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Coupling of a two phase gas liquid compositional 3D Darcy
flow with a 1D compositional free gas flow

K. Brenner* R. Masson! L. Trenty! Y. Zhang?

April 29, 2015

Abstract

A model coupling a three dimensional gas liquid compositional Darcy flow and a one di-
mensional compositional free gas flow is presented. The coupling conditions at the interface
between the gallery and the porous medium account for the molar normal fluxes continuity for
each component, the gas liquid thermodynamical equilibrium, the gas pressure continuity and
the gas and liquid molar fractions continuity. This model is applied to the simulation of the
mass exchanges at the interface between the repository and the ventilation excavated gallery in
a nuclear waste geological repository. The spatial discretization is essentially nodal and based
on the Vertex Approximate Gradient (VAG) scheme. Compared with classical nodal approaches
such as the Control Volume Finite Element method, the VAG scheme has the advantage to avoid
the mixture of different material properties and models in the control volumes located at the
interfaces. The discrete model is validated using a quasi analytical solution for the stationary
state, and the convergence of the VAG discretization is analysed for a simplified model coupling
the Richards approximation in the porous medium and the gas pressure equation in the gallery.

1 Introduction

Flow and transport processes in domains composed of a porous medium and an adjacent free-flow
region appear in a wide range of industrial and environmental applications. This is in particular the
case for radioactive waste deep geological repositories where such models must be used to predict
the mass and energy exchanges occurring at the interface between the repository and the ventilation
excavated galleries. Typically, in this example, the porous medium initially saturated with the liquid
phase is dried by suction in the neighbourhood of the interface. To model such physical processes,
one needs to account in the porous medium for the flow of the liquid and gas phases including the
vaporization of the water component in the gas phase and the dissolution of the gaseous components
in the liquid phase. In the gallery, a single phase gas free flow can be considered assuming that the
liquid phase is instantaneously vaporized at the interface. This single phase gas free flow has to be
compositional to account for the change of the relative humidity in the gallery which has a strong
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feedback on the liquid flow rate at the interface.

If many works have been performed to model and discretize the coupling of single phase Darcy
and free flows (see the review [12]), there is very little work so far on the coupling of a two phase gas
liquid compositional Darcy flow with a single phase compositional free flow. Such a coupled model
has been recently proposed in [5, 14] using proper matching conditions at the interface between the
porous medium and the free flow regions. This model will be the starting point of our work and will
be simplified taking into account the physical characteristics of our problem focusing on the drying
processes at the interface between the nuclear waste repository and the ventilation excavated gallery.

To obtain our simplified model, it is first assumed that the longitudinal dimensions of the galleries
are large compared with their diameters allowing to reduce the model in the gallery to a 1D free
flow. Considering the low Mach flow regime in the galleries, a classical compositional No Pressure
Wave (NPW) 1D approximation of the Navier Stokes equations is used [17]. The matching condi-
tions at the porous medium gallery interface proposed in [5, 14] will also be simplified taking into
account the low permeability of the repository. In this case, it can be assumed that the gas pressure,
and the gas molar fractions are both continuous at the interface. In addition, following [5, 14], the
thermodynamical equilibrium between the gas and liquid phases is assumed to hold at the interface.
These assumptions lead to our reduced model using a 3D two phase compositional Darcy flow in the
porous medium coupled to a 1D compositional NPW gas flow.

This reduced model is formulated in terms of a single set of unknowns used both in the porous
medium and in the gallery. This set of unknowns corresponds to the one used in the pressure pressure
two phase Darcy flow formulation introduced in [9, 10] and extended to compositional models in [4].
It uses the gas pressure (extended in the single liquid phase region), the liquid pressure (extended
in the single gas phase region) and the component fugacities as set of primary unknowns. The main
advantage of this formulation is to use a unique set of unknowns and of equations whatever the set of
present phases. In our coupled model, this set of unknowns is also used at the interface to formulate
the 1D NPW model in the gallery taking into account the matching conditions.

The discretization of our coupled model is based on the Vertex Approximated Gradient (VAG)
scheme introduced in [1] for the single phase Darcy flow and in [3] for compositional Darcy flows.
The VAG scheme is roughly speaking a finite volume nodal approximation. Its main advantage
compared with typical nodal finite volume schemes such as Control Volume Finite Element (CVFE)
methods [14] is to avoid the mixing of different material properties inside the control volumes. The
VAG scheme is here extended to take into account the coupling with the 1D free gas flow. It will be
seen to offer a natural framework to keep a single model in the control volumes corresponding to the
nodes located at the interface between the porous medium and the gallery.

In order to validate our discretization, the solution obtained numerically is compared with a quasi
analytical stationary solution derived from a simplified model. A very good match is obtained at
convergence. Then, a more complex geological test case is presented including two rocktypes and an
anisotropic permeability field. A more advanced model is also tested including on the gallery side a
gas molar fraction at the interface and a normal diffusion term between the interface and the gallery
modelling the concentration boundary layer in the spirit of [5], [15]. The previous model corresponds
to the limit when the diffusion coefficient tends to infinity.

The convergence of the VAG discretization is also analysed mathematically using a simplified
model coupling the Richards approximation in the porous medium coupled with a single phase Darcy



flow in the gallery with fixed composition. The convergence of the VAG scheme to a weak solution is
proved by compacity arguments adapting the techniques used in [7, 6] and exploiting the two point
flux approximation in the gallery. The main new difficulty is related to the non linear dependence
between the liquid and gas pressure at the interface accounting for the thermodynamical equilibrium.

The outline of the article is the following: section 2 details our reduced 3D-1D coupled model and
its formulation using a single set of unknowns corresponding to the gas pressure, the liquid pressure
and the component fugacities. In section 3, the VAG discretisation is extended to our coupled model.
The VAG fluxes are first derived using a linear coupled model problem. Then, our discrete model is
assessed numerically in section 4 on three test cases including a comparison with a quasi analytical
stationary solution. Finally, we prove in section 5 the convergence of the scheme to a weak solution
for a simplified model.

2 Coupled Model

Let w and S C w be two simply connected domains of R? and © = (0, L) x (w\ S) be the cylindrical
domain defining the porous medium. The excavated gallery corresponds to the domain (0, L) x S
and it is assumed that the free flow in the gallery depends only on the x coordinate along the gallery
and on the time t € (0,7). Let us denote by I' = (0, L) x 0S5 the interface between the gallery and
the porous medium, by I'y = ({0} x (w\ S))U({L} x (w\ S)) and I'p = ((0, L) x dw) the remaining
boundaries of €2. The curvilinear coordinate along 05 will be denoted by s.

Let a = g,1 denote the gas and liquid phases assumed to be both defined by a mixture of com-
ponents ¢ € C among which the water component denoted by e which can vaporize in the gas phase,
and a set of gaseous components j € C \ {e} which can dissolve in the liquid phase. For the sake
of simplicity, the model is assumed to be isothermal with a fixed temperature T,. Following [4], the
gas liquid Darcy flow formulation uses the gas pressure p?, the liquid pressure p', and the component
fugacities f = (/f;)icc as primary unknowns, denoted by u = (p?,p', f) in the following. In this
formulation, following [16], the component molar fractions ¢®* = (¢f);cc of each phase o = g¢,[ are
the functions c(u) of u defined by inversion of the equations f&(c®, p?,p') = fi, i € C, where f& is
the fugacity of the component ¢ in the phase a. In addition, for a = g¢,[, the phase pressure p® is
extended in the absence of the phase in such a way that the closure law ). . c*(u) = 1 is always
imposed. The phase molar and mass densities, as well as the phase viscosities are denoted in the
following by respectively ¢*(p®, ¢), p*(p*, %), p*(p“, ¢*) for a = g,1. For the sake of simplicity, for
£ = (% p, or u, we will still use the notation £(u) for the function £(p®, c*(u)).

Finally, we define the liquid saturation s’ as the function s'(x,p' — p?) of —p. = p' — p? defined by the
inverse of the monotone graph extension of the opposite of the capillary pressure function —p.(x,.),
and we set s9(x,.) = 1 — sl(x,.).

This leads to the following set of equations for the unknowns u in the porous medium:

60, Y (W, p! = p)e(w) + div( Y ) )V) =0, €€, on @ x (0,T),

a=g,l a=g,

ch"(u) =1, a=g,l, on Q x (0,T),

1eC

(1)

coupled with the two phase Darcy laws

Ve = B () (V0 — o ()g). a = g, on Qx (0.T), 2)

p*(u)

3



where the function k%(x,s*) of the phase saturation s* is the relative permeability of the phase
a = g,1, g is the gravity vector, ¢(x) is the porosity of the porous medium and K(x) its permeability
tensor. The Dirichlet boundary conditions on I'p are denoted by u.,;(x) and the initial conditions
in the porous medium are denoted by w;,;;(x). They both typically correspond to pure water and
imposed liquid pressure. At the boundary I'y, a zero flux boundary condition is imposed for all
components.

