. Variational and minimization formulations of divergence stability

As a rule, the variational formulation may be split into a pure variational form and a so-called minimization formulation.
The variational form always reads:
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8X 2 D; PrðXÞ; ð12Þ
where D � Rn and PrðXÞ a logical property right that is true for the concerned X. This often looks like
8X 2 Dh; hðXÞ > 0; ð13Þ
where h is a real valued function defined on D � Dh.
Minimization formulation of linear criteria often occurs as follows:
min
X2Dm

jðXÞ > 0; ð14Þ
where j is a real values function defined on D � Dm.
For example, for the SOWC, the variational formulation (13) reads with D ¼ Rn n f0g and hðXÞ ¼ XT ~KX ¼ XT ~KsX whereas

the minimization formulation (14) involvesDm ¼ SnðRÞ and jðXÞ ¼ XT ~KX ¼ XT ~KsX ¼ hðXÞ orDm ¼ D ¼ Rn n f0g and jðXÞ ¼ jðXÞ
XT X

.
The same frame is the one of divergence of conservative systems but, to the best of our knowledge, it has never been noted
that it can be extended to the divergence of non conservative systems when K is no longer symmetric.

Indeed, (4) means that KðpÞ remains invertible or that KðpÞX ¼ 0) X ¼ 0 or equivalently:
jjKðpÞXjj ¼ 0) X ¼ 0:
The divergence algebraic criterion can therefore be converted into the variational form (13) with D ¼ Rn n f0g but now with
hðXÞ ¼ XT ~KT ~KX and the minimization formulation (14) with Dm ¼ SnðRÞ and again jðXÞ ¼ XT ~KT ~KX. The SOWC and the diver-
gence criterion involve three quadratic forms q; a and b defined by:
qðXÞ ¼ XT X; ð15Þ

aðXÞ ¼ XT ~KX ¼ XT ~KsX; ð16Þ

bðXÞ ¼ XT ~KT ~KX: ð17Þ
Note that for the SOW and divergence criteria, the mass matrix is not involved and ~K may be replaced by K. Likewise, we can
systematically substitute each map j by j

q and each Dm ¼ SnðRÞ by Dm ¼ Rn n f0g. Finally a variational approach for flutter
does not exist so far. Some remarks about flutter ki.s.s are reported at the end of this paper and this problem will definitively
be tackled in a forthcoming paper.

3. Additional kinematic constraints and the quadratic forms q; a; b

3.1. Elimination of Lagrange’s multipliers

Consider now a family of m independent additional kinematic constraints C ¼ ðC1; . . . ;CmÞ acting on the free system R
also denoted Rfree. The resulting constrained system is called RconsðCÞ.

In a first step, we systematically eliminate Lagrange’s multiplier K. This has already been done in previous other papers
like in [15] but we quickly recall the main calculations.

The linear framework leads to model each kinematic constraint C j by a linear relationship
Pn

k¼1c j
kxk ¼ 0. Thus C j is repre-

sented by and identified with a vector C j ¼ ðc j
1; . . . ; c j

nÞ of Rn (actually it is a linear form on Rn but, through the canonical sca-

lar product, we can identify Rn and its dual space). The family of m constraints fC1; . . . ;Cmg can be considered as an element
of an nm-dimensional vector space and for instance as an n�m matrix C ¼ ðC1 . . . CmÞ 2 MnmðRÞ, more precisely C 2 GnmðRÞ,
the open subset of matrices of MnmðRÞ with rank m because of the independency of the constraints. Thus
CT ¼
C1T

..

.

CmT

0
BB@

1
CCA ¼

c1
1 . . . c1

n

..

. ..
. ..

.

cm
1 . . . cm

n

0
BB@

1
CCA
(every vector CiT ¼ ðci
1 . . . ci

nÞ could be normalized by CiT Ci ¼ 1).

Let K 2 Mm1ðRÞ with KT ¼ ðk1 . . . kmÞ the Lagrange multiplier attached to the constraints. The equation of motion (1)
valid for the non constrained system Rfree changes and reads, for the constrained system RconsðCÞ:
CT :X ¼ 0; ð18Þ

M€X þ KðpÞX þ CK ¼ 0: ð19Þ
Using the change of variables Y ¼ SX where S is a square root of M and multiplying by the left by S�1 the Eqs. (18) and (19)
leads to:
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AT
:Y ¼ 0; ð20Þ

€Y þ ~KðpÞY þ AK ¼ 0 ð21Þ
with A ¼ S�1C and ak the kth column of A for k ¼ 1; . . . ;m.
If B is a subset of a vector space E, we note VectðBÞ the vector subspace spanned by B and B? the subspace of E orthogonal

to all the vectors of B. Thus VectðB?Þ ¼ ðVectðBÞÞ? ¼ B? for any subset B � E. Let TðAÞ ¼ Vectfa1; . . . ;amg and let HðAÞ ¼ TðAÞ?

be the orthogonal to TðAÞ in Rn identified with Mn1ðRÞ. Thus dimTðAÞ ¼ m and dimHðAÞ ¼ n�m.
Let ðt1ðAÞ; . . . ; tmðAÞÞ be an orthonormal basis of TðAÞ (built by the Gramm–Schmidt method from ða1; . . . ;amÞ for example)

and another one ðhmþ1ðAÞ; . . . ;hnðAÞÞ of HðAÞ such that BðAÞ ¼ ðt1ðAÞ; . . . ; tmðAÞ;hmþ1ðAÞ; . . . ;hnðAÞÞ is an orthonormal basis of
Rn and let P ¼ PðAÞ 2 OnðRÞ the orthogonal matrix passing from the canonical basis Bc of Rn to BðAÞ:
P ¼ PðAÞ ¼mat t1ðAÞ . . . tmðAÞ hmþ1ðAÞ . . . ;hnðAÞ;Bcð Þ:
Let Z 2 Mn1ðRÞ be defined by Y ¼ PðAÞZ. The previous system (20), (21) reads:
ðPðAÞT AÞ
T
Z ¼ 0; ð22Þ

€Z þ PTðAÞ~KðpÞPðAÞZ þ PðAÞT AK ¼ 0 ð23Þ
because PTðAÞPðAÞ ¼ In. Considering ~KconsðA; pÞ 2 Mn�mðRÞ the square submatrix of PTðAÞ~KðpÞPðAÞ built by removing the first
m rows and the first m columns of PTðAÞ~KðpÞPðAÞ, we get the following equations of the constrained system without
Lagrange’s multiplier:
€Zcons þ ~KconsðA;pÞZcons ¼ 0; ð24Þ
where ZT
cons ¼ ðzmþ1 . . . znÞ 2 M1n�mðRÞ.

Parameter p is now omitted to clarify the notations. Decomposing the matrix PTðAÞ~KPðAÞ by blocks leads to:
PTðAÞ~KPðAÞ ¼
R~K;A L~K;A

C ~K;A
~KconsðAÞ

!

with R~K;A 2MmmðRÞ; L~K;A 2 Mmn�mðRÞ; C ~K;A 2 Mn�mmðRÞ; ~KconsðAÞMn�m n�mðRÞ. More accurately, the block decomposition
reads here (p is omitted):
~KconsðAÞ ¼
hT

mþ1ðAÞ~Khmþ1ðAÞ . . . hT
mþ1ðAÞ~KhnðAÞ

..

. ..
. ..

.

hT
nðAÞ~Khmþ1ðAÞ . . . hT

nðAÞ~KhnðAÞ

0
BB@

1
CCA:
3.2. Expression of quadratic forms for constrained systems

The main goal of this section is first to give the formulation of Prcons from the mechanical data of the problem (matrices
M; K; ~K; C; A; HðAÞ; TðAÞ) for both criteria (divergence and SOW) and secondly to find the link between Prfree and Prcons for
the variational formulations of each criterion as well. Obviously Prfree and Prcons relate to the variational formulations for Rfree

and Rcons respectively.
Because they are functions of the quadratic forms q; a and b, the first and main step is to give the expression of qcons; acons

and bcons in order to find the possible relationships between the quadratic forms qfree; afree; bfree and qcons; acons; bcons. The
relationship between the restriction of qfree; afree and bfree to HðAÞ and qcons; acons and bcons is now the subject of analysis.