In the gallery, the primary unknowns, depending only on the x coordinate along the gallery and
on the time ¢, are the gas pressure p and the gas molar fractions ¢ = (¢;,7 € C). The constant gas
molar fraction assumption in the section of the gallery corresponds to a strong turbulent diffusivity
assumption leading to well-mixed conditions. Note that in Subsection 4.3, this model will be im-
proved by the introduction of an additional gas molar fraction at the interface on the gallery side
corresponding to the gas molar fraction in the viscous boundary layer. The gas flow model is defined
by a No Pressure Wave (NPW) [17] isothermal pipe flow model. To fix ideas a Forchheimer law is
used for the pressure drop given by the two parameters a > 0, § > 0. The mass conservation of each
component ¢ € C involves the porous media fluxes at the interface I' integrated over 0.5 and summed
over both phases a = g, [ assuming an instantaneous vaporization of the liquid phase in the gallery.
Denoting by n the unit normal vector at I" outward to 2, and by |S| the surface of the section S, we
obtain the following set of equations set on (0, L) x (0,7):

([ a(ISI (. 0)es) + 0. (11 e
< - /85 a;l ¢*(u)c?(w)V* - nds, i € C, on (0,L) x (0,7), N
Zcz' =1, on (0,L) x (0,7),

1eC

[ (aw+ Blwlw) = =d,p, on (0,L) x (0,7).

The boundary conditions are typically defined by the input gas velocity w;, and the input gas molar
fractions ¢;;, = (Cin, @ € C) at the left side of the gallery x = 0, and by the output gas pressure poy:
at the right side of gallery x = L. The initial conditions in the gallery are given by ¢ = ¢in and

Dinit = Pour (see Figure 1).
w P di g
i (Tt LT
Cin Y ____?r_y_p_’___.['_ _____ .’ X

Figure 1: Geometry of the cylindrical domain, and set of unknowns in the porous medium and in
the gallery.

At the interface I' between the gallery and the porous medium the coupling conditions are an
adaptation to a 1D configuration for the free flow to those stated in [5]. Compared with [5], the gas
pressure jump p — p? at the interface is neglected since a small flow rate between the porous medium
and the gallery is assumed due to the low permeability of the disposal. Hence the coupling conditions
account first for the continuity of the gas phase pressure p? = p. Second, as in [5], we impose the
continuity of the gas molar fractions ¢ = ¢. Third, the thermodynamical equilibrium between the
gas phase and the liquid phase at the interface I is assumed leading to f; = f! = f7 = pc; for alli € C



together with .. c(p?,p!, f) = 1 which provides the additional equation for the liquid pressure p'
at the interface. All together, we obtain the following set of coupling conditions at the interface I'

P’ =p,
f=rc, (4)
> iec A p' f) = 1.
Let v denote formally the trace operator on I'. Using the coupling conditions (4), we can refor-

mulate the model in the gallery (3) as the following set of Ventcell type boundary conditions at the
interface I' for the unknowns u:

0, (IS1¢? (ra)ef (u) ) + 0 (IS1¢* (rw)et (u)w)
= /as > ¢*(u)ef(u)Ve-nds, i €C, onT x (0,7),

/

a=g,l (5)
Zcf‘(’yu) =1, a=g,l, onI x(0,7),
ieC

( Jsyu=0, onT x (0,7),

coupled with the closure law
(aw + Blw|w) = =d,vp?, on T' x (0,T). (6)

In summary, the coupled model amounts to find u on  x (0,7 satisfying the set of equations (1),
the closure laws (2), the boundary conditions (5)-(6) at the interface I', together with the boundary
conditions for u on I'p and 'y, for yu at {x = 0} and at {x = L}, and the initial conditions at t = 0
for u on Q, and for yu on (0, L).

3 Vertex Approximate Gradient (VAG) Discretization

In order to introduce the VAG discretization of our model let us first consider the coupling of a
single phase Darcy flow in the porous medium with a 1D single phase Darcy flow in the gallery. The
discretization of the VAG fluxes and control volumes will be derived from this simple model and then
used for the discretization of the previous full model.

3.1 Linear Model Problem

Let us define 7 the trace operator from H'(2) to L*(T'), and the function space
V={ue H (Q)|yu € HY(T),dsyu = 0}.

Keeping the same notation for convenience, the trace operator v maps V to H'(0, L). The subspace
of V taking into account homogeneous Dirichlet boundary conditions on I'p, and at = = L is denoted
by

VO={ueV|u=0onTp, (yu)(L) = 0}.

The space V° is endowed with the Hilbertian norm

1

o = ([ 1w+ [ 1 utwar)



Let Q € L*(Q) and g € L?(0, L) denote respectively the source terms in the porous medium and
in the gallery. Let u € V, w;, € R, we consider the following linear model coupling a single phase
Darcy flow in the porous medium with a single phase Darcy flow in the gallery:

( div(—Kvu) ) on Q,
Jsyu =0 on I,
_lsl _ _
O Oxyu) = |S|q + KVu-nds on (0,L),
a oS (7>
u=1u on FD,
—KVu-n=0 on ['y,
1
——=0,7u(0) = win,
a —
(L) =~u(L).

Its variational formulation amounts to find v € V such that v — @ € V° and

L L
/ KVu - Vv dx —|—/ %awvu O yv dx + |S|winyv(0) = / Qu dx —|—/ |S|gyv dx. (8)
Q 0 Q 0

for all v € V% The existence and uniqueness of a solution to (8) is readily obtained from the Lax
Milgram theorem.

3.2 VAG Discretization of the Linear Model Problem

The VAG discretization [1] is a finite volume discretization of diffusion problem adapted to general
meshes and heterogeneous anisotropic media. It is here extended to our model problem coupling the
3D Darcy flow in the porous medium with the 1D Darcy flow in the gallery.

We assume that w and S are polygonal domains of R? and we consider a conforming polyhedral
mesh of the domain €2. It is assumed that the intersection of the mesh with the boundary I' of the
gallery is the tensor product of the 1D mesh of (0,L) defined by 0 = 2o < 21 < -+ < xp, 11 = L
by the 1D mesh of S defined by the set of distinct points s1,82 -+ , Sy, Smer1 = 81 0of 95 in cyclic
order.

Let M denote the set of cells K, V the set of vertices s, £ the set of edges e, and F the set of
faces o, of the mesh. We denote by Vk the set of vertices of each cell K € M, by M, the set of
cells sharing the node s, by V, the set of nodes and by &, the set of edges of the face ¢ € F. The
set of vertices of the mesh belonging to {z,,} x 95 is denoted by V,, for all m = 0,--- ,m, + 1,
and we denote by Vr = Um:(),--~,mx +1 Vm the set of nodes of the boundary I' of the gallery, and by

Vp =V NTp the set of Dirichlet boundary nodes.

It is assumed that for each face o € F, there exists a so-called “centre” of the face x, such that
Xy = Esevg Bss Xs, With ZSEVJ Bss = 1, where 8,5 > 0 for all s € V,. The face o is assumed to be
star-shaped w.r.t. its centre x, which means that the face ¢ matches with the union of the triangles
T, defined by the face centre x, and each of its edge e € &,.

The previous discretization is denoted by D. Let us define the vector space

Yp={vx e Ryus e R, K € M,s € V}.
The vector space Xp of discrete unknowns is the subspace of Yp defined by

Xp={vp € Yp|vs=vwy foralls,s" € V,,m=0,--- ,m, +1}.



In the following, for any vp € Xp and for all m = 0,--- ,m, + 1, the notation v,, will stand for the
value vg, for all s € V,,.
The subspace of Xp with homogeneous Dirichlet boundary conditions on I'p and at x = L is
defined by
X2 ={vp € Xplvs=0foralls € VpUV,, 41}

Following [1], the extension of the VAG discretization to the coupled model is based on conforming
Finite Element reconstructions of the gradient operators on © and on (0, L), and on non conforming
piecewise constant function reconstructions on € and on (0, L).

For all o € F, let us first define the operator I, : Yp — R such that I, (vp) = ZSEVU BssVs, Which
is by definition of x, a second order interpolation operator at point x,.

Let us introduce the tetrahedral sub-mesh 7 = {Tk,.,e € &,0 € Fg, K € M} of the mesh
M, where Tk ;. is the tetrahedron defined by the cell center xx and the triangle 7,.. For a given
vp € Yp, we define the function Il;vp € C°(Q) as the continuous piecewise affine function on each
tetrahedron T of T such that Ilyup(xk) = vk, lyup(s) = vs, and Ilrup(x,) = I,(vp) for all
KeM,;seV o€ F.

It is easily checked that 0,yIl;7vp = 0 for all vp € Xp which shows that II;vp € V for all
vp € Xp and we denote by Vi = [I+Xp the finite element subspace of V. Let ng, and ns, s € Vg,
K € M be the finite element nodal functions in II7Yp such that ng(xr) = dk.1, ns(xz) = 0 for all
L € M, and nk(s') = 0, ns(s') = dss for all 8" € V. Then, the nodal basis of V7 is defined by 7,
KeM,n,s€V\Vr,and 0, =D ooy, M, m =0, ,m, + 1.

Then, we define for all vp € Xp the following gradient operators:
Vop,vp : Xp — L*(Q)? such that Vp,vp = Vllrup,

and
Vp,vp : Xp — L*(0, L) such that Vp,vp = Oy y1l1vp.

One can easily check that

Um+1 — Um

Vp,vp = on (T, Tme1) forallm=0,--- m,. 9)

Tm4+1 — Tm
In addition to the conforming finite element discretization, the VAG discretization uses two non
conforming piecewise constant reconstructions of functions from Xp into respectively L?*(Q) and
L*(0,L). The definition of the first operator IIp vp(x) from Xp to L*(2) is based on the following
partition of each cell K € M

K = wg U ( U wK,s>

seVr\(VpUVr)
Then, we set

v for all x € wg, K € M,

p, vp(x) = { v forall X € wys, € Vi \ (Vo UV), K € M. (10)

Tm+Tm+1
2

For the second reconstruction operator, let us define the points z,, L1 = for all m =

0,---,my—1, Tingtl = Tyl = L, and Ax = 1 — T, Ax,, = Tyl Ty L forallm=1,--- . m,.
Then, we set

vo for all z € (zg,x

HDQU’D(SL’) = { (11)

v, for all xe(:vm_% Tppy1), m=1,- mg.