If Y ¼ ðy1; . . . ; ynÞ 2 Rn �Mn1ðRÞ, we note Z ¼ ðz1; . . . ; znÞT ¼ ðZT
1 ZT

2Þ
T 2 Rn �Mn1ðRÞ such that Y ¼ PðAÞZ. Thus, Y 2 HðAÞ if

and only if Z1 ¼ 0. Because they are quadratic forms, the values of q; a; b are invariant under the action of the orthogonal
group OnðRÞ. This leads to qðYÞ ¼ qðZÞ; aðYÞ ¼ aðZÞ; bðYÞ ¼ bðZÞ. With obvious notations, calculations then give for all
Y 2 HðAÞ:
qfreeðYÞ ¼ qconsðZ2Þ; ð25Þ

afreeðYÞ ¼ aconsðZ2Þ; ð26Þ

bfreeðYÞ ¼ bconsðZ2Þ þ badðZ2Þ: ð27Þ
h Calculations are carried out only for the quadratic form b. The subscript ‘‘ad’’ refers to ‘‘additional’’. For Y 2 HðAÞ, mean-

ing for Z ¼ ð0 ZT
2Þ

T ¼ PðAÞ�1Y ¼ PðAÞT Y:
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bfreeðYÞ ¼ bfreeðZÞ ¼ ð0T ZT
2Þ

RT
~K;A CT

~K;A

LT
~K;A

~KT
consðAÞ

!
R~K;A L~K;A

C ~K;A
~KconsðAÞ

 !
0
Z2

� �
leading to
bfreeðZÞ ¼ ðZT
2LT

~K;A ZT
2
~KT

consðAÞÞ
L~K;AZ2

~KconsðAÞZ2

!
¼ ZT

2LT
~K;AL~K;AZ2 þ ZT

2
~KT

consðAÞ~KconsðAÞZ2 ¼ ZT
2LT

~K;AL~K;AZ2 þ bconsðZ2Þ: ð28Þ
It then follows that
badðZ2Þ ¼ ZT
2LT

~K;AL~K;AZ2:
However, even if we may obtain a lot of informations about the SOW and divergence ki.s.s. from these relations, let us go
further in investigating the functions ncons; acons; bcons.

If Z2 ¼ ðzmþ1; . . . ; znÞ 2 Rn�m �M1 n�mðRÞ, put Y2 ¼
Pn

k¼mþ1zkhkðAÞ 2 HðAÞ. Remember that, for all k; ‘; hkðAÞT h‘ðAÞ ¼ dk‘

while hkðAÞhT
‘ ðAÞ ¼ Pk‘ðAÞ with PkkðAÞ2 ¼ PkkðAÞ the projection matrix on VectðhkðAÞÞ and Pk‘ðAÞ2 ¼ 0 when k – ‘. Thus
Xn

k¼mþ1

PkkðAÞ ¼ PHðAÞ
is the projection matrix on HðAÞ.
For all 1 6 i; j 6 n�m, calculations successively give:
ðKconsðAÞÞi;j¼ hmþiðAÞ~KhmþjðAÞ;
ðKT

consðAÞÞi;j¼ hmþjðAÞ~KhmþiðAÞ¼ hmþiðAÞ~KT hmþjðAÞ;

ðKT
consðAÞKconsðAÞÞi;j¼

Xn�m

k¼1

hmþiðAÞ~KT hmþkðAÞhmþkðAÞ~KhmþjðAÞ¼hmþiðAÞ~KT
Xn�m

k¼1

hmþkðAÞhmþkðAÞ~KhmþjðAÞ¼ hmþiðAÞ~KT PHðAÞ ~KhmþjðAÞ:
We then deduce:
qconsðZ2Þ ¼ ZT
2Z2 ¼ YT