The VAG discretization of our model problem is obtained by the following non conforming vari-
ational formulation: given @ip € Xp, find up € Xp such that up — up € X and

L
S
/ KVDPUD . Vppvpdx + / uVDqUDVDqUDdCL’ + |S|wmv0
o 0 a < A

L (12)
:/QHDvadx+/ S|qIlp, vpdz,
Q 0

for all vp € X
On the porous medium side, let us define for all up € Xp the VAG fluxes

Vi s(up) = / —KVp,up - Viedx = Z T3 (ug — ug), (13)
K

s'€Vk

connecting each cell K to its vertices s € Vi where T]s(,s’ = — fK KV - Vngdx.
On the gallery side, we similarly define for all up € Xp the VAG fluxes

Tm+1 S
Vm,m+l(uD) - / _%(nguD)(axnm—&—l)dx - Tm+% (um - um+1)7 (14>

Im
connecting m to m + 1 for all m =0, --- ,m,, where

tnit |§ S Tt g
Sl P W

<$m+1 - -Tm)2 Q

m

Let us set Qg = ﬁfwx Q(x)dx, Qs = ;fwK’SQ(x)dx, and ags = luﬁ?f‘ for all s €

|WK,S|

Vi \ (VpUVr) and K € M. Then, the variational formulation (12) is equivalent to find up € Xp
satisfying the discrete conservation equations in the porous medium

> Vis(up) = |[K|(1= Y axs)Qk, forall K€M,
seVk sV \(VpUVr)
> —Vis(up) = > |KlagsQrs, foralls € V\ (Vp U Vr), (15)
KeMs KeMs
Us = Us, for all s € Vp,

coupled with the conservation equations in the gallery

T1/2
> 3 Vica(un) + Valup) ~ ISlwin = [ [Sladz,
s€Vo KEMs o
_ [T _ (16)
Z Z —Vis(up) + Vipms1(up) — Vip1m(up) = / |Slgdx  for allm=1,--- my,
s€EV KeEMs Tm—1/2
\ Umy+1 = amz—i-l-

Note that the right hand side () does not appear in the conservation equations in the gallery. This
is due to our choice of the operator IIp, which avoid the mixing of the porous medium and the
gallery in the control volumes located at nodes s € Vr. This is a crucial property to extend the VAG
discretization to the compositional model taking into account the different models and the highly
contrasted material properties in the gallery and in the porous medium.



3.3 Extension to the Compositional Model

The VAG scheme has been extended to multiphase Darcy flows in [3] for compositional models. In
2, 4] it is adapted to the case of discontinuous capillary pressures using a phase pressure formula-
tion in order to take into account accurately the saturation jump at the interfaces between different
rocktypes. This motivates the choice of the phase pressures as primary unknowns in our model. The
current discretization uses ideas of [2, 4] and extends them to the coupling with the 1D free gas flow.

Let us define up = (p},ph, fp) € (Xp)? x (Xp)¢ as the vector of the discrete unknowns of
the coupled model (1)-(2)-(5)-(6). The discretization of the Darcy fluxes for each component i € C
combines the VAG single phase fluxes, and a phase by phase upwinding of the mobility terms w.r.t.
the sign of the flux:

Visi(ap) = mi (xp, uy) <VK,s(p%) + gP?%,sVK,s(ZD)>a

with the mobility m$(x,u) = Ca(u)c?(u)%’w, the upwinding

u { ug if Vgs(pp) + 90k sVis(zp) > 0,
Ks —

us else ,
the averaged density p% = w, and the vector of the vertical coordinates at all d.o.f.

2p = (zK,KEM,zs,s€V>.

On the gallery side, the momentum equation (aw + S|w|w) = —9,p? can be inverted as
Q= y/ o? + 46’ampg’ ang
w = h(a, B,0:p7) = :
( ) 28 |09

The VAG fluxes in the gallery (14) are extended to this Darcy-Forchheimer law using a one quadrature
point formula as follows

Vit () = 10 (@l 3), B,y ), L2t P
m,m+1\Fp m+t5 /0 m+5 /2 Tmil — Tom )
and the discretization of the Darcy-Forchheimer fluxes for each component ¢ € C is defined by

Vm,erl,i(uD) = Cg (uzp,m—i-l)czg(uﬁm-i-l)vm,erl (pgD) )

with the upwinding

uup { Uy, if vm,m+1(p%) Z 07

mym+l U1, else )

forallm=20,---,m,.

For N € N*, let us consider the time discretization t =0 < t! < .- <" L <t"... <tV =T of
the time interval [0, T]. We denote the time steps by At" =" — " ! foralln=1,--- | N.

The initial conditions are given in the porous medium by u? = u;,;(x,) for all v € M U (V\

(Vp U VF)). In the gallery, they are defined for all m =0, -+ ,m, by p%° = pinit, [2 = DinitCinit, and

p? obtained from the equation Y, . ci(uf,) = 1.
The system of discrete equations in the porous medium at time step t" accounts for the discrete
molar conservation of each component ¢ € C and the sum to one of the molar fractions of each



phase in each control volume K € M and s € V' \ (Vp U Vr), together with the Dirichlet boundary
conditions for s € Vp:

)
ni<XK7 U?() -y XK7 uK
1— > axsoéx XD +Z VR (uh) =0, K e M,
SGVK\(VDUVF) a=g,l s€Vg
ni (X, ul) — ni(xg, ul
Z QK,SQSK Agn Z Z VKsz uD O,SEV\(VDUVF),
KeMs a=g,l KEMs
>ocup) =1, v e MU (VN (W UW)), a =gl
icC
[ U = Uep(Xs), s € Vp,

with ¢x = [ ¢ x ©(x)dx, and the the number of mole per unit matrix volume of the components i € C
=) (s (x,p = p)c(u).
a=g,l

This system is coupled to the following equations in the gallery at time step t" accounting for the
discrete molar conservation of each component ¢ € C, the sum to one of the molar fractions, and the
Dirichlet conditions at the right side of the gallery:

( A'x - n— n n
A |91 (C () (ug) — ¢ (ug™)el (w5 ™)) + Vo,vi(up) — [SI¢7 (ug)ciinti
=22 D Vis(up)
A s€Vy a=g,l KEMg
T n n n— n— n n
S 181 () () = ¢ (up e () + Vi i(0h) = Vi ()

= Z Z Z V[?,s,i<u%)7 m = 17 s My

sEV a=g,l KEMs
l n
E Gur)=1,m=0,--- ,m; +1,

ieC

ZC?(UZ.L) = 1a m:07 y Mg,

ieC
\ cg(um +1> Cg(unmz)J pg;ZJrl = Pout-

4 Numerical experiments

To assess the coupled model and its discretisation, let us consider in this section three test cases all
sharing the following setting.

Let w and S be the disks of center 0 and radius respectively r,, = 10 m and rg = 2 m. We consider
a radial mesh of the domain (0,L) x (w\ S), L = 1000 m, exponentially refined at the interface of
the gallery I' to account for the steep gradient of the capillary pressure at the porous medium gallery
interface. In addition to the water component e, we consider the air gaseous component denoted
by a with the Henry constant H, = 6 10° Pa at the fixed temperature 7, = 300 K. The gas molar
density is given by (9(p9) = ]%e mol.m™3, and the liquid molar density is fixed to ¢! = 55555
mol.m~3. The phase viscosities are fixed to p¢ = 18.51 1076 Pa.s™! and p! = 1072 Pa.s™!. The mass
densities are defined by p® = (*>", .. ¢*M; with the molar masses of the components M, = 29 107
Kg, M, = 18 10~ Kg. The fugacities of the components in the gas phase are given by Dalton’s
law for an ideal mixture of perfect gas f/ = ¢/pY, ¢ = e,a. The fugacities of the components in
the liquid phase are given by Henry’s law for the dissolution of the air component in the liquid
phase f! = ¢ H,(T,), and by Raoult-Kelvin’s law for the water component in the liquid phase
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fl=¢ Psat(Te)exp(&E‘z ;}2), where P, (T.) is the vapour pressure of the pure water. The solution
of the equation f*(c®, p?,p') = f leads to the following component molar fractions ¢ as functions of

u:

Lu) = fe ex (pg_pl) c(u) = Jo
ce(u) = fmt@) p(gl(pl)RT)’ (W) JI;Ia(Te)’ (17)
ctfu) =5, aw) =5y

The porous medium is initially saturated by the liquid phase with imposed pressure pl, ,, = 40 10°
Pa and composition cfm-mt 0, c6 mit = 1. At the external boundary r» = r, the water pressure is
fixed to pl,, = pl,;, with an input composition ¢, ., =0, ¢, .., = 1. On both sides # = 0 and = = L
of the porous medium, zero flux boundary conditions are 1mposed for all components. The initial

condition in the gallery is given by pi,i; = 10° Pa and ¢, jn; is defined by the relative humidity

Ce,initPinit
H, i = ———— =0.5.
it Psat(Te>

We consider an input gas velocity w;, depending on time (see Figures 3, 8), a fixed input water molar
fraction cen = Ce init at the left side x = 0 of the gallery, and a fixed output pressure po, = Pinit at
the right side x = L of the gallery (see Figure 2). The relative permeabilities and capillary pressure
in the porous medium are given by the following Van-Genuchten laws

0 if s <sl,
e
kL(s!) = 1 21f st >1—sY,
\@(1 —(1- (gl)l/m)m) if sl <st<1— s,

0 it s9 < s9,
k,g(sg) _ 1 if s9>1-— an,

2m
Vie gl(l - (gl)l/m) if s9<s9<1—sl,

and

with

T 1-sl—s
The Darcy Forchheimer parameters defining the pressure drop in the gallery are set to o = 0 and
B =10"3 Kgm™

r
pext7 ext 17 Ce ext T 1

Porous Medium

=1.c =1

pl"lt’ Inlt ) e/nlt

Win Gallery  Pinjt, Ce,init Pout

Figure 2: (x,r) cut of the disposal and initial and boundary conditions of the test case.
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4.1 Comparison with a quasi analytical stationary solution

In this first test case, we consider a single rocktype in the porous medium defined by the parameters
n =149, st =04, s =0, P, = 15 105 Pa of the Van-Genuchten laws accounting for the Callovo-
Oxfordian argillites (COx). The permeability is assumed isotropic with K =5 1072 m? the porosity
is set to ¢ = 0.15.

The simulation is run over a period of 10000 days with an initial time step of 100 seconds and
a maximum time step of 50 days. The input velocity w;, is fixed to 1 m.s™! during the first 4000
days, 0.01 m.s~! during the next 4000 days, and 0 m.s~! during the remaining of the simulation (see
Figure 3).

Win (M/s)
A

1

0.01 — -
0 4000 8000 10000 t(day)

Figure 3: Input velocity w;, as a function of time.

4.1.1 Approximate Stationary Solution

In order to validate the simulation, an approximate stationary solution is computed for each value
of the input gas velocity w;,. In this approximate model, the vaporization of the water component is
kept but the dissolution of air is neglected. The gravity is also set to zero since the gravity forces are
small compared with the capillary and pressure gradient forces. The pressure drop along the gallery
can also be neglected meaning that the pressure in the gallery is equal to p;,;. Last but not least,
it is observed in the porous medium that the longitudinal derivatives are small compared with the
radial derivatives due to the strong gradient of the capillary pressure at the porous medium gallery
interface. Hence they will be neglected in our approximate model. Thanks to these assumptions,
the stationary solution can be reduced to a single ordinary differential equation (ODE) for the water
molar fraction in the gas phase along the gallery c.(z).

From the above assumptions, the approximate stationary solution u(x,r) depends only on z and
r and satisfy the following simplified system in the porous medium

a9 ( ¢k ) o [ ¢kl ) _
3 < 5 Kra—Tpg> + 5 <C ; Kra—rpl> =0,

1 14 (18)
0 cacok? d _
ar 119 K?"Epg = 0.

From the coupling conditions, at the porous medium gallery interface r = rg, the gas pressure is
fixed to p9(x,rs) = p(x) = pinie and ¢d(x,rs) = c.(x). From the thermodynamical equilibrium of
the water component at the interface, we can compute the capillary pressure at the interface as a
function of ¢.(x) by the following formula:

pelce(x)) = —C'RT.In (ce(fﬂ)pm)

Psat (Te)

R 0
Gk Kr—p“. We can deduce by
= s or

integration of (18) taking into account the boundary conditions p?(x,rs) = pinit, cd(x,15) = ce(x),

Let us define V, = cac’ki Kr%py and the total velocity Vp = Z

Mg
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cd(x,rg) =1 — ceo(x), pe(w,75) = pe(ce()), P(z,70) = Py, Lz, 7)) =1, é(x,7,) =0, that V, =0
and that Vr depends only on z and is given by the following function of c¢.(z):

( ( )) Cl - e k’l( l( ))
V CelT = ex Dini +/ S (—U du | .
T ﬂl 13g(rg) DPext t o

Turning to the equations in the gallery, c.(z) and w(z) are solutions of the following system of ODEs

%(C%pim)w(:c)ce(x) = 3 Vr(ce(w)),x € (0, L),
)

(@)1 = e))) = 0,2 € (0, 1),
C€<0) = Ce,in,
w(0) = wiy,.

(1768,7:”)
1—ce(x)

The second equation yields w(x) = wy, , Yz € (0,L) and the above system reduces to the

following ODE for c.(z):

¢ (Pinit) Win (1 — ce,m)% (%) = %VT<C,3($)), x € (0,L), (19)
Ce(o) = Ce,in,

which is numerically integrated.

4.1.2 Numerical results

The numerical solution obtained with the mesh 80 x 50 x 80 is exhibited inLFigureS 4,5 and 6. Figure
1 ce(z,t)p(x,t

4 plots the average relative humidity in the gallery defined by H,(t) = 1 J, Tﬂ))dm as a function
of time. It also compares the numerical stationary relative humidities obtained as a function of x
for each value of w;, with the ones obtained with the approximate stationary analytical model (19).
A very good match can be checked in Figure 4 for the three input velocities. Figure 5 plots as a
function of time the gas volume in the porous medium and the volumetric flow rates at the porous
medium gallery interface for both phases. Figure 6 plots the stationary numerical liquid saturation
at the porous medium gallery interface (represented in the gallery) and in the porous medium for
each value of wy,. At the opening of the gallery at ¢ = 0, we observe in Figures 4 an increase of the
average relative humidity H,.(¢) up to almost 0.95 in a few seconds due to a large liquid flow rate
(see Figure 5) at the interface. Then, the flow rate decreases and we observe a drying of the gallery
due to the ventilation at w;, = 1 m.s~! down to an average relative humidity slightly above Hy init in
a few days. Meanwhile the gas penetrate slowly into the porous medium reaching a stationary state
with around 167 m? of gas in say 4000 days (see Figure 5). When the input velocity is reduced to
0.01 m.s™!, we observe first a rapid increase of H,(t) in say 100 days due to the reduced ventilation
followed by a convergence to a second stationary state with H,.(¢) = 0.74 in the gallery and around
137 m? of gas in the porous medium. Note in Figure 5 that the gas flow rate is entering in the porous
medium between say 4600 and 7000 days although the volume of gas in the porous medium is still
decreasing. This is due to a larger mass of air dissolved in the liquid phase entering into the gallery
than the mass of air entering into the porous medium in the gas phase. At equilibrium, at time say
between 7000 and 8000 days, the mass of air entering into the gallery dissolved in the liquid phase
is compensated by the mass of air entering into the porous media in the gas phase. When w;, is set
to 0 m.s~t, H,(t) reaches a value above 1 corresponding to a negative capillary pressure and s' = 1
at the interface and the gas disappears from the porous medium in around 1400 days. The value
above 1 of the relative humidity is due to the fact that the model does not take into account the
appearance of the liquid phase in the gallery side.
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Figure 4: Stationary relative humidity in the gallery for each value of w;,, compared with its approxi-
mate “analytical” solution (left); average of the relative humidity in the gallery as a function of time

(right).
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Figure 5: Gas Volume in the porous medium as a function of time (left); input and output flow rates
at the interface I' for the gas and liquid phases (right) as a function of time (an input flow rate enters
into the porous medium).
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(a) wiy, =1 ms™ (b) wi, = 0.01 m.s™!

S|

0.9
0.8
0.7

S

0.9
0.8
0.7

Figure 6: Stationary liquid saturation s' obtained for w;, = 1 m.s™! (a) and for w;, = 0.01 m.s™!

(b). The bottom figures zoom the liquid saturation in the porous medium below the threshold value
0.99. In the gallery the liquid saturation corresponds to the saturation at the interface function of x.

Figure 7 exhibits the convergence of the volume of gas in the porous medium as a function of
time and of H,(t) for the five different meshes 20 x 20 x 20, 40 x 40 x 40, 60 x 50 x 60, 70 x 50 x 70
and 80 x 50 x 80. Table 1 shows the numerical behaviour of the simulations for these five meshes. A
rather good scalability of the linear and nonlinear solvers and of the CPU time w.r.t. the mesh size
is obtained. The linear system is solved using the GMRES iterative solver preconditioned by ILUO,
and the linear and nonlinear stopping criteria are fixed to respectively 107% and 107° for the relative
residuals.

mesh NAt NChop NNewton NGMRes CPU(S)
20 x 20 x 20 | 615 0 3.12 11.5 890
30 x 30 x 30 | 615 0 3.12 15 3250
40 x 40 x 40 | 615 0 3.12 19 8050
60 x 50 x 60 | 615 0 3.15 24.5 17300
70 x 50 x 70 | 640 6 3.27 57 105200
80 x 50 x 80 | 666 10 3.3 7 135300

Table 1: For each mesh : number Nx; of successful time steps, number N¢p,, of time step chops,
number Nyewion 0f Newton iterations per successful time step, number Ngarges of GMRes iterations
by Newton iteration, CPU time in seconds.

15



1.1

Average of relative humidity in the gallery

Gas volume in the porous medium

N=20x20x20 ———
N=40x40x40 ,
> 1} N=60x50x60 ——
3 N=70x50x70 ——
g N=80x50x80 ~
2 09°F q
o &
g g
< L
s 0.8 ‘ %
= e 2
(0] 0.7 -
& ‘ O 60| N=20x20x20 ——
g 40 | N=40x40x40
< 06| N=60x50x60 ———
20 | N=70x50x70 —— \
0 5 — — : i 1 1 1 1 1 0 NZISOXSO?(SO 1 1L 1 1L 1L 1L 1L
0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000 0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

Time (days)

Time (days)

Figure 7: Average relative humidity in the gallery H,(t) (left) and gas volume in the porous medium
as a function of time (right) for the five meshes.