2Y2 ¼ qAðY2Þ ¼ qfreeðY2Þ;
aconsðZ2Þ ¼ ZT

2
~KconsðAÞZ2 ¼ YT

2
~KY2 ¼ aAðY2Þ ¼ afreeðY2Þ;

bconsðZ2Þ ¼ ZT
2
~KconsðAÞT ~KconsðAÞZ2 ¼ YT

2
~KT PHðAÞ ~KY2 ¼ bAðY2Þ – bfreeðY2Þ;
which defines qA; aA; bA.
In fact, the matrix of an orthogonal projection in an orthonormal basis is idempotent and symmetric. The above expres-

sions highlight the relationships between the quadratic forms of the free system and those of the system constrained by the
family C ¼ SA of kinematic constraints: qA; aA; bA are exactly qfree; afree; bfree after substituting ~K by PHðAÞ ~KPHðAÞ ¼
PT

HðAÞ
~KPHðAÞ ¼ PHðAÞ ~KPT

HðAÞ ¼ PT
HðAÞ

~KPT
HðAÞ ¼ ~KðAÞ when acting on Y 2 HðAÞ satisfying Y ¼ PHðAÞY . Indeed, if Y ¼ PHðAÞY 2 HðAÞ, then
aAðYÞ ¼ YT ~KY ¼ YT PT
HðAÞ

~KPHðAÞY ¼ YT ~KðAÞY

bAðYÞ ¼ YT ~KT PHðAÞ ~KY ¼ YT ~KT PHðAÞPHðAÞ ~KY ¼ YT PT
HðAÞ

~KT PT
HðAÞPHðAÞ ~KPHðAÞY ¼ YT PHðAÞ ~KT PHðAÞP

T
HðAÞ

~KPHðAÞY ¼ YT ~KTðAÞ~KðAÞY :
Finally these last expressions give the same results when adding to Y ¼ PHðAÞY 2 HðAÞ any vector belonging to

TðAÞ ¼ HðAÞ? ¼ KerPHðAÞ so that these relations remain valid for any vector Y 2 Rn.

3.3. Compression of operators

To conclude this section, let us highlight the above formulation from a more geometrical point of view. Let u 2 LðEÞ be the
linear map of E ¼ Rn whose matrix in the canonical basis of Rn is ~K . Forget that E ¼ Rn, suppose only that E is an euclidean
space and that ðjÞ is the scalar product. If F is a vector subspace of E let us note uF ¼ p 	 ujF 2 LðFÞ where ujF is the restriction
of u to F and p the orthogonal projector on F. Thus, with these notations, aðxÞ ¼ ðxjuðxÞÞ; bðxÞ ¼ ðuðxÞjuðxÞÞ; aAðxÞ ¼
ðxjuHðAÞðxÞÞ; bAðxÞ ¼ ðuHðAÞðxÞjuHðAÞðxÞÞ and from now on, we will do the reasoning with these geometric notations.

The element
uF ¼ p 	 ujF 2 LðFÞ ð29Þ
is usually called the compression of u to F. This concept may be extended to Hilbert spaces (see 4.4) and is the good frame-
work to deal with the ki.s.s. for continuous media. (For more precisions about compressions of operators see for exam-
ple[16]). From a mechanical viewpoint, the mathematical operation of the compression on F of the operator K or ~K is
7



exactly the process the operator must undergo in order that the dynamics takes place on the subspace F, namely for the
corresponding degree of freedom reduced dynamics.
4. Consequences and variational formulation

4.1. Second order work criterion

According to the first section, the variational formulation of SOWC involves j ¼ a
q. But for every subspace F of E and for

every x 2 F; aFðxÞ ¼ ðxjuFðxÞÞ ¼ ðxjp 	 uðxÞÞ ¼ ðpðxÞjuðxÞÞ ¼ ðxjuðxÞÞ ¼ aðxÞ and obviously qFðxÞ ¼ ðxjxÞ ¼ qðxÞ. We then deduce
that
min
x�2Fnf0g