4.2 Heterogeneous anisotropic test case

This second test case considers two different rocktypes in the porous medium. For rg <r <r; =3
m we consider a damaged rock with isotropic permeability K = 5 107'® m? and a porosity ¢ = 0.15,
and for r > r; we consider the Callovo-Oxfordian argillites (COx) with the same porosity ¢ = 0.15

A0 0
and the anisotropic permeability defined by K= 0 A 0 with A = 5 1072 m? in the z,y, 2
00 3

Cartesian coordinates where z is the vertical coordinate and = the direction of the Gallery. The
Van-Genuchten parameters are defined by n = 1.50, s. = 0.2, s¢ =0, P, = 5 10° Pa in the damaged
zone, and by n = 1.49, sl = 0.4, s9 = 0, P, = 15 10° Pa in the COx region.

The simulation is run over a period of 20000 days with an initial time step of 100 second and
a maximum time step of 1000 days. The input velocity w;, is fixed to 1 m.s™! during the first
3000 days, to 0.1 m.s™! during the next 3000 days, and to 0.01 m.s™! during the remaining of the
simulation (see Figure 8). All the other parameters of the data set are the same as in the previous
test case.

Win (M/s)
A

1

0.1
0.01

[ —

0 3000 6000

20000  t(day)

Figure 8: Input velocity w;, as a function of time.

As in the previous test case, the Figures 9, 10, and 11 exhibit the numerical solution obtained
with the mesh 60 x 60 x 60. Figure 9 plots the relative humidity in the gallery at the end of the
simulation as a function of x, as well as the average relative humidity H,.(¢). Figure 10 shows the gas
volume in the porous medium as a function of time, and the volumetric flow rates for both phases at
the porous medium gallery interface as a function of time. Figure 11 plots the liquid saturation at
the end of the simulation. Compared with the previous test case, a larger volume of gas enters into
the porous medium due to the larger permeability of the damaged zone. The effect of the anisotropy
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along the vertical direction in the COx region is also clear in the right liquid saturation plot in Figure
11.

Relative humidity in the gallery Average of relative humidity in the gallery
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Figure 9: Relative humidity in the gallery at the end of the simulation (left); average of the relative
humidity in the gallery as a function of time (right).
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Figure 10: Gas Volume in the porous medium as a function of time (left); input and output flow
rates at the interface I' for the gas and liquid phases (right) as a function of time (an input flow rate
enters into the porous medium).

ol

Figure 11: Liquid saturation s’ at the end of the simulation. At the right, the liquid saturation in the
porous medium is plotted only below the threshold value 0.99. In the gallery the liquid saturation
corresponds to the saturation at the interface function of x.

Figure 12 exhibits the convergence of the volume of gas in the porous medium as a function of
time and of H,(t) for the five different meshes 30 x 30 x 30, 40 x 40 x 40, 50 x 50 x 50, 60 x 60 x 60
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and 70 x 70 x 70. Table 2 shows the numerical behaviour of the simulations for these five meshes
with again a rather good scalability of the linear and nonlinear solvers and of the CPU time w.r.t.
the mesh size.

mesh NAt NChop NNewton NG’MRes CPU (S)

30 x 30 x 30 | 409 0 3.31 15 2200
40 x 40 x 40 | 409 0 3.34 18 6800
50 x 50 x 50 | 409 0 3.37 20 14050
60 x 60 x 60 | 409 0 3.40 23 20100
70 x 70 x 70 | 409 0 3.45 25 34700

Table 2: For each mesh : number Nx; of successful time steps, number N¢yp,, of time step chops,
number Nyewion 0f Newton iterations per successful time step, number Ngarges of GMRes iterations
by Newton iteration, CPU time in seconds.
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Figure 12: Average in space of the relative humidity in the gallery (left) and gas volume in the porous
medium (right) as a function of time.

4.3 Model with gas molar fraction and diffusion at the interface

The previous model can be improved by the introduction of two gas molar fractions in the gallery
instead of a single one. The first one corresponds to the gas molar fraction in the viscous boundary
layer at the interface I' on the gallery side. By the assumption of continuity of the gas molar fraction,
it is equal to ¢?(yu). Outside of this boundary layer, the second gas molar fraction is assumed to
be constant in the section of the gallery thanks to a strong turbulent mixing. This second gas
molar fraction is denoted by ¢ which is now an additional independent unknown. Another additional
unknown is the total molar normal gas flux at the interface in the gallery integrated over 0S. It is
denoted by F9 with the normal oriented outward of the porous medium and it depends only on x
and ¢ (see Figure 13).
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Figure 13: Main unknowns in the porous medium, at the interface and in the gallery for the new
model (right) and the previous model (left).

The new system is looking for u, ¢, and FY satisfying the porous medium system (1)-(2), coupled
with the following modified system at the interface I"

()P +e(F9)” + T9c](yu) — ¢)
= [ D> () (w)V*-nds, i €C, onT x (0,7),
95 a=g,l

Zcf(vu) =1, a=g,l, onT x (0,7),
ieC

( Osyu=0, on ' x (0,7,

and the conservation equations along the gallery

(

&s(IS\Cg(wg,C)ci) + &v(ISICQ(WQ,C)Ciw)
= /85 > *(w)e(w) Ve -nds, i €C, on (0,L) x (0,T), @1)

a=g,l

Zci: 1, on (0,L) x (0,7),

\ 1eC

with (aw + fBlwlw) = —0,vp?. In (20), we have used the notation a¥ = max(a,0) and a~ =
min(a, 0). The interface conditions (20) account for the gas pressure continuity, the thermodynamical
equilibrium, and the molar flux continuity. Following [5], the molar flux continuity takes into account
a diffusion flux TY9(cJ(yu) — ¢;) between the gas molar fraction at the interface ¢/(yu) and the mean
gas molar fraction ¢ in the gallery. This diffusion term is essential to allow the component molar
fluxes [,o >, 216 ()i (1) VY - n ds at the interface to take different signs (typically positive for
the HO component and negative for the air component). The diffusion transmissivity 79 is set to

g
70 = [05]¢7

where [0S| = [, ds, DY is the Fickian diffusion coefficient, and § a concentration boundary layer
thickness at the interface I'. Note that the previous model is recovered at the limit when the diffusion
transmissivity 7Y goes to infinity.

In the following tests, the influence of the diffusion transmissivity on the solution of the previous
test case is investigated for 79 = 0.01,0.1,1, 10,100, 1000 mol. m?. s~!. It is compared with the
previous model solution corresponding to 79 = 4+o00. All the physical and numerical parameters are
the same than in the previous test case including the input velocity w;, (see Figure 8). The initial
time step is changed to At = 0.1 s and the mesh size is fixed to 40 x 40 x 40. It is clear from
the numerical results exhibited in Figures 14, 15 and 16 that the lower the diffusion transmissivity
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TY9, the higher the average relative humidity at the interface, the lower the output liquid flux at
the interface, and the lower the average relative humidity in the gallery. The convergence of the
model for increasing 79 to the previous limit model obtained for 79 = 400 is also checked. The
difference between both models is also seen to be much larger at small times when the liquid flux
at the interface is high due to the instantaneous opening of the gallery. At larger times, once the
liquid flux at the interface has sufficiently decreased (the threshold value depending on 77) both
models roughly match. Table 3 exhibits the good numerical behavior of the Newton solver for a
large range of the diffusion transmissivities. The practical value of the concentration boundary layer
thickness 0 will depend on the velocity in the gallery and on the interface roughness. For example,
for § =1 cm and D9 = 2 1075 m?.s™! corresponding to the Fickian diffusion coefficient of vapour in
a vapour air binary mixture, we obtain roughly 79 ~ 1. In an ongoing work, the parameter § will
be fitted by comparison of our 3D-1D model with a 3D-3D model using Reynold averaged Navier
Stokes equations with an algebraic turbulent model in the gallery.
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Figure 14: Gas volume in the porous medium as a function of time.
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Figure 15: Average in space of the relative humidity at the interface (left) and in the gallery (right)
as a function of time.
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Output liquid flow rates in porous medium Input gas flow rates in porous medium
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Figure 16: Output liquid flow rates (left) and input gas flow rates (right) in the porous medium as
a function of time.

19 NAt NChop NNewton NGMRes CPU(S>
oo | 464 0 3.34 18.9 6193
1000 | 464 0 3.84 25.1 7687
100 | 464 0 3.80 24.3 7566
10 | 464 0 3.69 225 7296
1 464 0 3.46 22.1 6847
0.1 | 464 0 3.26 23.3 6540
0.01 | 464 0 3.10 41.2 7241

Table 3: For the mesh 40 x 40 x 40 and each value of 7Y : number Na; of successful time steps,
number Ncyo, of time step chops, number Nyeyion 0f Newton iterations per successful time step,
number Ngyrres of GMRes iterations by Newton iteration, CPU time in seconds.

5 Convergence analysis of a simplified model

We consider the following simplified model using the Richards approximation in the porous medium
and a single component equation in the gallery with linear pressure drop

B0C'S!(w)) + div(¢'V) = @
ISIC () + 0.~ S0 W0w) = [ Vemds o,

k(LS w) " (22)
Vi = —%K(Vu - M’C’g), p = g(v(u)).