jFðxÞ ¼ min
x�2Fnf0g

jðxÞP min
x�2Enf0g

jðxÞ;
which implies the universal SOWC ki.s.s. Note that the same reasoning is still valid for divergence of conservative elastic sys-
tems as is normally used in structural mechanics. The fact that aFðxÞ ¼ aðxÞ or with previous notations that afreeðYÞ ¼ aconsðZ2Þ
((26)) is the key explaining how and why, for conservative elastic systems, the spectrum of the constrained system obtained
through Rayleigh’s quotient Rcons ¼ acons

qcons
may be calculated by the restriction of Rayleigh’s quotient Rfree ¼

afree

qfree
of the free sys-

tem to the subspace defined by the constraints. It then also explains -without any calculation whatsoever- why a system
constrained from a divergence stable free system may not be divergence unstable, thus signing the universal ki.s.s. of con-
servative elastic systems.

On the contrary, for the non conservative elastic systems, the previous Eq. (27)
bfreeðYÞ ¼ bconsðZ2Þ þ badðZ2Þ
and the divergence stability variational formulation involving the quadratic form b show that we cannot consider the simple
restriction of the functions h or j involved in this variational formulation. That suggests that the ki.s.s. is probably no more
universal but eventually only conditional. It is now tackled in the following paragraph by using the intrinsic geometric
language.
4.2. Divergence stability criterion

According to the first section, the variational formulation of divergence involves j ¼ b
q in the general case where the sys-

tem is no longer elastic conservative. Clearly, there are subspaces F of E and some x 2 F, with bFðxÞ ¼ ðuFðxÞjuFðxÞÞ ¼
ðp 	 uðxÞjp 	 uðxÞÞ– ðuðxÞjuðxÞÞ. It follows that the divergence ki.s.s. can only be conditional. In fact, we already know (see
for example [2] or [3]) and we already reported in the introduction, that, as long as the second order work criterion holds,
the ki.s.s. of the divergence stability criterion is ensured and that when the second order work criterion fails, the ki.s.s. of the
divergence stability criterion fails as well. The approach used in [2] or in [3] was then purely algebraic and is very remote
from the one used here. We will now show however that we can find the same results thanks to this new approach.

First, suppose that u is no longer positive definite and let x� – 0 such that ðx�juðx�ÞÞ ¼ 0. This means that the SOWC fails
and that x� belongs to the isotropic cone CðusÞ. Because the free system Rfree is supposed divergence stable, meaning that u is
invertible, we then have uðx�Þ – 0. Let us choose a constraint C such that F ¼ HðAÞ ¼< uðx�Þ>? meaning TðAÞ ¼< uðx�Þ >.
Thus x� 2 HðAÞ ¼ F because ðx�juðx�ÞÞ ¼ 0. Thus, uFðx�Þ ¼ p 	 uðx�Þ ¼ 0 and then bFðx�Þ ¼ ðuFðx�ÞjuFðx�ÞÞ ¼ 0. The constrained
system is divergence unstable and the constraint C must be chosen so that A ¼ u�1ðx�Þ.

Reciprocally, suppose that divergence ki.s.s. fails for a family A of constraints. Then there is x� 2 HðAÞ n f0g such that
bHðAÞðx�Þ ¼ 0 or uHðAÞðx�Þ ¼ 0 in E. Thus p 	 uðx�Þ ¼ 0 meaning that uðx�Þ 2 HðAÞ? ¼ TðAÞ and then ðx�juðx�Þ ¼ 0 signing the loss
of SOWC. This above double implication then gives exactly the same results as those proved in [2] and in [3] through a radi-
cally different method. We can finally remark that, contrary to the following flutter criterion, we got an optimal result with-
out ever having evaluated the optimum, either by calculating critical points or by any numerical approach, although the set
of optimization variables is a compact differential manifold -as will be seen hereafter. Indeed, the previous reasoning means
that (u being invertible)
min
F�E

min
x2SðEÞ\F

bFðxÞ ¼ 0() 9x 2 E n f0g ðuðxÞjxÞ ¼ 0() CðusÞ – f0g ð30Þ
signing the divergence instability thanks to a convenient choice of constraints but without having evaluated
minF�E minxSðEÞ\F bFðxÞ. An analogous remarkable result holds for the divergence of elastic conservative systems with the
so-called Euler criterion for divergence (det KðpÞ ¼ 0) which does not require the calculation of the minimum of
Rayleigh’s quotient R involving the mass matrix (or equivalently the minimum of j ¼ a

q but involving the matrix ~K instead
K) even if the divergence instability occurs by definition when this minimum is nil.
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4.3. Flutter stability criterion