The only primary unknown in the porous medium is the liquid pressure denoted by w. The liquid
mass density is assumed to be fixed to M'¢! where M' is the molar mass of the liquid phase and
¢! is considered constant. The thermodynamical equilibrium at the interface I' is accounted for by
the relation p = g(y(u)) with g € CY(R,R"), 0 < ¢’(¢) < ¢ for all ¢ € R and for a given constant
co > 0. The function g is a regularization for large positive u of p = Ps%meé”?ﬁ for given constants

1>c.>0and T, > 0. The molar gas density is set to (?(p) = 75 and is truncated in the flux term

such that (9(p) is assumed to be a non decreasing function in C*(R*+, R*) bounded from below and
above by two strictly positive constants and with a bounded derivative.
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To simplify the convergence analysis, we consider in this section Dirichlet boundary conditions
at the boundary 0Q \ I' of Q still denoted by I'p, and at both ends x = 0 and = = L of (0, L). Let
us define the function space

U={uc H(Q)]dsyu = 0},

and its subspace U = U N H}._(2) with zero trace on I'p.
Let C(2 x [0,T")) be the subspace of functions ¢ of C* (ﬁ x [0, T ]) vanishing in a neighbourhood

of t = T, T'p and dw x {0, L}, and such that dsp = 0 in a neighbourhood of I'. Given @ € V,
Uinitp € L*(), and ity € L*(0, L) the variational formulation of the simplified coupled model

amounts to find v € L? (O,T; U) with v — 4 € L? <O,T; U0> and g(yu) — g(yu) € L? (O,T; H&(F))
such that for all ¢ € C(Q2 x [0,7")) one has

.

/ /gb )¢ st (x, u(x, 1)) Opp(x, t)dxdt — /¢Cl I(x, Uinit p(X)) (%, 0)dx
/ / 1S1C7(g() (o, )00, — / 1S1¢Y (9(tining) (@), 0)d
(36, 8 (w(x, 1)) !
—i—/o /QC d K(Vu(x,t) — M'('g) - Vo(x, t)dxdt (23)

=[] st e ot @ 00 (. o

\ :/OT(/QQ(X,t)SO(x,t)der/OL\S|q(x7t)w(x,t)dx)dt.

We make the following additional assumptions on the data:

5.1

It is assumed that kl(x, s) is a measurable function w.r.t. x and continuous w.r.t. s, and such
that 0 < kpin < kL(x,8) < Epae for all (x,5) € Q x [0,1].

s'(x,u) € [0,1] for all (x,u) € Q@ x R with s'(x,u) = s}(u) for a.e. x € Q; and all u € R, where

s is a non decreasing Llpschltz continuous function vv1th constant L and () jes is a finite

famlly of disjoint connected polyhedral open sets such that U < Q =Q.

It is assumed that there exists a constant Ly, such that |s'(z,v) — s'(z,u)| < Lg,|g(v) — g(u)|
for all x € Q and (u,v) € R%

The permeability tensor K is a measurable function on the space of symmetric 3 dimensional
matrices such that there exist 0 < Apin < Apaz With Apin|€]? < (K(X)E,€) < Mnae|€]? for all
x € ().

a € L>(0, L) is such that 0 < apmin < () < g, for all z € (0, L).
The porosity ¢ belongs to L(Q2) with 0 < ¢pin < &(X) < Ppas for all x € €.

It is assumed that Q@ € L*(Q2 x (0,7)) and q € L*((0, L) x (0,7)).

Vertex Approximate Gradient Discretization

Taking into account the new boundary conditions, the subspace X% of Xp becomes

X% ={vp € Xp|lvs=0foralls e VpUVy UV, 11},
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with Vp = VN T'p. The reconstruction operator Ilp, is still defined by (10) with this new definition
of Vp. The definition of the reconstruction operator Ilp, taking into account the new boundary
condition at x = 0 is given by

Ip,vp(x) = vy, for all z € (xm_%,mer%), m=1---,mg.

with T1 changed to 0 compared with section 3. Other definitions are unchanged compared with
section 3.

For v € Xp, and a function k € C°(R,R), we define k(v) € Xp as follows: k(v)s = k(vs) for all
s € V and k(v)x = k(vk) for all K € M. Then, given v, € Xp and up € Xp, the discretization of
the coupled model (23) looks for u%, € Xp with ul, — tip € X2 for all n = 1,--- | N such that for all
Up € X%

p, vp(x)dx

( st(x, Ip, ul (x)) — s'(x, Ip,up " (x))
| otc -

| / 51/ Mg B) @) — Mg YDy,
n /Q Cl kT(X, S (X,EDPU%(X)))K(VDPU%(X) . Mlclg) . VDPUD(X>dX (24>

+/0L %1-2|S|Z§(HD99(U%)(aj))ngg(u%)(x)ngUD(.T)d.T
- Altn /ttl </Q Q(x, t)HDpUD(X)dX+/OL’S‘q(x,t)HDgUD(Qf)daj)dt_

n

5.2 Convergence analysis

Let pr denote the insphere diameter of a given tetrahedron 7" € T, hr its diameter, and hr =

maxye7 hy. We will assume in the convergence analysis that the family of tetrahedral submeshes T

is shape regular in the sense that 07 = maxpcr Z—; will be bounded for the family of meshes. The

following Lemmas are simple adaptations of the Lemmas already obtained in [7].
Lemma 5.1 There exist Cp,Cy > 0 depending only on 0 such that for all u € Xp

Hp,ullz2) < CilHrull2@)  and  |Ip,ullr2,r) < ColVIl7ullr2(0,1)- (25)
We deduce from Lemma 5.1, the following discrete Poincaré inequalities.
Lemma 5.2 There exist Cs,Cs > 0 depending only on 01 such that for all u € X%

ITp, ullz2) < Csl|Vp,ullz2s  and  [[Tp,ullz20,0) < Csl|Vp,ul|L2(0,1)- (26)
Lemma 5.3 There exists C3 > 0 depending only on 01 such that, for all u € Xp,

Mp,u — Myl r2(0) + [Hp,u — Yll7ullr20,0) < Cs hr|[Hruly. (27)

Lemma 5.3 imply in particular that there exists C' > 0 depending only on 6+ such that

[lp, up — | L2@) + [[Hp,tp — l[r2(0,) < C((l + hr)|[Hrtp — allyv + hT||ﬂ||v>-

Next, for any smooth function ¢ € C=(Q) such that d,¢ = 0 on I, let us define the projection
Ppyp on Xp by (Ppy)k = ¢(xk), K € M, (Ppp)s = ¢(xs),s € V. We have the following classical
finite element approximation result.
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Lemma 5.4 For all o € C®(Q) such that Oy = 0 on T, there exists C(p) > 0 depending only on
@ and 01 such that

I =l Ppylly < C(p)hr
Let us set Xp ar = (Xp)», and for all vp = (v})p=1.. ;v € Xp.as let us define foralln =1,--- | N
IIp, acvp(x,t) = Ilp,vp(x) for all (x,t) € Q x ("', "],
Ip, acvp(,t) = Ip, vp(x) for all (z,t) € (0,L) x ("1, "],
Il arvp(x,t) = Tl7vp(x) for all (x,t) € Q x ("1, "],
Vb, atvp(X,t) = Vp vp(x) for all (x,t) € Q x (", "],
Vo, atvp(,t) = Vp,vh(x) for all (z,t) € (0,L) x (t" 1, ¢"].
Let up = (u})n=1..n, the given solution to (24), we also define the functions SleAt(X, t) =
s'(x, Hp, atup(x, 1)), pp, at(z,t) = g(IIp, arup(z,t)), and
s (x, Ip, uih (x)) — s'(x, Ip,up " (x))
Atr
lIp,g(up)(x) — Ip,g(up *)(x)
Atr

for all (x,t) € Q x ("1,

5DSle,At (X7 t) =

for all (x,t) € (0,L) x (" ¢"].

dppp, at(T,t) =

Let us set for all vp € X

st(x, TIp ul(x)) — st(x, IIp v’y (x
Ap, (vp) = / o) TRl LBt B, )
Q
= / /¢(X)Cl(5@s§3 (X, H)p vp(x)dxdt,
Atn tnfl (9] P P
L 11 n —T1I n—1
A (v) = [ e PN D )
o RT S (29)
= A_t”/ / 5Dng at(x, t)p,vp(x)dedt,
tn
k:l x, s'(x, Ip u(x
By, (vp) = [ PR OI g (91, o) — M) - Vi, ()
30)
(%, 5 2,)(%,0) (
= At”/ / DﬂlAt K(VHT’AtuD(X, t) — MlClg> - Vp,vp(x)dxdt,
By, (vn) / 151G (T, 0(0) () Vi, 0(03) () Vi, ()
1 (31)
- / [ 15100, e, 00T ) 2,0, v
-1 Jo
and
1
€3 (o) = 55 [ [ Qxct)lin, volixt (32)
p Atn tn—l [9) P
1 " L
C3, (o) = s [ [ 1Slate. i, vo(e)doit. (33)
t tn—l 0
in such a way that the system (24) is equivalent to: find up € Xp o with uly—tip € X3, n=1,--- /N,
such that
Ap, (vp) + Ap, (vp) + Bp, (vp) + Bp, (vp) = Cp (vp) + Cp, (vp), (34)

for all vp € X9.
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5.2.1 A priori estimates and existence of a discrete solution

Proposition 5.1 There exists at least one solution up € Xp ¢ to (24), and there exists a constant
C > 0 depending only on the data, on 01, and on HHDpu% — Uinitp | L2() HHDQUOD — Uinit,gl| 120,15
[II7up — ullyv such that any solution up € Xp ar to (24) satisfies

1Lp, atg(un)| Lo 0,7;22(0,)) + | Vo, 80Ul L2(0.1:02(0)) + [VDy,869(uD) || 200,702 (1)) < C. (35)

Proof: We first prove the a priori estimate (35). Let us set Ty = ., At AR (up), Ty =

Zgzl AtnA%g(U%)a 15 = zivzl AtnA%p@D)v 15 = Zgzl AtnA%g(aD)a 15 = Zgzl Atn(c%pW% -
tup) + Cp (up — tp)). We also define

Ty = Zm" / Gt s (x, HZDP“D( )))Kvppmgg — tip)(x) - Vp, (u — ip)(x) dx,  (36)

ZAt” / g0 B PRI (1l — Vi, () - Vi, (up — ). (37

Z At / 5 151G (T, 0(02) () Vi, g(0) (@) Vi, (0 — )@, (38)
in such a way that
T1+T2+T3+T4 :T5+T6—|—T7+Tg.