Flutter instabilities lead us to investigate the following algebro-geometric issue: let E be a n dimensional euclidean space,
let u 2 LðEÞ be a morphism of E that we may suppose with n distinct real eigenvalues and then R-diagonalizable. Does a sub-
space Fc of E exist (or finding conditions for the existence of such a subspace) such that uFc ¼ pFc 	 ujFc 2 LðFcÞ is no longer R-
diagonalizable where pFc is the orthogonal projection on Fc? In this formulation, the linear map is associated with the matrix
~K: mass distribution and therefore mass matrix are necessarily involved in flutter (in) stability.

Let us remark first that if u is symmetric, then uF is symmetric too and then R-diagonalizable: flutter does not occur even
for constrained systems and the flutter ki.s.s. issue is objectless.

Suppose now that u is any u and note, according to the first section, DðFÞ ¼ DðdetðuF þ sInÞÞ ¼ DðvuF
Þ the discriminant of

the characteristic polynomial vuF
of uF . The flutter ki.s.s. is then equivalent to the condition
min
F�E

DðFÞ > 0:
If GrkðEÞ denotes the Grassmannian manifold of the k- planes of E and if GrðEÞ ¼
S

26k6n�1GrkðEÞ the flutter ki.s.s. condition
reads:
min
F2GrðEÞ

DðFÞ > 0: ð31Þ
GrðEÞ is a compact set because each Grassmannian manifold is itself compact and F # DðFÞ is continuous, which proves that
there is a subspace Fc 2 GrðEÞ such that DðFcÞ ¼minF2GrðEÞ DðFÞ. Let us remark that, even with the algebraic criterion of flutter,
the ki.s.s. leads to a minimization formulation but with subspaces instead of vectors as optimization variables. The issue to
calculate Fc and to conclude about flutter ki.s.s. will be reported in a forthcoming paper [17].

4.4. Rewording with the geometric language

To conclude this section, the geometric language proposed in paragraph 3.3 is used for rewording the ki.s.s. issues and the
results.

The problems read:

� For the divergence ki.s.s., the issue is: what condition must satisfy an invertible linear map u 2 LðEÞ in order that its com-
pressions on any (non nil) subspace F remains invertible?
� For the flutter ki.s.s., the issue is: what condition must satisfy an R-diagonalizable linear map u 2 LðEÞ (with simple eigen-

values if necessary) in order that its compressions on any (non nil) subspace F remains R-diagonalizable?

The solution for the flutter ki.s.s. is deferred until a forthcoming paper and the solution for the divergence ki.s.s. reads:

Theorem 1 (divergence ki.s.s. in terms of compression). Let E be an Euclidean space and u 2 GLðEÞ. In order that any compression
of u on any subspace F – f0g of E is invertible (in fact is only an injective map or in other words in finite dimension
uF 2 GLðFÞ 8F – f0g), it is necessary and sufficient that its symmetric part us ¼ 1

2 ðuþ u�Þ is definite. Otherwise, one can find (and
choose!!) F such that its intersection with the invert image by u of the isotropic cone C of us is not reduced to
f0g : F \ ðu�1ðCÞÞ– f0g.

This is a reformulation in terms of compressions of the previous result detailed in 4.2. As already noted, it may be
extended to real Hilbert spaces but only with the property of injectivity and assuming that u is bounded:

h Let H be a real Hilbert space and u 2 LcðHÞ an injective linear continuous map. Suppose first that all the compression on
(closed) subspaces are injective maps but that us is not definite. There is x – 0 such that ðusðxÞjxÞ ¼ ðuðxÞjxÞ ¼ 0 and uðxÞ– 0
because u injective. Let F ¼ VectðuðxÞÞ? and uF the compression of u on F. Because ðuðxÞjxÞ ¼ 0, then x 2 F and
uFðxÞ ¼ pFðuðxÞÞ ¼ 0 because F ¼< uðxÞ>? : uF is then not injective. Conversely suppose that there is a subspace F – f0g such
that uF is not injective. It means that there is x 2 F with uFðxÞ ¼ 0 namely pFðuðxÞÞ ¼ 0 or equivalently uðxÞ 2 F?. But because
x 2 F, then ðuðxÞjxÞ ¼ 0 and u or us is not definite and x is on the isotropic cone C of us. In this case x 2 F \ u�1ðCÞmust be not
nil which proves the last assertion. Remark finally that we may reasoning only with one dimensional subspaces F of H by
choosing F ¼ VectðxÞ in the reasoning.

5. Numerical features of divergence variational formulation

5.1. Systems with follower force

In addition to a new insight about divergence ki.s.s. of non conservative systems, the variational formulation used above
to get the result involving the second order work criterion may also be used per se to investigate directly the divergence
stability and to get the critical load. In order to compare both methods, we use again the same mechanical systems as
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the one used in [3]. It consists in a three degree of freedom Ziegler system R as in Fig. 1 made up of three bars OA; AB; BC
with OA ¼ AB ¼ AC ¼ ‘ linked by three elastic springs of the same stiffness k. The nonconservative external action (the

circulatory force) is the follower force ~P.
The elastic energy of the springs is
U ¼ k
2
ðh2

1 þ ðh1 � h2Þ2 þ ðh2 � h3Þ2Þ
� �

¼ k
2
ð2h2

1 þ 2h2
1 þ h2

3 � 2h1h2 � 2h2h3Þ
and the virtual power of ~P in any configuration h ¼ ðh1; h2; h3Þ reads (P > 0 in compression):
P�P ¼ P‘ðsinðh3 � h1Þh�1 þ sinðh3 � h2Þh�2Þ:
Put p ¼ P‘
k as dimensionless loading parameter and noting that ð0;0;0Þ is the unique equilibrium configuration, the stiffness

matrix then reads:
KðpÞ ¼
2� p �1 p

�1 2� p �1þ p

0 �1 1

0
B@

1
CA
and detðKðpÞ ¼ 1 does not depend on p.

We will also use a system with a partial follower force ~P ¼ ~PðcÞ with c 2 ½0;1
 (c ¼ 0 corresponds to a conservative ‘‘ver-
tical’’ force and c ¼ 1 corresponds to a complete follower force). We also consider such a system because the Euler criterion of
divergence through the determinant then depends on p. To compare both criteria, following [18], we then use a two degree of
freedom Ziegler system with a partial follower force corresponding to c ¼ 1

2 as in Fig. 2. The stiffness matrix then reads:
Kc¼1
2
ðpÞ ¼

2� p �1þ 1
2 p

�1 1� 1
2 p

!

and det Kc¼1
2
ðpÞ ¼ 1� 3

2 pþ 1
2 p2.

5.2. Divergence of the free system R

5.2.1. 3 Dof system with complete follower force
detðKðpÞÞ ¼ 1 is independent of p proving that the system cannot be unstable by divergence for any value of the loading

parameter p. In fact, this result shows how irrelevant this algebraic criterion of divergence stability may be for a practical use.
First, it gives no critical load in terms of divergence instability but it does not make any difference between a small value of p
and a higher load value. We may say that the discrimination power of this criterion is low as it is often the case for algebraic
criteria.

Using the variational approach leads us to consider the quadratic form b on the sphere SðR3Þ of R3. Obviously, this varia-
tional approach equivalent to the algebraic one allowing the calculation of the divergence critical load must also not lead to
any divergence critical load. That means that the minimum of b on the sphere SðR3Þmust be > 0 for any value pðP 0Þ of the
load parameter. However, this approach shows a better discrimination power.
Fig. 1. 3 Dof Ziegler system.
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Fig. 2. 2 Dof Ziegler system with partial follower force.

Fig. 3. Minimum of b on the sphere for a 3 dof Ziegler system with a complete follower force.
Indeed, the Figure 3 shows the variations of the minimum of b on the sphere S ¼ SðR3Þ vs the load parameter p and nor-
malized with respect to the pure elastic conservative value corresponding to p ¼ 0. Whereas the measure of the divergence
instability through the value of the determinant detðKðpÞÞ cannot report on the real structural weakening of the systems as p
increases, the decreasing toward 0 of minx2SbðxÞ when p!1 and practically when p P 5 shows that the variational
formulation is more relevant (for a threshold limit at 10%). This property is emphasized by a comparison with the spectrum
of the system (here of KðpÞ). The curve p # x1ðpÞ where x1ðpÞ is the minimum of the spectrum of KðpÞ(Fig. 4) is in accor-
dance with the previous one about the structural weakening of the system concerning the divergence stability practically for
p P 5 again (for the same threshold limit at 10%) even though, theoretically, there is no divergence of R : minx2SbðxÞ > 0 for
all p > 0 and x1ðpÞ > 0 for all p > 0. We emphasize that Figure 3 exhibits a similar behavior as the one of the minimum of the
spectrum of K (Fig. 4) only for large values of p: both figures show the structural weakening of the structure when p!1 and
the divergence stability for all p > 0 as well (See Figs. 3 and 4).

5.2.2. 2 Dof system with partial c ¼ 1
2

� �
follower force

Consider now the 2 dof system with a partial follower force measured by c ¼ 0:5. The curve giving the determinant of
Kc¼0:5 as function of p the divergence of instability of the system for p ¼ 1. By comparison, the minimum of b on the sphere
(here the circle) vs the load parameter p reads as on Figure 6 which fortunately leads to the same value p ¼ 1 of the diver-
gence instability of the system (see Fig. 5, 6).
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Fig. 4. Minimum of the spectrum of K.

Fig. 5. Determinant of Kc¼0:5.

Fig. 6. Minimum of b on the sphere for a 2 dof Ziegler system with a partial follower force.
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Fig. 7. minF�E minx2SðEÞ\F bFðxÞ.
5.3. Divergence of the constrained system

Going back to the ki.s.s. issue, we can now compare both approaches for getting the solution. We use the 3 dof Ziegler
system. In [3], the solution has already been obtained in two different ways both using the concept of m-positive definite
matrix. The first one, which is algorithmic, uses only operations of linear algebra and may be deduced from the proof of
the main theorem about m-positive matrices. The second one consists in a direct minimization of the map
ðB; pÞ 2 S32 � ½0; pb
# detðBT KðpÞBÞ where S32 is a convenient compact of M32ðRÞ. The common result fortunately gives
p ¼ 1, which is the smallest positive value of the load parameter that makes the second order work criterion fail.

For the sake of simplicity, we do not take into account the mass matrix meaning M ¼ I3 or K ¼ ~K . The following figure
shows the variations of minF�Eminx2SðEÞ\FbFðxÞ vs the load parameter p and normalized with respect to the pure elastic con-
servative value corresponding to p ¼ 0. We consider only the case dimðFÞ ¼ 1 which corresponds to 3� 1 ¼ 2 kinematic con-
straints. We then find again the singular value p ¼ 1 leading to the divergence of a well-constrained system (see Fig. 7).
6. Conclusion

In this paper, the concept of kinematical structural stability for any criterion is defined. Its application to the divergence
stability criterion and to the second order work criterion as well, is tackled through two autonomous developments. The first
one consists in the building of a variational formulation for the divergence criterion and in the use of the quadratic forms
language -as systematically as possible. The second one is the systematic elimination of Lagrange’s multipliers that leads
to a geometrical coordinate free formulation of the ki.s.s. issue by use of the tool of the compression of a linear map on a
subspace. These results then lead to the surprising emergence of the second order work criterion as the optimal solution
of the ki.s.s. issue for the divergence stability problem. This new insight improves the geometrical understanding of recent
results for example in [2] and in [3]. They also lead us to take a common look at divergence stability for conservative and for
non conservative systems as well. Last, it allows us to clearly define the ki.s.s. issue for the flutter criterion with the adequate
mathematical tools. A complete forthcoming paper will be devoted to the investigation of this last problem.
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