Accumulation terms: Firstly, using the assumption on s, the following estimate is a straightfor-
ward adaptation from Lemma 3.1 of [2].

Cl

> —maz~— [, upl 120 (39)

Next, using 0 < s'(x,u) < 1, we obtain the following estimate for Tx

Ts < ' bmazV/ ||, tp]| 12(0)- (40)
From (11), we have that

N mg

s |(gul) — gl )

b
Using G(u / vg'(v)dv which verifies G(b) —G(a) = b(g(b) — g(a)) —/ (9(v) —g(a))dv and hence
0 a
b(g(b) — ) > G(b) — G(a) for all (a,b) € R x R, we obtain that
151 2y
L2 o Dt 1@ 1 (Glup,) = Glup ™)),
1 m=1

_ ‘S| me_; L1 |(Glul)) = G(u)).

9(u)
Remark that G(u) = / g (v)dv, so that in view of assumption on g one has
9(0)

(960 —90)" _ 60 < ()

2maxyer g'(v) )y

veER 2 ’
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Therefore

S| N 2 S| max,er g'(v) 012
T2 g (Mo, 9(8) = 90y ) = =g oty (41

Turning to 7, we obtain the estimate

|S
T, <
= RT,

|l 120,01, (9(up) — 9(up))ll220,1)-

We deduce that

S _
7, < 190 e (miae /(). 1) 1T, 5l 1200 (102,003 1200 + Mhp, 8l 20y} (42)

Transport terms: Thanks to the assumptions on K and k! we obtain the following estimates

Cl

T, > %o S DI, 1 ) ey (43)
n=1
and
l
T < ikm maxZAtnnvD (up — )|z (I Vm, Bpll2o + Mgl VIR). (44)
n=1
From (9) and (11), setting b,, ,,,1 = f;:*% %, Omstmsl = f;mj; a"éi) and

_ Zg(g(u:;l))bm,m+% + Zg<g(u:ﬁ+1)>bm+1,m+%

3 | TmTm 1] ’
for m =0,--- ,m, we have that
L = 9] i A S, L9080) = 905 (0, = )
n=1 m=0 mta |xmxm+1|
N m _ _
- (9(up) = g(up, 1)) (Un — Umi1)
- |S A" a1 m m ,
2 A 2t

We deduce that

S| min, ng ol n n
7, > 151 mibues “Zm 195, 90 20,

/
Maz MAXyecR g U

L (e G )(Z AT, 0 ) (3 Il )

Cmin, n=1
Using Young’s inequality we obtain that
|S] minveRC v)
T, > At"||Vp
+= 20émaz maXycr g U ; | g(uD) HL2 0.L) (45)
B |S|amax (maXUERg ( ))(ma’XUERC Z AthVD UDH 2
s UDIIL2(0,L)"

2amin minvER <g (U) n=1
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Using the discrete Poincaré inequalities of Lemma 5.2, we obtain the following estimate of the
source terms

tn—

N tn
1
Ty < C5 ) At"[|Vp, (uf _aD)||L2(Q)3(Atn/ 1||Q(.,t)||L2(Q)dt>
+C’6|S|2At”||vpg(u%—uD)HLQ(O,L)(A—tn/ g Dl ).
n—1 tn—1

Gathering the estimates (39),(41),(43), (45),(40),(42), (44), and (46), and using Young’s and
Cauchy-Schwarz inequalities, we conclude the proof of the a priori estimate (35).

To prove the existence of a solution u,n =1,--- | N to (24), let us consider the one parameter
family of solutions obtained by setting s"%(x,u) = s'(x,u) + 1 — 6, (%9(p) = 6C9(p) + (1 — O)¢2
with a given ¢J > 0, and ¢?(u) = 0g(u) + (1 — @)u. Let us remark that for all values of § € [0, 1],
the previous estimates still hold. Since for § = 0, the system (24) becomes linear, it results that it
admits a unique solution. By topological degree argument, we deduce the existence of at least one
solution to (24) for § = 1. O

5.2.2 Space and time translates estimates

The function space L*(2) x L*(0, L) is equipped with the scalar product ((u,p), (v, q))r2()xr2(0,1) =

Ja Cl(/buvdx—i-fOL %pqdaz. For all (u,p) € L?(2) x L?(0, L) we also define the dual semi-norm ||u||_; p
by

o=  sup P T2, [Ip,0p) 20y 2200)

(47)
vpEXY vpF#0 ||H7JUDHV

Lemma 5.5 There exists a constant C' > 0 depending only on the data, on 07, and on HHDPU% —
Winitp|l12(0), 11D, W — Winitgl| 12(0,0), 17U —Tllv such that any solution up € Xp a¢ to (24) satisfies
the estimate

T
| 1(805b, a1, 50D, 800 |2, it < €. (15)
0
Proof: Using (24), we obtain that for all vp € X9
<<6DSle,At('v t"), 6ppp, .t (-, t”)) , (Ilp,vp, p,vp)) L2()x L2(0,) =

B /Q ciFr (%, 5 (%, 1, up(x)))

!

K(Vp,up(x) — M'C'g) - Vp,vp(x)dx

—/0 LISIZg(Hogg(U%)(x))Vogg(U%)(CU)VngD(l’)dx

a(z)

+A1tn /tt: (/QQ(x,t)HDva(X)dx+/OL|5|q(x,t)HngD(x)dx)dt,

n

27



Using the discrete Poincaré inequalities of Lemma 5.2, and the assumption on the function g, we
obtain the estimate

<(5D5le,At(-7 t"), dppp,.adl., t”)); (p,vp, Hp,vp)) r2()x22(0,0) <
glkmax)\max(HVDPU%HL2(Q)3 + Mlcl‘g| V |Q’> ||vaUDHL2(Q)3

1 ~ n
+— |S|<I§‘eaﬂ§<49(q))||Vpgg(up)||L2(0,L>HVDg“D”L?(O’L)
min 1 n
405 (5 [ 10O eyt [, ] 1200y
Atn tn—1 "

1 t
+GolS| (57 [ Nt Ol0.dt) IV, el200),
Atn tn—1
and the proof is achieved using Proposition 5.1 and the Cauchy-Schwarz inequality. [J.

Lemma 5.6 There exists a constant C' > 0 depending only on the data, on 67, and on HHDpu% -
Uinitp|| £2(02) ||Hpgu%—umit’gHLz(o,L), [II7up —ul|v such that any solution up € Xp ar to (24) satisfies
the estimate for all T € R

/R<||Slpp,m(-a t+7) = sp, a2 + 1PD,.a0( t+7) = ppy.ac(., t)||2L2(o,L)>dt

<7,

where pp, a¢ and Sle,At are extended by zero outside of respectively (0, L) x (0,7) and 2 x (0,T).

(49)

Proof: From the Lipschitz assumptions on the functions s’ and g, and by definition of the semi-norm
(47) we obtain the estimates

Ll

/ C'p(x)|sp, ar(3%,t+7) = s as(%,8)[Pdx + / R—T|ng,At(ﬂfa t+7) = pp,ac(, b)) dz
Q 0 e

< Lsp/ (' p(X) (s, ar (Xt +7) = 85 A, (%, 1)) (Mp, arg(up)(X,t + 7) = Tlp, arg(up)(x, t))dx
Q

L

S

[ i+ 7) = )T )+ 7) = T, gl . )
0 e

<max (1, Lsy ) |5, ai( t +7) = 8, ac( 1), 0Dy88 (-t 4+ T) = ppyac( 1)1
ITL7Aeg(up) (-t + 7) — Ty acg(up) (-, ) |lv

Using Young’s inequality, we obtain that there exists C' such that for all 7 € (0,7)

T—T
| (Isby et 7 = s, (Ol + ooy adst +7) = b, Oll oy )
0
C

7]
T—T
+CV7] / M7 acg(up) (., t + 7) — U7 acg(up) (., t)[lvdt.
0

From BV properties of piecewise constant functions and from Lemma 5.5, we obtain that

T—7
/ 5D, ac(t+7) = s Al ), Ppyac(t+7) = ppy,ac(, 1)1 pdt
0

T—1
/ ”SIZD,,,At<'7 t+7)— Sle,At<'7 ), pp,at(t +7) = pp,.ac(- 1) —1,pdl
0
T
<7 [ (50, adst): Bopp, s 1) o
0

T 1/2
< Tﬁ(/ I <5D5l1)p7At(-at)7(SDng,At('at)) ”2—1,Ddt>

0
< CVTr.
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Using 0 < s'(x,v) < 1 as well as the boundedness of ||pp, a¢(.,t)|z2¢0,) on [0,7] from Proposition
5.1, we conclude the proof of Lemma 5.6. [.

Lemma 5.7 Let pp € Xpas be defined by pp = g(up) — g(up), we denote pp, ar = Ilp, athp.
There exists a constant C > 0 depending only on the data, on 07, and on ||H']_)pU,OD — Uinitp|| L2(02)
||Hpgu%—umit7g\|Lz(07L), |ILytp—a|y such that any solution up € Xp ar to (24) satisfies the following
estimate for all € € R and ¢ € R.

T
(s 608) = s, arle gy + Im 0+ C8) = By oey )50
< C(lgl + 16|+ hr)

where sé)p a¢ and pp, a are extended on R* (respectively on R) by zero.

Proof: For any £ € R? we define the set Q¢ = {x € Q | x + £ € Q}. From Proposition 5.1 there
exists a constant C such that the following estimate holds for all £ € R? and ¢ € R:

T
(“HT,AtUD(- +&,1) = Ty asun (., 1) 1200 + W78 (- + (1) = ATI7 Ao (., t)||%2(R)>dt

< o(el +1¢D.
(51)

We conclude the proof using Lemma 5.3 as well as Lipschitz properties and boundedness of s'. .

5.2.3 Convergence

Lemma 5.8 Let (0™),,en be a sequence of functions in L2(0,T;U°) such that ||[v™|| 20711 @) <
C for some positive C. Then, there exists v € L*(0,T;U°) such that

1. up to a subsequence

o™ <y in L2(Qx (0,T)) and Vo™ — Vo in L*(Q x (0,T))3.

2. up to the same subsequence

o™ = yu in L2((0,L) x (0,T));

Proof: The proof of the first statement is classical, see e.g. the proof of Lemma 5.1 in [6]; more-
over v € L*(0,T;HE (). Next, there exists r € L?(0,7;L*(0,L)) such that yv™ — 7 in
L?(0,T; L*(0, L)). To conclude, let us prove that d;yv = 0 and r = yv. For all ¢ € L*((0, L) x (0,T))
and 1 € L*(0S x (0,T)), there exist U € L*(0,T; Hy;,(Q)) such that ¥ -n = @(z,t)1(s,t) on I
Hence, one has

! M (x. 1)U (x 0™ (x vl (x xdt— L 2 (2 T S rdsdt = 0.
ALW (%, £) 0 (x, £)+ mmwummyAAéy/xxm»wimwto

Passing to the limit in this equality one obtains that

/0 ) /Q (Vo(x, ) - U(x, 1) + v(x, ) div (x, ¢))dxdt — /O ' /0 ’ /a )l 0 (s, dadsd =0,

which implies that

/OT /OL /as(’Yv(x, s, t) —r(z,t))e(z, t)(s, t)drdsdt = 0,

and hence that dsyv =0 and yo = r. [.
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Theorem 5.1 Let D) At™(™ n=1,... N m e N be a sequence of space time discretizations

such that there exists 0 > 0 with Orey < 0. It is assumed that lim,, .4 hyey = 0, and that

At = max,, N(m) At tends to zero when m — +oo, and that ||HD<m)u%(m) — uim-t’pHLz(Q),
D

HHD!(]m)uOD(m) ulmtgHLQ(OL | Il m) Upom) — ||y tends to zero when m — +o0o. Then, there exist a

subsequence of m € N and a functionu € L*(0,T; V') solution of (23) such that up to this subsequence

SlDém),AtW) — s'(.,u) strongly in L*(Q x (0,T)),

I m) ppomy Upm) — u weakly in L*(Q x (0,T)),
and

Ppim agm) g(yu) strongly in L*((0,L) x (0,T)).

Proof: From Proposition 5.1, Lemma 5.8, and the convergence to zero of |[ILymmtpm) — ||y we
deduce that there exists u € L*(0,T;U) with u — u € L*(0,T;U°) such that up to a subsequence
L) ppom Up(m) — w weakly in L2(Q < (0, 7)), YILztm) agm Upemy — yu weakly in L*((0, L) x (0,T)),
and VILrm) aym Upem — Vu weakly in L?(Q x (0,7))%.

In view of Lemma 5.6, Lemma 5.7, and Lemma B.2 of [8], the Kolmogorov-Fréchet theorem
implies that there exist two functions s € L?(Q x (0,7)) and p € L*((0,L) x (0,7)) such that
up to a subsequence Sé);m),m(m) — S strongly in L?(2 x (0,T)) and ppf,m),mw) — p strongly in
L?((0, L) x (0,7T)). The sequence YILym) aymPpem is uniformly bounded in L*(0,T; Hj(0, L)), thus
one can extract a subsequence of 9,YIl;um aymPpem Weakly converging to some function p, in
L*((0,L) x (0,T)). Let ¢ € L*(0,T;C(R)) and let YILy-m) agmPpem be extended by zero outside
of (0, L), passing to the limit in

T
/ / <(6x’YHT<m>,At<m>ﬁp<m))90(93 1) + ’YHT<m>,At<m> Ppim) Opp(, t))da:dt =0,
0 R
we obtain that .
/ /(ﬁxw(x,t) —i-ﬁ@ng(x,t))dxdt =0,
0 R

and hence that p, = 9,p and p € L*(0,T; H}(0,L)). From the convergence to zero of ||ILym)tpm) —
||y and the assumptions on g we deduce that there exists p € L?((0, L) x (0, T')) such that p—g(yu) €
L*(0,T; H}(0,L)) and such that Ppgm) agem) > P strongly and 9, YIl7m) aumPpm) converges weakly
to O.p up to subsequence. Using the Minty’s trick stated in Lemma 3.6 of [2] one can show that

s =s'(.,u) and p = g(yu).
It remains to show that u is a solution to (23). We will drop the superscript (m) in the following

for the sake of convenience. Let C(2 x [0,7")) be the subspace of functions ¢ of C* <§ X [O,T])

vanishing at t = 7" and on I'p and such that ds¢ = 0 on I'. Then, let ¢ € C(Q2 x [0,T)) and consider
the function ¥ (t) = Ppi(.,t) € X2,

Next, setting vp = (") in (34), multiplying the left and right hand sides by At" and summing
over n, we obtain that

Z A (A, () 4+-Ap, (B )+ By, (B )+B, (B(t"™) ) = Cp, (D(E")+Cp, (5 )).
First, using the chain rule and ¢ (T") = 0, we have that
ZAt”A” = -3 / / 0(3)sb, (%, )0, I, B(1) ()l
/ (10005 (. T, 1 ()T, T(0) ()
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We deduce from the strong convergence of sé)p’ a¢ to st(.,u), the strong convergence of IIp uf, to
Uinitp, and the regularity of 1, that

ZAt”An (")) — —/ /C¢ (x, u(x,t))0h(x, t)dxdt
+/QC ¢(X)8 (X, Uinit p (%)) (%, 0)dx.

Similarly, we have that

ZAtnAn tnl Z/tnl

+ /0 ]gzleg(ﬂpgup(a:))ﬂpgip(o) (z)dz.

ad(w, )0 11p, P(t) (x)dzdt

RT

We deduce from the strong convergence of pp, A to g(yu), the strong convergence of Ilp, u, t0 Uinit,g,
and the regularity of 1, that

RT g(yu)(x, t) 0y (x, t)dadt

+/o ]|%57l 9(Uinit,g) ()7 (2, 0)dz

Turning to the diffusion terms, we have from the weak convergence of VIIj aiup to Vu, the strong
convergence of s, A, to s'(.,u), the assumption on k., and the regularity of ¢, that

EPW%” Bty - [ [ Ot g aiclg) Wt i

Similarly, we deduce from the weak convergence of 0,vIl7 arup to 0,g(yu), the strong convergence
of pp, At to g(yu), the assumption on (9, and the regularity of 1, that

ZNW"t“+//—7wwuwwm%mwwnwwwm

Turning to the source terms, from the regularity of v, we obtain that

ZAt”(C’" (" 1))+C" "1 / /th xtdxdt—i—/ / |S|q(z, )y (x, t)dxdt.

6 Conclusion

A reduced model coupling the 3D gas liquid compositional Darcy flow in a porous media and a 1D
compositional gas free low has been proposed and applied to predict the mass exchanges occurring
at the interface between the repository and the ventilation excavated galleries. The model takes
into account the low permeability of the disposal to simplify the coupling conditions and uses a
No Pressure Wave approximation in the free flow domain. The VAG scheme has been extended to
the discretization of such model. It has the advantage compared with classical CVFE approaches
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to avoid in a natural way the mixing of the porous and free media properties inside the control
volumes at the nodes located at the interface. The discretization has been validated using a quasi
analytical solution for the stationary state which is shown to provide a very good approximation
of the converged numerical solution of the coupled model. Finally, the convergence of the VAG
discretization to a weak solution has been proved for a simplified model coupling the 3D Richards
approximation for the liquid pressure in the porous medium and the Darcy approximation of the 1D
gas pressure equation in the gallery. In an ongoing work, in order to fit the concentration boundary
layer thickness parameter 0, the 3D-1D model of subsection 4.3 will be compared with a full 3D-3D
model using Reynold averaged Navier Stokes equations with an algebraic turbulent model in the
gallery.
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